Reasoning and Decision-Making under Uncertainty

3. Termin: Uncertainty, Degrees of Belief and Probabilities

Prof. Dr.-Ing. Stefan Kopp
Center of Excellence „Cognitive Interaction Technology“
AG Sociable Agents

Intelligent agent

- Reasoning, inference
- Decision-making, action selection
Sources of uncertainty in reasoning

Epistemic limits
- knowledge about realistic domain is always approximative and simplified
- noisy sensors, partially observable environment, conflicting information

Representational limits
- notational adequacy of representation language
- frame problem (McCarthy & Hayes, 1969), qualification problem (McCarthy 1980), ramification problem

Inferential limits (e.g. of first-order logics)
- too many possible antecedents or consequents (incompleteness)
- no truth-preserving inferences (incorrectness)
- growth of uncertainty from (untested) antecedents to conclusions, especially when chaining inferences

Reasoning with uncertainties

Example: SARS diagnosis

Idea: Instead of enumerating all antecedents and conclusions, summarize them by numbers (e.g. probabilities)
Reasoning with uncertainties

Classical knowledge-based (or model-based) reasoning

Probabilistic reasoning

Vagueness vs. Uncertainty

Probabilities ~ uncertainty, if a proposition is true or not (→ degree of belief)
Not gradually true (vague) propositions (→ fuzzy-metrics)

Sources of uncertainty in decision-making

Stability and robustness limits
- environment dynamic
- environment non-deterministic (bounded or unbounden indeterminacy)

Complexity limits
- full deliberation too costly
- need for limited horizon of deliberation
- combinatorical explosion when accounting for contingencies and indeterminism

Decision-making with uncertainties

Let action $A_t = \text{leave for airport } t \text{ minutes before flight}$

Question: Will A_t get me there on time?

What are the problems for a purely logical agent?

A purely logical approach either

- risks falsehood: “A_{25} will get me there on time” = true
- leads to conclusions too weak and unreliable for decision-making

Example:

- A_{90} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact and
 - plan success not inferrable (qualification problem)

Logical agent unable to act rationally under uncertainty!

Idea: rational decision depends on both relative importance of goals and likelihood that they will be achieved to the necessary degree
Decision-making with uncertainties

Idea in a nutshell

Use probabilistic assertions (not propositions) to summarize effects of
- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.

Subjective probability relates facts to the own state of knowledge
- degree of belief, e.g., \(\Pr(A_{25} \mid \text{no reported accidents}) = 0.06 \)
- *not* a degree of truth, i.e. no assertions about the world, only about belief

Probabilities of assertions change when new evidence arrives
- posterior or conditional probabilities:
 \(\Pr(A_{25} \mid \text{no reported accidents, 5 a.m.}) = 0.15 \)

Suppose the agent believes the following:
- \(\Pr(A_{25} \text{ gets me there on time } \mid \ldots) = 0.04 \)
- \(\Pr(A_{90} \text{ gets me there on time } \mid \ldots) = 0.70 \)
- \(\Pr(A_{120} \text{ gets me there on time } \mid \ldots) = 0.95 \)
- \(\Pr(A_{1440} \text{ gets me there on time } \mid \ldots) = 0.999 \)

Which action to choose depends on preferences for possible outcomes (risks, costs, rewards, etc.), represented using utility theory
- decision theory = probability theory + utility theory

Principle of maximum expected utility (MEU)
An agent is rational iff it chooses the action that yields the highest expected utility, averaged over all possible outcomes of the action
Decision-making with uncertainties

Idea in a nutshell

```java
function DT-AGENT(percept) returns eine Aktion
    static: belief_state, probabilistischer Glauben über den aktuellen Zustand der Welt
        action, die Aktion des Agenten

    aktualisiere belief_state basierend auf action und percept
    berechne Ergebniswahrscheinlichkeiten für Aktionen
    abhängig von Aktionsbeschreibungen und aktuellem belief_state
    wähle action mit dem höchsten erwarteten Nutzen
    für gegebene Wahrscheinlichkeiten der Ergebnisse und Nutzeninformation
    return action
```

„Decision-theoretic Agent“

Decision-making with uncertainties

Classical knowledge-based (or model-based) decision-making

- **Knowledge base (logics) + inferences**
- **Action selection (planning) based on true/false preconditions/effects**
- **Action(s)**
- **Goals**

Probabilistic decision-making

- **Probab. causal model (Bayesian network)**
- **Action selection based on expected utilities under current degrees of belief**
- **Action(s)**
- **Goals, Utilities**
Propositional logics

World = state of affairs in which each propositional variable is known

- variable assignment with values

Models = worlds that satisfy a sentence

- every sentence represents a set of worlds = (atomic) event

<table>
<thead>
<tr>
<th>World</th>
<th>Earthquake</th>
<th>Burglary</th>
<th>Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>w1</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>w2</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>w3</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>w4</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>w5</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>w6</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>w7</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>w8</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>

\[\text{Mods}(\alpha) = \{ \omega : \omega \models \alpha \} \]

\[\text{Mods}(\alpha \land \beta) = \text{Mods}(\alpha) \cap \text{Mods}(\beta) \]

\[\text{Mods}(\alpha \lor \beta) = \text{Mods}(\alpha) \cup \text{Mods}(\beta) \]

\[\text{Mods}(\neg \alpha) = \overline{\text{Mods}(\alpha)} \]

Important properties of sentences

- consistent / satisfiable \[\text{Mods}(\alpha) \neq \{\} \]
- valid \[\text{Mods}(\alpha) \neq \Omega \quad \models \alpha \]

Important relationships of sentences

- equivalent \[\text{Mods}(\alpha) = \text{Mods}(\beta) \]
- mutually exclusive \[\text{Mods}(\alpha) \cap \text{Mods}(\beta) = \{\} \]
- exhaustive \[\text{Mods}(\alpha) \cup \text{Mods}(\beta) = \Omega \]
- implies \[\alpha \models \beta \] \[\text{Mods}(\alpha) \subseteq \text{Mods}(\beta) \]
Monotonicity of logical reasoning

\[\alpha : (\text{Earthquake} \lor \text{Burglary}) \Rightarrow \text{Alarm} \]
\[\text{Mods}(\alpha) = \{\omega_1, \omega_3, \omega_5, \omega_7, \omega_8\} \]

\[+ \]
\[\beta : \text{Earthquake} \Rightarrow \text{Burglary} \]
\[\text{Mods}(\alpha \land \beta) = \text{Mods}(\alpha) \cap \text{Mods}(\beta) = \{\omega_1, \omega_5, \omega_7, \omega_8\} \]

Monotonicity
Learning new information can only rule out worlds:

- if \(a \) implies \(c \), then \((a \text{ and } b)\) will imply \(c \) as well

Especially problematic in light of qualification problem! (why?)

Modeling degrees of belief as probabilities

Degree of belief or probability of a world
- in fuzzy logic, interpreted as possibility/vagueness
 (not the view adopted here)

Degree of belief or probability of a sentence

State of belief or joint probability distribution

<table>
<thead>
<tr>
<th>World</th>
<th>Earthquake</th>
<th>Burglary</th>
<th>Alarm</th>
<th>(Pr(\cdot))</th>
</tr>
</thead>
<tbody>
<tr>
<td>w1</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>.0190</td>
</tr>
<tr>
<td>w2</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>.0010</td>
</tr>
<tr>
<td>w3</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>.0560</td>
</tr>
<tr>
<td>w4</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>.0240</td>
</tr>
<tr>
<td>w5</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>.1620</td>
</tr>
<tr>
<td>w6</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>.0180</td>
</tr>
<tr>
<td>w7</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>.0072</td>
</tr>
<tr>
<td>w8</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>.7128</td>
</tr>
</tbody>
</table>
Properties of beliefs

Properties of (degrees of) beliefs
- bound
- baseline for inconsistent sentences
- baseline for valid sentences

Junctions of beliefs
- disjunction
- conjunction

\[0 \leq Pr(\alpha) \leq 1 \quad \forall \alpha \]
\[Pr(\alpha) = 0 \quad \forall \alpha \text{ inconsistent} \]
\[Pr(\alpha) = 1 \quad \forall \alpha \text{ valid} \]

\[Pr(\alpha \lor \beta) = Pr(\alpha) + Pr(\beta) - Pr(\alpha \land \beta) \]
\[Pr(\alpha \land \beta) = 0 \text{ if } \alpha, \beta \text{ mutually exclusive} \]

\[Pr(\text{Earthquake} \land \text{Burglary}) = Pr(\omega_1) + Pr(\omega_2) = .02 \]
\[Pr(\text{Earthquake} \lor \text{Burglary}) = .1 + .2 - .02 = .28 \]

Uncertainty and entropy

Entropy = quantifies uncertainty about a certain variable

\[ENT(X) := - \sum_x Pr(x) \log_2 Pr(x) \]
\[(0 \log 0 := 0) \]

<table>
<thead>
<tr>
<th>World</th>
<th>Earthquake</th>
<th>Burglary</th>
<th>Alarm</th>
<th>Pr(.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w1</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>.0190</td>
</tr>
<tr>
<td>w2</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>.0010</td>
</tr>
<tr>
<td>w3</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>.0560</td>
</tr>
<tr>
<td>w4</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>.0240</td>
</tr>
<tr>
<td>w5</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>.1620</td>
</tr>
<tr>
<td>w6</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>.0180</td>
</tr>
<tr>
<td>w7</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>.0072</td>
</tr>
<tr>
<td>w8</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>.7128</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Earthquake</th>
<th>Burglary</th>
<th>Alarm</th>
<th>ENT(.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>.1</td>
<td>.2</td>
<td>.2442</td>
</tr>
<tr>
<td>false</td>
<td>.9</td>
<td>.8</td>
<td>.7558</td>
</tr>
<tr>
<td>ENT(.)</td>
<td>.469</td>
<td>.722</td>
<td>.802</td>
</tr>
</tbody>
</table>
Updating beliefs

Evidence = a piece of information known to hold \(\beta \)

\(\rightarrow \) requires to update state of belief with certain properties

- accommodate evidence \(\Pr(\beta|\beta) = 1 \)
 \(\Pr(\omega|\beta) = 0 \) for all \(\omega \models \neg \beta \)

- normalized \(\sum_{\omega \models \beta} \Pr(\omega|\beta) = 1 \)

- retain impossible worlds \(\Pr(\omega) = 0 \rightarrow \Pr(\omega|\beta) = 0 \)

- retain relative beliefs in possible worlds
 \[
 \frac{\Pr(\omega)}{\Pr(\omega')} = \frac{\Pr(\omega|\beta)}{\Pr(\omega'|\beta)}
 \]
 \(\forall \omega, \omega' \models \beta, \Pr(\omega) > 0, \Pr(\omega') > 0 \)

Updating beliefs

\(\rightarrow \) update old state of beliefs through conditioning on evidence \(\beta \)

\[
\Pr(\omega|\beta) := \begin{cases}
0 & \omega \models \neg \beta \\
\frac{\Pr(\omega)}{\Pr(\beta)} & \omega \models \beta
\end{cases}
\]

new beliefs = old beliefs, normalized with old belief in new evidence

<table>
<thead>
<tr>
<th>Earthquake</th>
<th>Burglary</th>
<th>Alarm</th>
<th>(\Pr(.))</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>.0190</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>.0010</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
<td>.0560</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>.0240</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>.1620</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>.0180</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>.0072</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>.7128</td>
</tr>
</tbody>
</table>

| Earthquake | Burglary | Alarm | \(\Pr(.|\text{Alarm}) \) |
|------------|---------|-------|--------------------------|
| true | true | true | .0190/.2442 |
| true | true | false | 0 |
| true | false | true | .0560/.2442 |
| true | false | false | 0 |
| false | true | true | .1620/.2442 |
| false | true | false | 0 |
| false | false | true | .0072/.2442 |
| false | false | false | 0 |

\[
\Pr(\text{Burglary}) = .2 \rightarrow \Pr(\text{Burglary}|\text{Alarm}) = .741
\]
Updating beliefs

More efficient: direct update of a sentence from new evidence through Bayesian conditioning

\[Pr(\alpha|\beta) = \frac{Pr(\alpha \land \beta)}{Pr(\beta)} \]

follows from the following commitments

- worlds that contradict evidence have zero prob
- worlds that have zero prob continue to have zero prob
- worlds that are consistent with evidence and have positive prob will maintain their relative beliefs

Note: Bayesian conditioning is nothing else than application of the basic product rule

\[Pr(\alpha \land \beta) = Pr(\alpha|\beta) \cdot Pr(\beta) \]

Example: State of belief from above

<table>
<thead>
<tr>
<th>(Pr(\text{Earthquake}))</th>
<th>(Pr(\text{Burglary}))</th>
<th>(Pr(\text{Alarm}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>.1</td>
<td>.2</td>
</tr>
</tbody>
</table>

Conditioning on first evidence: \(\text{Alarm}=\text{true} \)

| \(Pr(E|\text{Alarm}) \) | \(Pr(B|\text{Alarm}) \) | \(Pr(A|\text{Alarm}) \) |
|-------------------------------|------------------|-----------------|
| true | .307 | .741 | 1 |

Conditioning on second evidence: \(\text{Earthquake}=\text{true} \)

<table>
<thead>
<tr>
<th>(Pr(E\land E))</th>
<th>(Pr(B\land E))</th>
<th>(Pr(A\land E))</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>1</td>
<td>.253</td>
</tr>
</tbody>
</table>

\(\rightarrow \) belief dynamics under incoming evidence is a consequence of the initial state of beliefs one has!
Summary

Problems of reasoning and decision-making under uncertainty

Vagueness vs. uncertainty

From propositional logics to probability theory
 ▶ degree of belief, state of belief = joint prob. distribution
 ▶ properties of beliefs
 ▶ belief updating (conditioning, Bayesian conditioning)