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Organisatorisches

Voraussetzungen:
» Ansatze und Methoden der Kiinstlichen Intelligenz
» Mathematische Grundlagen der Wahrscheinlichkeitstheorie
» Algorithmen & Datenstrukturen

Leistungspunkte: 6 LPs fiir Vorlesung und Ubung
» Teilnahme an derVL
» erfolgreiches Bearbeiten der Ubungsaufgaben
» Bestehen der Abschlussprifung/Klausur (— benotete EL)

Modul ,,Vertiefung Kinstliche Intelligenz = 10 LP
» 4 LP aus weiterem Seminar

Ubungen

» Sebastian Ptock (sptock@techfak.uni-bielefeld.de), Raum HI-115a

» Belegnummer 392102 (bitte alle in den eKVV-Verteiler eintragen!)

»  Web: http://www.techfak.uni-bielefeld.de/~sptock/tutki/index.html

» Termin:Mi, 16-18,in HI-111a (nicht C6-200!)

» Start am |7.April, ab 24. April zweiwochentlich




Ubungen

Praktische Programmier-Ubungen (in Python) zu ausgewihlten
Modellen und Algorithmen aus der Vorlesung

Inhalte:

» Einfiihrung in Python und Numpy (Termin | & 2)

» Implementierung eines Reasoning-Systems mittels Bayes-Netzen
und Inferenzalgorithmen

» Implementierung eines Decision-Making-Systems mittels Markov-
Entscheidungsprozessen

Leistungsanforderung:

» Bearbeitung und fristgerechte Abgabe der Ubungsaufgaben

Literatur

24,
Artificial Intelligence’“’{’;m,
A Modern Approach

Adnan Darwiche
MODELING AND REASONING

with
BAYESIAN NETWORKS

Russell & Norvig: Artificial Intelligence: A Modern
Approach. Prentice Hall, 2nd Edition, 2003

Darwiche: Modeling and Reasoning with Bayesian
Networks. Cambridge Univ. Press, 2009




Literatur

PROBABILISTIC REASONING
IN INTELLIGENT SYSTEMS:
Networks of Plausible Inference

== SECOND EDITION

" MODELS. REASONING,
AND INFERENCE

JUDEA PEARL

Judea Pearl, Probabilistic reasoning in intelligent
systems, Morgan Kaufmann, 1989

J. Pearl: Causality - Models, Reasoning and Inference
(2nd edition). Cambridge Univ. Press, 2009

Literatur

REASONING
and algonthms

MACHINE -
LEARNING

David Barber

Daniel Barber, Bayesian Reasoning and Machine
Learning, Cambridge Univ. Press, 2012.

Kostenfreie Online-Version!
http://www.cs.ucl.ac.uk/staff/d.barber/brml/




Weiterfuhrende Literatur

Finn V. Jensen, Bayesian networks and
decision graphs, , Springer, 2001

Graphical

Models
Steffen L. Lauritzen, Graphical models,
Oxford, 2002

PROBABILISTIC GRAPHICAL MODELS Daphne Koller & Nir Friedman,
gt ) Probabilistic Graphical Models, MIT
Press, 2009

Introduction

CITZC 10 Sociable Agents




WA
Y {

ssociation for thesis
Pillivificial Intelligens:

Warming-up exercise

Answer these questions:

» How does a classical A.l. system work (in principle)?
» What kinds of uncertainties might it face?

» What may they arise from?
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Introduction

sensors

percepts

actions

effectors

Basic idea:

Agents interacting autonomously with an environment
through sensors and effectors (e.g., Russell & Norvig 1995)
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Intelligent agent

From the outside:

» for each possible percept sequence, does whatever action it
expects to maximize its performance measure (rational agent)

» on the basis of the evidence provided by its percept sequence and

whatever built-in knowledge and preferences it has

» based on some form of reasoning or planning that involves
possible outcomes of actions or action sequences
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Intelligent agent

Condition—action rules

Simple reflex agent
(Russell & Norvig)

What the world
is like now

What action |
should do now
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Intelligent agent

State

How the world evolves
What my actions do

Condition-action rules )

Reflex agent with internal state
(Russell & Norvig)

What the world
is like now

What action |
should now
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Intelligent agent

What the world
o R ol vohos

N What it will be like
What my actions do if I do action A

Goal-based agent
(Russell & Norvig)
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Intelligent agent

State

What the world
Fow e wor evoves
What my actions do

Utility-based agent
(Russell & Norvig)
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Intelligent agent

/f

How the world evolves

(nefmy atons do o

Reasoning,
inference

What the world
is like now

What it will be like
if ldo actionA

How happy | will be
in such a state

Decision-making,
action selection

JUSWUOJIAUT

What action |
should do now

 Agent s — -
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Intelligent agent - 1972

Umgebung /Environment

)

Recognize
Input

4 | )
Internal Representation (I>

General Intelligent Agent

. Apply Change
(Newell & Simon 1972) Method Rep.
\.
Select
Method
General Method
Knowledge Store
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Intelligent agent

Key principle:

- internal representation of (parts of) the environment
- reasoning using an inference calculus

- decision-making based on preferences (goals) and search

Sentences ———— Sentences

entails
Representation semantics semantics
World

Aspects of Aspects of
follows

the world the world
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Real-life domains

Sentences ————— Sentences
entails
Representation semantics semantics
World
Aspects of Aspects of
follows
f the world the world

/

What makes many domains notoriously hard?

size, large or unknown complexity, highly dynamic,
weakly predictable, limited observability, ...
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Sources of uncertainty in classical reasoning

Incomplete knowlegde
» no knowledge of all causal relations, their antecedents or consequents
» precise information would be too complex
» need to make default assumptions or approximations

Conflicting information

» local conclusions may become invalid later, need to be retracted

Cumulation of uncertainties

» uncertainty about antecedents increases uncertainty of conclusion:
Sunny [0.7] and (Sunny = Warm) [0.8] => Warm [?]

» uncertainty accumulates when chaining rules/inferences
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Example: The doorbell problem

Logics-based formulation:
|. AtDoor(x) = Doorbell
2. Short-Circuit = Doorbell
3. Doorbell = Wake(John)
4. Light-Bedroom — Wake(John)
5. Extremely-Tired(John) = NOT Wake(John)

Given: Doorbell rang at 12 o‘clock midnight
» Can we say Wake(John) given Doorbell?
» Can we say AtDoor(X) given Doorbell?
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Example: The doorbell problem
Can we say Wake(John) given Doorbell?

» Deductive reasoning:
Doorbell = Wake(John), Doorbell = Wake(John)

» Locality:
- ignores exceptions, e.g.,Wake(John) less likely if he is so tired
- ignores other reasons, e.g.,Wake(John) more likely if also Light-Bedroom

» Detachement:

- ignores validity of antecedent Doorbell, e.g., Wake(John) less likely when
finding out that no one was at the door; or invalid when NOT Doorbell

- ignores other possible reasons, e.g.Wake(John) more likely when finding out
that both Doorbell AND Light-Bedroom, but not when both have the same
underlying cause
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Example: The doorbell problem

Can we say AtDoor(X) given Doorbell?

» Abductive reasoning:
AtDoor(x) = Doorbell, Doorbell = AtDoor(x)

» Locality:
- ignores other explanations in KB, e.g., Short-Circuit may also be true
- ignores human-like causal reasoning, e.g., support for Short-Circuit reduces
belief in AtDoor (one reason is sufficient, ,,explaining away*)

Human-like plausible reasoning requires bi-directional reasoning
combining uncertain diagnostic and predictive inferences
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Limits of classical logics-based reasoning

Modularity, i.e. locality and detachment of logics-
based inference creates semantic deficiencies
when trying to incorporate uncertainties

» improper handling of bi-directional inference

PROBABILISTIC REASONING

IN INTELLIGENT SYSTEMS:

» difficulties in retracting conclusions Nt o Pl Inrree

» improper treatment of correlated sources
of evidence
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More uncertainty in decision-making

Most domains are not observable, not static, and non-
deterministic -- when taking decisions an agent can rarely...
» know the state of the world exactly and completely
» be sure that the state has not changed in the meantime
» be sure that its actions will bring about the desired effects

Different kinds of indeterminacy of an environment

» Bounded:actions can have unpredictable effects, but these can be
enumerated in action description axioms

» Unbounded: preconditions and effects are too large to enumerate
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Different kinds of decision problems

Single-state problem

» Environment is static, deterministic, and fully observable, i.e. can be
encoded in one single state

» Agent knows exactly which state it is now in and will be in

»  Solution: (sequence of) action that can be executed (open-loop)

Sensorless (conformant) problem
» Partial knowledge of states, but known actions
» Agent may have no idea which state it is in
» Each action may lead to one of several possible states
4

Solution (if any): (sequence of) action that will do the job in any case
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Different kinds of decision problems

Contingency problem

» Environment is non-deterministic, i.e. effects of actions are uncertain,
or only partially observable

» Each percept provides new, but partial information after each action

»  Solution: no fixed action sequence, plan for contingency, interleave
monitoring, decision-making and execution (closed-loop)

Exploration problem

» Extreme case of contingency problem: environment and actions are
fully unknown up-front

»  Solution: unclear, agent must act to discover states and actions
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Example: vacuum world

+ Single-state, start in #5.
Solution?

Task: Clean the room (#7 or #8)




Example: vacuum world

Single-state, start in #5.
Solution? [Right, Suck]

Task: Clean the room (#7 or #8)

Example: vacuum world

Single-state, start in #5.
Solution? [Right, Suck]

Sensorless, start in one

of {1,2,3,4,5,6,7,8}, e.g.
Right goes to {2,4,6,8} and
[Right, Suck] to {4,8}

Solution?

Task: Clean the room (#7 or #8)




Example: vacuum world

Single-state, start in #5.
Solution? [Right, Suck]

Sensorless, start in one

of {1,2,3,4,5,6,7,8}, e.g.
Right goes to {2,4,6,8} and
[Right, Suck] to {4,8}
Solution?
[Right,Suck,Left,Suck]

Search in sets of states

Task: Clean the room (#7 or #8)

Example: vacuum world

Contingency problem

* Non-deterministic: Suck may
dirty a clean carpet

+ Partially observable: location?
dirt at current location?

* Percept: [Left, Clean], i.e., start
in #5 or #7 or 1?
Solution?

Task: Clean the room (#7 or #8)




Example: vacuum world

« Contingency problem

Non-deterministic: Suck may
dirty a clean carpet

Partially observable: location?
dirt at current location?

Percept: [Left, Clean], i.e., start
in #5 or #7 or 1?

Solution?

[Right, if dirt then Suck,
Left, if dirt then Suck] + Task: Clean the room (#7 or #8)
goto 1 until clean

need to take actions based on
contingencies arising during
execution

Uncertainty remains!

Question: How to deal properly with uncertainty in
autonomous intelligent agents!?

MASTER, | AM UNCERTAIN GRASSHOPPER, FEAR AND

WHETHER THIS RICKETY UNCERTAINTY ONLY LIVE IN
BRIDGE WILL HOLD OUR THE FUTURE. THEY DO NOT
GHT? EXIST BEYOND YOUR OWN
IMAGINATION!
\ é %
YOU ARE ALWAYS SAFE | ...MASTERS RUSH IN
THE PRESENT. REMEMBER WHERE GRASSHOPPERS
THE OLD SAYING: “..... FEAR TO TREAD? —_
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Outline of this lecture

» Robust planning
- ways to cope with complex, uncertain problems classically

» The probabilistic turn
- uncertainty, probability theory & degrees of belief

» Bayesian Networks
- inferences, interventions & causal effects
- actions, utilities & decisions (DBN, BDN)

» Markov Decision Problems
- complex decisions in complex situations

» Current trends
- Relational probabilistic models
- Markov/Bayesian Logic Networks
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