
gentsSociable

Prof. Dr.-Ing. Stefan Kopp
Center of Excellence „Cognitive Interaction Technology“

AG Sociable Agents

10. Session:
Solving MPDs and POMDPs

Reasoning and Decision-Making
under Uncertainty

Markov Decision Problem

Can solve problems of the sort: given my current information,
what actions in which order achieve a MEU result?

Definition of decision problems in fully observable
environments:

1. Initial state s0

2. Transition model T(s,a,s‘) = P(s‘|a,s)
3. Reward function: R(s) or R(s,a,s‘), additive

Question: How to compute the optimal action policy that

ensures maximum expected utility?

Policy (Reactive/Closed-Loop Strategy)

 A policy Π is a mapping from states to actions, i.e.
recommends an action given a state s

A complete policy is defined for any possible world state.

-1

+1

2

3

1

4321

0.8

0.10.1

Optimal Policy

-1

+1

 The optimal policy Π* is the one that always yields a history (ending
at a terminal state) with maximum expected utility

An optimal policy balances risks and rewards, depending on the value
R(s) for non-terminal states

Key question: How to find an optimal policy?

2

3

1

4321

Note that [3,2] is a “dangerous”
state that the optimal policy

tries to avoid

Example

Robot navigation example:

‣ R(sn) = +1 if sn = [4,3]

‣ R(sn) = -1 if sn = [4,2]
‣ R(si) = -0.04 if i = 0, …, n-1

History h = (s0,s1,…,sn)

Utility of history: U(s0,s1,…,sn) = Σ R(si)

But: Cannot simply search all possibly open-ended histories

-1

+1

2

3

1

4321

Calculating the optimal policy

Idea: Calculate the utility of all states first and use this information to
select the optimal action when in a state, simply by using the MEU
principle to follow the optimal policy:

→ Optimal policy: Π*(si) = argmaxa Σs‘T(si,a,s‘)U(s‘)

- one-step look-ahead using U(s)

Q: How to determine the utilities of all states (terminal and
intermediate)?

Calculating the optimal policy

In general: Utility of a state = expected utility of the (possibly open-
ended) history that might follow under some policy Π

 UΠ(si) = E[Σt=0..∞
 γ��R(st) |Π,s0=si]

‣ R(s) = short-term reward for being in s
‣ U(s) = long-term reward from s onwards

This history can be unbounded. We thus use discounting to make
infinite horizon problems mathematically tractable: 0 ≤ γ ≤ 1

Utility of an infinite history becomes finite:
limT→∞ Σi γ��R(si) ≤ limT→∞ Rmax Σi γ� = Rmax (γ/1-γ)

➜ Utility of states: U(s) = R(s) + γ maxa Σs‘T(s, a, s‘) U(s‘)

Calculating the optimal policy

Observation: There is a direct relationship between utility of a state
and the utility of its neighbor states:
‣ Utility of a state = reward for the current state plus expected

discounted utility of next state, assuming the agent acts optimally

Bellman equation: U(si) = R(si) + γ maxa Σs‘T(si, a, s‘) U(s‘)

Example: In state (1,1) action „Up“ is best, hence

U(1,1)= -0.04 + γ(0.8*U(1,2)+0.1*U(2,1)+0.1*U(1,1))

=-0.04+0.8*0.762+0.1*0.655+ 0.1*0.705

= 0.7056

➜ recursive update as actions may have no effect

-1

+1

2

3

1

4321

0.705 0.665 0.3880.611

0.762

0.812 0.868 0.918

0.660

Value Iteration
For n states, there are n equations U(si) with n unknowns, but
non-linear because of „max“-operator → iterative approach:

‣ initialize the utilities, calc r.h.s. of the equation, and update
l.h.s. and all other utilities, until an equilibrium is reached.

Algorithm:

‣ Initialization: of the utility of each non-terminal state s

‣ Iteration step: for t = 0, 1, 2, … do
 Ut+1(s)  R(s) + γ maxa Σs‘ T(s,a,s‘) Ut(s‘)

Converges to a unique solution of the Bellman eq., the correct
utilities for the optimal policy

(Bellman update)

10

Value Iteration

Value Iteration

‣ Initialize the utility of each non-terminal state s to 0

‣ For t = 0, 1, 2, … do:
 Ut+1(s)  R(s) + maxa Σs‘ T(s,a,s‘) Ut(s‘)

Ut([3,1])

t0 302010

0.611
0.5

0

Note the importance of terminal
states and connectivity of the
state-transition graph

-1

+1

2

3

1

4321

0.705 0.665 0.3880.611

0.762

0.812 0.868 0.918

0.660

Path to [4,3] found

Solving an MDP

1 2 3 4 5 6 7 8 9101112131415

123456789101112131415

0

2

4

Value Iteration on a set of 225 states, corresponding to a 15⇥ 15 two dimensional
grid. Deterministic transitions to neighbours on the grid,
{stay, left, right, up, down}. There are three goal states, each with utility 1 – all
other states have utility 0. Plotted is the value v(s) for � = 0.9 after 30 updates of
Value Iteration, where the states index a point on the x� y grid. The optimal
decision for any state on the grid is to go to the neighbouring state with highest
value.

12

Value Iteration

13

Value Iteration with discounting

Policy Iteration
Idea: iteration works even with inaccurate utilities, when one action is
clearly better than all others. Thus we can alternate two steps:
1. policy evaluation: calculate U(s) of each state under a policy Π

2. policy improvement: set new Π‘ using one-step look-ahead from U(s)

Algorithm:
‣ Pick a policy Π at random

‣ Repeat:
- 1. Compute the utility of each state for Π

 Ut+1(s)  R(s) + γ Σs‘T(s,Π(s), s‘)Ut(s‘)

- 2. Compute a new policy Π’ given these utilities

 Π’(s) = arg maxa Σs‘T(s,a,s‘) U(s‘)

- If Π’ = Π then return Π

Simpler, linear
equations because
no „max“ step.
Can be solved in
O(n3) for n states

Fixpoint of Bellman eq.,
optimal policy

Policy evaluation

Example at time t:

→ Πt(1,1)=Up, Πt(1,2)=Up, ...

→ Simplified Bellman eq.:
‣ Ut(1,1) =

0.8Ut(1,2) + 0.1Ut(2,1) + 0.1Ut(1,1)
‣ Ut(1,2) =

0.8Ut(1,3) + 0.1Ut(1,2)
‣

n linear equations with n unknowns,
solvable in O(n3)

15

-1

+1

2

3

1

4321

0.8

0.10.1

Policy Iteration

Remarks:
‣ When no improvement, U is fixpoint and the policy it optimal
‣ There are finitely many policies and each step yields a better

policy, so policy iteration must terminate
‣ Policy evaluation (step 1.) uses an iterative update to estimate

the current U using a simplified Bellman update
‣ Possible to update U or policy only for a subset of states

(instead of all), using either kind of updating (policy
improvement, simplified value iteration): asynchronous policy
iteration
- could update only those states that are likely reached
- more efficient, can be guaranteed to converge

Matlab example

D. Barber (2012). Bayesian Reasoning and Machine Learning, Cambridge
Univ. Press.

→ BRML toolkit

17

Partially Observable Markov Decision
Problems (POMDP)

MDPs: fully observable environments and Markovian transition models

„POMDP“ account in addition for partially observable environments:
Which state is the agent in? Utility of s? Optimal action?

A POMDP is given by
1. Initial state s0

2. Transition model T(s,a,s‘) = P(s‘|a,s)
3. Reward function R(s) or R(s,a,s‘), additive
4. Observation (measurement) model: O(s,o) = P(o|s)

sensing operation in state s, returns multiple observations o,
with a probability distribution

POMDPs

Idea in a nutshell:
Belief state b(s) = prob. distribution over all possible states
‣ Example: in 4x3-world = point in 11-dim continuous space

Define the agent‘s policy over its belief state: Π*(b)
That is, actions depend on beliefs, not the state the agent is in!

POMDP decision cycle:
1. Given current belief state b, execute a=Π*(b)
2. Get new observations (measurements) o
3. Bayesian update of belief states:

 b‘(s‘) = α O(s‘,o) Σs T(s,a,s‘)b(s)

How to determine Π*(b) ?

19

POMDPs

Often, slightly different notation. In the following:
‣ generic value function V instead of utility U
‣ continuous belief domain (i.e. use integral instead of sum), with

single belief b
‣ replace a (action) by u, and s (state) by x

➜ POMDPs compute a value function over belief spaces:

20

POMDPs

Problems:

‣ Each belief is a probability distribution, thus, each value in a
POMDP is a function of an entire probability distribution. This is
problematic, since probability distributions are continuous.

‣ Additionally, huge complexity of belief spaces.

‣ For finite worlds with finite state, action, and measurement spaces
and finite horizons, however, we can effectively approximate the
value (utility) functions by piecewise linear functions.

21

80−100

ba

100

ba

−40

s2s1

action a

action b

p(s)

[Sondik 72, Littman, Kaelbling, Cassandra ‘97]

s2s1

−100

0

100

action aaction b

POMDPs

Example

23

measurements action u3 state x2

payoff

measurements

actions u1, u2

payoff

state x1

Example

Parameters: The actions u1 and u2 are terminal actions. The action u3 is
a sensing action that potentially leads to a state transition. The horizon
is finite and γ=1.

24

Payoffs in POMDPs

In MDPs, the payoff (or reward) depends on the state of the system.
But in POMDPs, the true system state is not exactly known. Thus, we
compute the expected payoff from belief state, by integrating over all
states:

25

Example:
If certain we are in x1 and execute
u1, we receive a reward of -100

If certain we are in x2 and execute

u1, the reward is +100. In between,
linear combination weighted by
probabilities

Example: Payoff

26

Resulting policy for T=1

Given we have a finite POMDP with T=1, we would use V1(b) to
determine the optimal policy.
In our example, the optimal policy for T=1 is

This is the upper thick graph in the diagram.

27

Piecewise Linearity, Convexity

The resulting value function V1(b) is the maximum of the three functions
at each point

It is piecewise linear and convex.

28

Pruning

If we carefully consider V1(b), we see that only the first two
components contribute.
The third component can therefore safely be pruned away from V1(b).

29

Increasing the Time Horizon

If we go over to a time horizon of T=2, the agent can also consider the
sensing action u3.
Suppose we perceive z1 for which p(z1 | x1)=0.7 and p(z1| x2)=0.3.
Given the observation z1 we update the belief using Bayes rule.
Thus V1(b | z1) is given by

30

Expected Value after Measuring

Since we do not know in advance what the measurement will be (z1,
z2), we have to compute the expected belief

31

Resulting Value Function

The four possible combinations yield the following function which again
can be simplified and pruned.

32

State Transitions (Prediction)

When the agent selects u3 its state potentially changes.
When computing the value function, we have to take these potential
state changes into account.

33

Resulting Value Function

What‘s the resulting Value Function after executing u3 ?
‣ Taking also the state transitions into account, we finally obtain.

Value Function for T=2
‣ Taking into account that the agent can either directly perform u1

or u2, or first u3 and then u1 or u2, we obtain (after pruning)

34

Resulting Value Function V2(b)

35

u1 optimal u2 optimal

unclear

outcome of
measuring is
important
here

Deep Horizons and Pruning

We have now completed a full backup in belief space.
This process can be applied recursively.
The value functions for T=10 and T=20 are

36

Why Pruning is Essential?

Each update introduces additional linear components to V.
Each measurement squares the number of linear components.
Thus, an unpruned value function for T=20 includes more than
10547,864 linear functions.
At T=30 we have 10561,012,337 linear functions.
The pruned value functions at T=20, in comparison, contains only 12
linear components.

The combinatorial explosion of linear components in the value function
are the major reason why POMDPs are impractical for most
applications and are still an active research area. So far only applied
successfully to very small state spaces with small numbers of possible
observations and actions. In other words: Finding efficient state
representations is a key to solve (PO)MDPs!

37

