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Family of Alarm

Bayesian networks as models

Qualitative part: 
Directed acyclic graph (DAG)
Nodes - random variables 
Edges - direct influence

Quantitative part: 
Set of conditional 
probability 
distributions
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Compact representation of probability distributions via 
conditional independence

Together:
Define a unique distribution in a 
factored form:



How to get a Bayesian network in general?

Method 1: Model from given facts/knowledge, where possible
‣ variables (evidence, query, intermediary) and their possible values

‣ network structure (cause-effect relations, conditional independencies)

‣ network parameters (CPTs)

Method 1I: Learn from data, either partially or completely
‣ collect or gather data and prior information: enough samples, cover all 

relevant variables, cover all relevant events (variations)

‣ use to learn network parameters (distributions) or structure

Also combination of both methods if possible, but most often 
one has to use learning to build a Bayesian model
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Learning Bayesian networks
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Known Structure, Complete Data
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Unknown Structure, Complete Data
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Known Structure, Incomplete Data
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Network structure is not specified and data contains missing 
values, learner needs to select graph structure, estimate 
parameters, assign missing values
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Example: Learning the bias of a coin
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Learning the bias of a coin

v

n
=

⇢
1 if on toss n the coin comes up heads
0 if on toss n the coin comes up tails

Our aim is to estimate the probability ✓ that the coin will be a head,
p(v

n
= 1|✓) = ✓ – called the ‘bias’ of the coin.

Building a model
The variables are v

1
, . . . , v

N and ✓ and we require a model of the probabilistic
interaction of the variables, p(v1, . . . , vN , ✓). Assuming there is no dependence
between the observed tosses, except through ✓, we have the belief network
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Figure: (a): Belief network for coin

tossing model. (b): Plate notation

equivalent of (a). A plate replicates

the quantities inside the plate a

number of times as specified in the

plate.
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Approach: Learning as probabilistic inference over variables

The posterior
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Example: Learning the bias of a coinThe posterior

p(✓|v1, . . . , vN ) / p(✓)

NY
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NH =

PN
n=1 I [vn = 1] is the number of occurrences of heads.

NT =

PN
n=1 I [vn = 0] is the number of tails.
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Example: Learning the bias of a coin

The prior

We still need to fully specify the prior p(✓). To avoid complexities resulting from
continuous variables, we’ll consider a discrete ✓ with only three possible states,
✓ 2 {0.1, 0.5, 0.8}. Specifically, we assume

p(✓ = 0.1) = 0.15, p(✓ = 0.5) = 0.8, p(✓ = 0.8) = 0.05

✓

0.1 0.5 0.8

The prior

Coin posterior after observations
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Example: Learning the bias of a coin
Coin posterior

For an experiment with NH = 2, NT = 8, the posterior distribution is

✓

0.1 0.5 0.8

✓

0.1 0.5 0.8

If we were asked to choose a single a posteriori most likely value for ✓, it would be
✓ = 0.5, although our confidence in this is low since the posterior belief that
✓ = 0.1 is also appreciable. This result is intuitive since, even though we observed
more Tails than Heads, our prior belief was that it was more likely the coin is fair.
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Example: Learning the bias of a coin
The coin posterior

Repeating the above with NH = 20, NT = 80, the posterior changes to

✓

0.1 0.5 0.8

✓

0.1 0.5 0.8

so that the posterior belief in ✓ = 0.1 dominates. There are so many more tails
than heads that this is unlikely to occur from a fair coin. Even though we a priori

thought that the coin was fair, a posteriori we have enough evidence to change our
minds.

The posterior e↵ect
Note that in both examples, NT /NH = 4, although in the latter we are much more
confident that ✓ = 0.1
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Math background: Distributions

‣ univariate p(x) or multivariate p(x)
‣ mode: state(s) where p takes its maximum value

‣ average or expectation of f(x) w.r.t. distr. p(x)

- average of f(x) conditioned on y (w.r.t. to distribution p(x|y)):

‣  mean: first moment of a distr.

‣ variance:                                (square root = standard deviation)

‣ covariance matrix of multivariate distr.:
‣ correlation matrix:
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CHAPTER 8

Statistics for Machine Learning:

8.1 Distributions

Definition 54 (Cumulative distribution function). For a univariate distribution p(x), the CDF is defined
as

cdf(y) ⌘ p(x  y) = hI [x  y]ip(x)

(8.1.1)

For an unbounded domain, cdf(�1) = 0 and cdf(1) = 1.

8.2 Summarising distributions

Definition 55 (Mode). The mode x⇤ of a distribution p(x) is the state of x at which the distribution takes
its highest value, x⇤ = argmax

x
p(x). A distribution could have more than one node (be multi-modal). A

widespread abuse of terminology is to refer to any isolated local maximum of p(x) to be a mode.

Definition 56 (Averages and Expectation).

hf(x)ip(x)

(8.2.1)

denotes the average or expectation of f(x) with respect to the distribution p(x). A common alternative
notation is

E(x) (8.2.2)

When the context is clear, one may drop the notational dependency on p(x). The notation

hf(x)|yi (8.2.3)

is shorthand for the average of f(x) conditioned on knowing the state of variable y, i.e. the average of
f(x) with respect to the distribution p(x|y).
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Summarising distributions

An advantage of the expectation notations is that they hold whether the distribution is over continuous
or discrete variables. In the discrete case

hf(x)i ⌘
X

x

f(x = x)p(x = x) (8.2.4)

and for continuous variables,

hf(x)i ⌘
Z 1

�1
f(x)p(x)dx (8.2.5)

The reader might wonder what hxi means when x is discrete. For example, if dom(x) =
{apple, orange, pear}, with associated probabilities p(x) for each of the states, what does hxi refer
to? Clearly, hf(x)i makes sense if f(x = x) maps the state x to a numerical value. For example
f(x = apple) = 1, f(x = orange) = 2, f(x = pear) = 3 for which hf(x)i is meaningful. Unless the
states of the discrete variable are associated with a numerical value, then hxi has no meaning.

Definition 57 (Moments). The kth moment of a distribution is given by the average of xk under the
distribution:

D

xk
E

p(x)

(8.2.6)

For k = 1, we have the mean, typically denoted by µ,

µ ⌘ hxi (8.2.7)

Definition 58 (Variance and Correlation).

�2 ⌘
D

(x� hxi)2
E

p(x)

(8.2.8)

The square root of the variance, � is called the standard deviation. The notation var(x) is also used to
emphasise for which variable the variance is computed. The reader may show that an equivalent expression
is

�2 ⌘
⌦

x2

↵

� hxi2 (8.2.9)

For a multivariate distribution the matrix with elements

⌃ij = h(xi � µi) (xj � µj)i (8.2.10)

where µi = hxii is called the covariance matrix . The diagonal entries of the covariance matrix contain the
variance of each variable. An equivalent expression is

⌃ij = hxixji � hxii hxji (8.2.11)

The correlation matrix has elements

⇢ij =
⌧

(xi � µi)
�i

(xj � µj)
�j

�

(8.2.12)

where �i is the deviation of variable xi. The correlation is a normalised form of the covariance so that
each element is bounded �1  ⇢ij  1.
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Summarising distributions
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hf(x)i ⌘
X

x

f(x = x)p(x = x) (8.2.4)
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hf(x)i ⌘
Z 1

�1
f(x)p(x)dx (8.2.5)
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D

xk
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p(x)

(8.2.6)
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�2 ⌘
D

(x� hxi)2
E

p(x)

(8.2.8)
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⌦
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↵
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‣ Skewness of p:
- >0: p is heavy-tail to the right
- <0: p is heavy-tail to the left

‣ Kurtosis of p: how peaked p is around the mean
- >0: more mass around the mean than a Gaussian with

similar mean and variance (super Gaussian)
- <0: less mass around the mean (sub Gaussian)

‣ Dirac delta function: continuous function that is 0 
everywhere except at x0, with

- discrete case: Kronecker delta

15

Math background: Distributions

Summarising distributions

For independent variables xi and xj , xi??xj|; the covariance ⌃ij is zero. Similarly independent variables
have zero correlation – they are ‘uncorrelated’. Note however that the converse is not generally true – two
variables can be uncorrelated but dependent. A special case is for when xi and xj are Gaussian distributed
then independence is equivalent to being uncorrelated, see exercise(81).

Definition 59 (Skewness and Kurtosis). The skewness is a measure of the asymmetry of a distribution:

�
1

⌘

D

(x� hxi)3
E

p(x)

�3

(8.2.13)

where �2 is the variance of x with respect to p(x). A positive skewness means the distribution has a
heavy tail to the right. Similarly, a negative skewness means the distribution has a heavy tail to the left.

The kurtosis is a measure of how peaked around the mean a distribution is:

�
2

⌘

D

(x� hxi)4
E

p(x)

�4

� 3 (8.2.14)

A distribution with positive kurtosis has more mass around its mean than would a Gaussian with the same
mean and variance. These are also called super Gaussian. Similarly a negative kurtosis (sub Gaussian)
distribution has less mass around its mean than the corresponding Gaussian. The kurtosis is defined such
that a Gaussian has zero kurtosis (which accounts for the -3 term in the definition).

Definition 60 (Empirical Distribution). For a set of datapoints x1, . . . , xN , which are states of a random
variable x, the empirical distribution has probability mass distributed evenly over the datapoints, and
zero elsewhere.

For a discrete variable x the empirical distribution is

p(x) =
1
N

N
X

n=1

I [x = xn] (8.2.15)

where N is the number of datapoints.

For a continuous distribution we have

p(x) =
1
N

N
X

n=1

� (x� xn) (8.2.16)

where � (x) is the Dirac Delta function.

The sample mean of the datapoints is given by the

µ̂ =
1
N

N
X

n=1

xn (8.2.17)

and the sample variance is given by the

�̂2 =
1
N

N
X

n=1

(xn � µ̂)2 (8.2.18)
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Summarising distributions

For vectors the sample mean vector has elements

µ̂i =
1
N

N
X

n=1

xn
i (8.2.19)

and sample covariance matrix has elements

⌃̂ij =
1
N

N
X

n=1

(xn
i � µ̂i)

�

xn
j � µ̂j

�

(8.2.20)

Definition 61 (Delta function). For continuous x, we define the Dirac delta function

�(x� x
0

) (8.2.21)

which is zero everywhere expect at x
0

, where there is a spike.
R1
�1 �(x� x

0

)dx = 1 and
Z 1

�1
�(x� x

0

)f(x)dx = f(x
0

) (8.2.22)

One can view the Dirac delta function as an infinitely narrow Gaussian: �(x� x
0

) = lim�!0

N
�

x x
0

,�2

�

.

The Kronecker delta,

�x,x0 (8.2.23)

is similarly zero everywhere, except for �x0,x0 = 1. The Kronecker delta is equivalent to �x,x0 = I [x = x
0

].
We use the expression � (x, x

0

) to denote either the Dirac or Kronecker delta, depending on the context.

8.2.1 Estimator bias

Definition 62 (Unbiased estimator). Given data X = x1, . . . , xN , from a distribution p(x|✓) we can use
the data X to estimate the parameter ✓ that was used to generate the data. The estimator is a function
of the data, which we write ✓̂(X ). For an unbiased estimator

D

✓̂(X )
E

p(X|✓)
= ✓ (8.2.24)

More generally, one can consider any estimating function  ̂(X ) of data. This is an unbiased estimator of
a quantity  if

D

 ̂(X )
E

p(x)

=  .

1 2 3 4

Figure 8.1: Empirical distribution over a discrete variable with
4 states. The empirical samples consist of n samples at each
of states 1, 2, 4 and 2n samples at state 3 where n > 0. On
normalising this gives a distribution with values 0.2, 0.2, 0.4, 0.2
over the 4 states.
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Unbiased estimator: given data X from a distr.           , we can use 
x1,...,xn to estimate the parameter d that was used to generate X. The 
estimator is a function of the data:

‣ for an unbiased estimator: 

Kullback-Leibler Divergence KL(q|p)
‣ measure of the „difference“ between two distr. q and p

‣ KL(q|p) = 0  iff  p and q are exactly the same
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The Kullback-Leibler Divergence KL(q|p)

8.8 The Kullback-Leibler Divergence KL(q|p)

The Kullback-Leibler divergence KL(q|p) measures the ‘di↵erence’ between distributions q and p[68].

Definition 83. KL divergence For two distributions q(x) and p(x)

KL(q|p) ⌘ hlog q(x)� log p(x)iq(x)

� 0 (8.8.1)

where hf(x)ir(x)

denotes average of the function f(x) with respect to the distribution r(x).

The KL divergence is � 0

The KL divergence is widely used and it is therefore important to understand why the divergence is positive.

To see this, consider the following linear bound on the function log(x)

log(x)  x� 1 (8.8.2)

as plotted in the figure on the right. Replacing x by p(x)/q(x) in the above bound

p(x)
q(x)

� 1 � log
p(x)
q(x)

(8.8.3)

Since probabilities are non-negative, we can multiply both sides by q(x) to obtain

p(x)� q(x) � q(x) log p(x)� q(x) log q(x) (8.8.4)
1 2 3 4

−4

−3

−2

−1

0

1

2

3

We now integrate (or sum in the case of discrete variables) both sides. Using
R

p(x)dx = 1,
R

q(x)dx = 1,

1� 1 � hlog p(x)� log q(x)iq(x)

(8.8.5)

Rearranging gives

hlog q(x)� log p(x)iq(x)

⌘ KL(q|p) � 0 (8.8.6)

The KL divergence is zero if and only if the two distributions are exactly the same.

8.8.1 Entropy

For both discrete and continuous variables, the entropy is defined as

H(p) ⌘ �hlog p(x)ip(x)

(8.8.7)

For continuous variables, this is also called the di↵erential entropy , see also exercise(113). The entropy is
a measure of the uncertainty in a distribution. One way to see this is that

H(p) = �KL(p|u) + const. (8.8.8)

where u is a uniform distribution. Since the KL(p|u) � 0, the less like a uniform distribution p is, the
smaller will be the entropy. Or, vice versa, the more similar p is to a uniform distribution, the greater
will be the entropy. Since the uniform distribution contains the least information a prior about which
state p(x) is in, the entropy is therefore a measure of the a priori uncertainty in the state occupancy.
For a discrete distribution we can permute the state labels without changing the entropy. For a discrete
distribution the entropy is positive, whereas the di↵erential entropy can be negative.
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Classical discrete distributions

‣ Bernoulli distribution: discrete variable x∈{0,1}, with

‣ Categorical distribution: generalization to states {1,...,C}

‣ Binomial distribution: discrete, two-state symbolic variable. Prob. 
to observe k `success´states 1 in n Bernoulli trials is
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Math background: Distributions

Discrete Distributions

A classical example for estimator bias are those of the mean and variance. Let

µ̂(X ) =
1
N

N
X

n=1

xn (8.2.25)

This is an unbiased estimator of the mean hxip(x)

since

hµ̂(X )ip(x)

=
1
N

N
X

n=1

hxnip(x)

=
1
N

N hxip(x)

= hxip(x)

(8.2.26)
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where
�

n
k

�

is the binomial coe�cient. The mean and variance are

hyi = n✓, var(x) = n✓ (1� ✓) (8.3.5)

The Beta distribution is the conjugate prior for the Binomial distribution.

Definition 66 (Multinomial Distribution). Consider a multi-state variable x, with dom(x) = {1, . . . ,K},
with corresponding state probabilities ✓

1

, . . . , ✓K . We then draw n samples from this distribution. The
probability of observing the state 1 y

1

times, state 2 y
2

times, . . . , state K yK times in the n samples is

p(y|✓) =
n!

y
1

! . . . , yK !

n
Y

i=1

✓yi
i (8.3.6)

where n =
Pn

i=1

yi.

hyii = n✓i, var(yi) = n✓i (1� ✓i) , hyiyji � hyii hyji = �n✓i✓j (i 6= j) (8.3.7)

The Dirichlet distribution is the conjugate prior for the multinomial distribution.

Definition 67 (Poisson Distribution). The Poisson distribution can be used to model situations in which
the expected number of events scales with the length of the interval within which the events can occur.
If � is the expected number of events per unit interval, then the distribution of the number of events x
within an interval t� is

p(x = k|�) =
1
k!

e��t (�t)k , k = 0, 1, 2, . . . (8.3.8)

For a unit length interval (t = 1),

hxi = �, var(x) = � (8.3.9)

The Poisson distribution can be derived as a limiting case of a Binomial distribution in which the success
probability scales as ✓ = �/n, in the limit n !1.

8.4 Continuous Distributions

8.4.1 Bounded distributions

Definition 68 (Uniform distribution). For a variable x, the distribution is uniform if p(x) = const. over
the domain of the variable.

Definition 69 (Exponential Distribution). For x � 0,

p(x|�) ⌘ �e��x (8.4.1)

One can show that for rate �

hxi =
1
�

, var(x) =
1
�2

(8.4.2)
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Figure 8.2: (a): Exponential
distribution. (b): Laplace
(double exponential) distribu-
tion.

The alternative parameterisation b = 1/� is called the scale.

Definition 70 (Gamma Distribution).

Gam (x|↵,�) =
1

��(�)

✓

x

�

◆↵�1

e�
x
� , x � 0, ↵ > 0, � > 0 (8.4.3)

↵ is called the shape parameter, � is the scale parameter and

�(a) =
Z 1

0

ta�1e�tdt (8.4.4)

The parameters are related to the mean and variance through

↵ =
⇣µ

s

⌘

2

, � =
s2

µ
(8.4.5)

where µ is the mean of the distribution and s is the standard deviation. The mode is given by (↵� 1) �,
for ↵ � 1.

An alternative parameterisation uses the inverse scale

Gamis (x|↵, b) = Gam (x|↵, 1/b) / x↵�1e�bx (8.4.6)

Definition 71 (Inverse Gamma distribution).

InvGam (x|↵,�) =
�↵

� (↵)
1

x↵+1

e��/x (8.4.7)

This has mean �/(↵� 1) for ↵ > 1 and variance �2

(↵�1)

2
(↵�2)

for ↵ > 2.

Definition 72 (Beta Distribution).

p(x|↵,�) = B (x|↵,�) =
1

B(↵,�)
x↵�1 (1� x)��1 , 0  x  1 (8.4.8)

where the beta function is defined as

B(↵,�) =
�(↵)�(�)
�(↵ + �)

(8.4.9)
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and �(x) is the gamma function. Note that the distribution can be flipped by interchanging x for 1� x,
which is equivalent to interchanging ↵ and �.

The mean is given by

hxi =
↵

↵ + �
, var(x) =

↵�

(↵ + �)2 (↵ + � + 1)
(8.4.10)

8.4.2 Unbounded distributions

Definition 73 (Laplace (Double Exponential) Distribution).

p(x|�) ⌘ �e�
1
b
|x�µ| (8.4.11)

For scale b

hxi = µ, var(x) = 2b2 (8.4.12)

Univariate Gaussian distribution

The Gaussian distribution is an important distribution in science. It’s technical description is given in
definition(74).

Definition 74 (Univariate Gaussian Distribution).

p(x|µ,�2) = N
�

x µ,�2

�

⌘ 1p
2⇡�2

e�
1

2�2 (x�µ)

2

(8.4.13)

where µ is the mean of the distribution, and �2 the variance. This is also called the normal distribution.

One can show that the parameters indeed correspond to

µ = hxiN (x µ,�2
)

, �2 =
D

(x� µ)2
E

N (x µ,�2
)

(8.4.14)

For µ = 0 and � = 1, the Gaussian is called the standard normal distribution.

Definition 75 (Student’s t-distribution).

p(x|µ,�, ⌫) =
�(⌫+1

2

)
�(⌫

2

)

✓

�

⌫⇡

◆

1
2

"

1 +
� (x� µ)2

⌫

#� ⌫+1
2

(8.4.15)
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Figure 8.3: (a): Gamma distri-
bution with varying � for fixed
↵. (b): Gamma distribution
with varying ↵ for fixed �.
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which is equivalent to interchanging ↵ and �.

The mean is given by

hxi =
↵

↵ + �
, var(x) =

↵�

(↵ + �)2 (↵ + � + 1)
(8.4.10)

8.4.2 Unbounded distributions

Definition 73 (Laplace (Double Exponential) Distribution).

p(x|�) ⌘ �e�
1
b
|x�µ| (8.4.11)

For scale b

hxi = µ, var(x) = 2b2 (8.4.12)

Univariate Gaussian distribution

The Gaussian distribution is an important distribution in science. It’s technical description is given in
definition(74).
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where µ is the mean of the distribution, and �2 the variance. This is also called the normal distribution.

One can show that the parameters indeed correspond to

µ = hxiN (x µ,�2
)

, �2 =
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(x� µ)2
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(8.4.14)

For µ = 0 and � = 1, the Gaussian is called the standard normal distribution.
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Figure 8.2: (a): Exponential
distribution. (b): Laplace
(double exponential) distribu-
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The alternative parameterisation b = 1/� is called the scale.

Definition 70 (Gamma Distribution).

Gam (x|↵,�) =
1

��(�)
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x
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◆↵�1

e�
x
� , x � 0, ↵ > 0, � > 0 (8.4.3)

↵ is called the shape parameter, � is the scale parameter and

�(a) =
Z 1

0

ta�1e�tdt (8.4.4)

The parameters are related to the mean and variance through

↵ =
⇣µ

s

⌘

2

, � =
s2

µ
(8.4.5)

where µ is the mean of the distribution and s is the standard deviation. The mode is given by (↵� 1) �,
for ↵ � 1.

An alternative parameterisation uses the inverse scale

Gamis (x|↵, b) = Gam (x|↵, 1/b) / x↵�1e�bx (8.4.6)

Definition 71 (Inverse Gamma distribution).

InvGam (x|↵,�) =
�↵

� (↵)
1

x↵+1

e��/x (8.4.7)

This has mean �/(↵� 1) for ↵ > 1 and variance �2

(↵�1)

2
(↵�2)

for ↵ > 2.

Definition 72 (Beta Distribution).

p(x|↵,�) = B (x|↵,�) =
1

B(↵,�)
x↵�1 (1� x)��1 , 0  x  1 (8.4.8)

where the beta function is defined as

B(↵,�) =
�(↵)�(�)
�(↵ + �)

(8.4.9)
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and �(x) is the gamma function. Note that the distribution can be flipped by interchanging x for 1� x,
which is equivalent to interchanging ↵ and �.

The mean is given by

hxi =
↵

↵ + �
, var(x) =

↵�

(↵ + �)2 (↵ + � + 1)
(8.4.10)

8.4.2 Unbounded distributions

Definition 73 (Laplace (Double Exponential) Distribution).

p(x|�) ⌘ �e�
1
b
|x�µ| (8.4.11)

For scale b

hxi = µ, var(x) = 2b2 (8.4.12)

Univariate Gaussian distribution

The Gaussian distribution is an important distribution in science. It’s technical description is given in
definition(74).

Definition 74 (Univariate Gaussian Distribution).
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where µ is the mean of the distribution, and �2 the variance. This is also called the normal distribution.

One can show that the parameters indeed correspond to

µ = hxiN (x µ,�2
)

, �2 =
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(x� µ)2
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For µ = 0 and � = 1, the Gaussian is called the standard normal distribution.
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The alternative parameterisation b = 1/� is called the scale.
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↵ is called the shape parameter, � is the scale parameter and
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The parameters are related to the mean and variance through
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where µ is the mean of the distribution and s is the standard deviation. The mode is given by (↵� 1) �,
for ↵ � 1.

An alternative parameterisation uses the inverse scale

Gamis (x|↵, b) = Gam (x|↵, 1/b) / x↵�1e�bx (8.4.6)
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This has mean �/(↵� 1) for ↵ > 1 and variance �2
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for ↵ > 2.

Definition 72 (Beta Distribution).
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where the beta function is defined as
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and �(x) is the gamma function. Note that the distribution can be flipped by interchanging x for 1� x,
which is equivalent to interchanging ↵ and �.

The mean is given by
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where µ is the mean of the distribution, and �2 the variance. This is also called the normal distribution.

One can show that the parameters indeed correspond to

µ = hxiN (x µ,�2
)

, �2 =
D

(x� µ)2
E

N (x µ,�2
)

(8.4.14)

For µ = 0 and � = 1, the Gaussian is called the standard normal distribution.

Definition 75 (Student’s t-distribution).

p(x|µ,�, ⌫) =
�(⌫+1

2

)
�(⌫

2

)

✓

�

⌫⇡

◆

1
2

"

1 +
� (x� µ)2

⌫

#� ⌫+1
2

(8.4.15)

0 1 2 3 4 5
0

1

2

3

4

5

 

 
α=1 β=0.2
α=2 β=0.2
α=5 β=0.2
α=10 β=0.2

(a)

0 1 2 3 4 5
0

1

2

3

4

5

 

 
α=2 β=0.1
α=2 β=0.5
α=2 β=1
α=2 β=2

(b)

Figure 8.3: (a): Gamma distri-
bution with varying � for fixed
↵. (b): Gamma distribution
with varying ↵ for fixed �.

146 DRAFT March 9, 2010

Continuous Distributions

and �(x) is the gamma function. Note that the distribution can be flipped by interchanging x for 1� x,
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µ = hxiN (x µ,�2
)

, �2 =
D

(x� µ)2
E

N (x µ,�2
)

(8.4.14)

For µ = 0 and � = 1, the Gaussian is called the standard normal distribution.

Definition 75 (Student’s t-distribution).
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Figure 8.3: (a): Gamma distri-
bution with varying � for fixed
↵. (b): Gamma distribution
with varying ↵ for fixed �.
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Figure 8.4: Top: 200 datapoints x1, . . . , x200 drawn from a
Gaussian distribution. Each vertical line denotes a datapoint
at the corresponding x value on the horizontal axis. Middle:
Histogram using 10 equally spaced bins of the datapoints. Bot-
tom: Gaussian distribution N (x µ = 5, � = 3) from which the
datapoints were drawn. In the limit of an infinite amount of
data, and limitingly small bin size, the normalised histogram
tends to the Gaussian probability density function.

where µ is the mean, ⌫ the degrees of freedom, and � scales the distribution. The variance is given by

var(x) =
⌫

� (⌫ � 2)
, for ⌫ > 2 (8.4.16)

For ⌫ !1 the distribution tends to a Gaussian with mean µ and variance 1/�. As ⌫ decreases the tails
of the distribution become fatter.

The t-distribution can be derived from a scaled mixture

p(x|a, b) =
Z 1
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It is conventional to reparameterise using ⌫ = 2a and � = a/b.

8.5 Multivariate Distributions

Definition 76 (Dirichlet Distribution). The Dirichlet distribution is a distribution on probability distri-
butions:

p(↵) =
1

Z(u)
�

 

Q
X

i=1

↵i � 1

!

Q
Y

q=1

↵
uq�1

q (8.5.1)

where

Z(u) =
QQ

q=1

�(uq)

�
⇣

PQ
q=1

uq

⌘ (8.5.2)

It is conventional to denote the distribution as

Dirichlet (↵|u) (8.5.3)
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Figure 8.4: Top: 200 datapoints x1, . . . , x200 drawn from a
Gaussian distribution. Each vertical line denotes a datapoint
at the corresponding x value on the horizontal axis. Middle:
Histogram using 10 equally spaced bins of the datapoints. Bot-
tom: Gaussian distribution N (x µ = 5, � = 3) from which the
datapoints were drawn. In the limit of an infinite amount of
data, and limitingly small bin size, the normalised histogram
tends to the Gaussian probability density function.

where µ is the mean, ⌫ the degrees of freedom, and � scales the distribution. The variance is given by

var(x) =
⌫

� (⌫ � 2)
, for ⌫ > 2 (8.4.16)

For ⌫ !1 the distribution tends to a Gaussian with mean µ and variance 1/�. As ⌫ decreases the tails
of the distribution become fatter.

The t-distribution can be derived from a scaled mixture
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It is conventional to reparameterise using ⌫ = 2a and � = a/b.

8.5 Multivariate Distributions

Definition 76 (Dirichlet Distribution). The Dirichlet distribution is a distribution on probability distri-
butions:
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It is conventional to denote the distribution as

Dirichlet (↵|u) (8.5.3)
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Figure 8.4: Top: 200 datapoints x1, . . . , x200 drawn from a
Gaussian distribution. Each vertical line denotes a datapoint
at the corresponding x value on the horizontal axis. Middle:
Histogram using 10 equally spaced bins of the datapoints. Bot-
tom: Gaussian distribution N (x µ = 5, � = 3) from which the
datapoints were drawn. In the limit of an infinite amount of
data, and limitingly small bin size, the normalised histogram
tends to the Gaussian probability density function.

where µ is the mean, ⌫ the degrees of freedom, and � scales the distribution. The variance is given by

var(x) =
⌫

� (⌫ � 2)
, for ⌫ > 2 (8.4.16)

For ⌫ !1 the distribution tends to a Gaussian with mean µ and variance 1/�. As ⌫ decreases the tails
of the distribution become fatter.

The t-distribution can be derived from a scaled mixture

p(x|a, b) =
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It is conventional to reparameterise using ⌫ = 2a and � = a/b.

8.5 Multivariate Distributions

Definition 76 (Dirichlet Distribution). The Dirichlet distribution is a distribution on probability distri-
butions:

p(↵) =
1
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It is conventional to denote the distribution as

Dirichlet (↵|u) (8.5.3)
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Figure 8.4: Top: 200 datapoints x1, . . . , x200 drawn from a
Gaussian distribution. Each vertical line denotes a datapoint
at the corresponding x value on the horizontal axis. Middle:
Histogram using 10 equally spaced bins of the datapoints. Bot-
tom: Gaussian distribution N (x µ = 5, � = 3) from which the
datapoints were drawn. In the limit of an infinite amount of
data, and limitingly small bin size, the normalised histogram
tends to the Gaussian probability density function.

where µ is the mean, ⌫ the degrees of freedom, and � scales the distribution. The variance is given by

var(x) =
⌫

� (⌫ � 2)
, for ⌫ > 2 (8.4.16)

For ⌫ !1 the distribution tends to a Gaussian with mean µ and variance 1/�. As ⌫ decreases the tails
of the distribution become fatter.

The t-distribution can be derived from a scaled mixture
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It is conventional to reparameterise using ⌫ = 2a and � = a/b.

8.5 Multivariate Distributions

Definition 76 (Dirichlet Distribution). The Dirichlet distribution is a distribution on probability distri-
butions:
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It is conventional to denote the distribution as

Dirichlet (↵|u) (8.5.3)
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and �(x) is the gamma function. Note that the distribution can be flipped by interchanging x for 1� x,
which is equivalent to interchanging ↵ and �.

The mean is given by

hxi =
↵

↵ + �
, var(x) =

↵�

(↵ + �)2 (↵ + � + 1)
(8.4.10)

8.4.2 Unbounded distributions

Definition 73 (Laplace (Double Exponential) Distribution).

p(x|�) ⌘ �e�
1
b
|x�µ| (8.4.11)

For scale b

hxi = µ, var(x) = 2b2 (8.4.12)

Univariate Gaussian distribution

The Gaussian distribution is an important distribution in science. It’s technical description is given in
definition(74).

Definition 74 (Univariate Gaussian Distribution).

p(x|µ,�2) = N
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x µ,�2
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2�2 (x�µ)

2

(8.4.13)

where µ is the mean of the distribution, and �2 the variance. This is also called the normal distribution.

One can show that the parameters indeed correspond to

µ = hxiN (x µ,�2
)

, �2 =
D

(x� µ)2
E

N (x µ,�2
)

(8.4.14)

For µ = 0 and � = 1, the Gaussian is called the standard normal distribution.

Definition 75 (Student’s t-distribution).
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Figure 8.3: (a): Gamma distri-
bution with varying � for fixed
↵. (b): Gamma distribution
with varying ↵ for fixed �.
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Figure 8.7: Beta distribution. The
parameters ↵ and � can also be wit-
ting in terms of the mean and vari-
ance, leading to an alternative pa-
rameterisation, see exercise(94).

8.6.1 Conditioning as system reversal

For a joint distribution p(x,y), consider the conditional p(x|y). The statistics of p(x|y) can be obtained
using a linear system of the form

x =
 �
Ay + �⌘ (8.6.17)

where
 �⌘ ⇠ N

⇣ �⌘  �µ ,
 �
⌃

⌘

(8.6.18)

and this reversed noise is uncorrelated with y.

To show this, we need to make the statistics of x under this linear system match those given by the
conditioning operation, (8.6.11). The mean of the linear system is given by

µx =
 �
Aµy + �µ (8.6.19)

and the covariances by (note that covariance of y remains una↵ected by the system reversal)

⌃xx =
 �
A⌃yy

 �
AT +

 �
⌃ (8.6.20)

⌃xy =
 �
A⌃yy (8.6.21)

From equation (8.6.21) we have
 �
A = ⌃xy⌃�1

yy (8.6.22)

which, using in equation (8.6.20), gives
 �
⌃ = ⌃xx �

 �
A⌃yy

 �
AT = ⌃xx �⌃xy⌃�1

yy ⌃yx (8.6.23)

Using equation (8.6.19) we similarly obtain
 �µ = µx �

 �
Aµy = µx �⌃xy⌃�1

yy µy (8.6.24)

This means that we can write an explicit linear system of the form equation (8.6.17) where the parameters
are given in terms of the statistics of the original system. These results are just a restatement of the
conditioning results but shows how it may be interpreted as a linear system. This is useful in deriving
results in inference with Linear Dynamical Systems.

8.6.2 Completing the square

A useful technique in manipulating Gaussians is completing the square. For example, the expression

e�
1
2xTAx+bTx (8.6.25)

can be transformed as follows. First we complete the square:
1
2
xTAx� bTx =

1
2
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� 1
2
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e
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From this one can derive
Z

e�
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2xTAx+bTxdx =

q

det
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�

e
1
2bTA�1b (8.6.28)

DRAFT March 9, 2010 151

Multivariate Gaussian

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

 

 
α=0.1 β=0.1
α=1 β=1
α=2 β=2
α=5 β=5

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

 

 
α=0.1 β=2
α=1 β=2
α=2 β=2
α=5 β=2

(b)

Figure 8.7: Beta distribution. The
parameters ↵ and � can also be wit-
ting in terms of the mean and vari-
ance, leading to an alternative pa-
rameterisation, see exercise(94).

8.6.1 Conditioning as system reversal

For a joint distribution p(x,y), consider the conditional p(x|y). The statistics of p(x|y) can be obtained
using a linear system of the form

x =
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where
 �⌘ ⇠ N

⇣ �⌘  �µ ,
 �
⌃

⌘

(8.6.18)

and this reversed noise is uncorrelated with y.

To show this, we need to make the statistics of x under this linear system match those given by the
conditioning operation, (8.6.11). The mean of the linear system is given by

µx =
 �
Aµy + �µ (8.6.19)

and the covariances by (note that covariance of y remains una↵ected by the system reversal)
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Using equation (8.6.19) we similarly obtain
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This means that we can write an explicit linear system of the form equation (8.6.17) where the parameters
are given in terms of the statistics of the original system. These results are just a restatement of the
conditioning results but shows how it may be interpreted as a linear system. This is useful in deriving
results in inference with Linear Dynamical Systems.

8.6.2 Completing the square

A useful technique in manipulating Gaussians is completing the square. For example, the expression
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Figure 8.4: Top: 200 datapoints x1, . . . , x200 drawn from a
Gaussian distribution. Each vertical line denotes a datapoint
at the corresponding x value on the horizontal axis. Middle:
Histogram using 10 equally spaced bins of the datapoints. Bot-
tom: Gaussian distribution N (x µ = 5, � = 3) from which the
datapoints were drawn. In the limit of an infinite amount of
data, and limitingly small bin size, the normalised histogram
tends to the Gaussian probability density function.

where µ is the mean, ⌫ the degrees of freedom, and � scales the distribution. The variance is given by

var(x) =
⌫

� (⌫ � 2)
, for ⌫ > 2 (8.4.16)

For ⌫ !1 the distribution tends to a Gaussian with mean µ and variance 1/�. As ⌫ decreases the tails
of the distribution become fatter.

The t-distribution can be derived from a scaled mixture

p(x|a, b) =
Z 1
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N
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It is conventional to reparameterise using ⌫ = 2a and � = a/b.

8.5 Multivariate Distributions

Definition 76 (Dirichlet Distribution). The Dirichlet distribution is a distribution on probability distri-
butions:

p(↵) =
1

Z(u)
�

 

Q
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where

Z(u) =
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�(uq)

�
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⌘ (8.5.2)

It is conventional to denote the distribution as

Dirichlet (↵|u) (8.5.3)
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Figure 8.4: Top: 200 datapoints x1, . . . , x200 drawn from a
Gaussian distribution. Each vertical line denotes a datapoint
at the corresponding x value on the horizontal axis. Middle:
Histogram using 10 equally spaced bins of the datapoints. Bot-
tom: Gaussian distribution N (x µ = 5, � = 3) from which the
datapoints were drawn. In the limit of an infinite amount of
data, and limitingly small bin size, the normalised histogram
tends to the Gaussian probability density function.

where µ is the mean, ⌫ the degrees of freedom, and � scales the distribution. The variance is given by

var(x) =
⌫

� (⌫ � 2)
, for ⌫ > 2 (8.4.16)

For ⌫ !1 the distribution tends to a Gaussian with mean µ and variance 1/�. As ⌫ decreases the tails
of the distribution become fatter.

The t-distribution can be derived from a scaled mixture
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It is conventional to reparameterise using ⌫ = 2a and � = a/b.

8.5 Multivariate Distributions

Definition 76 (Dirichlet Distribution). The Dirichlet distribution is a distribution on probability distri-
butions:

p(↵) =
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It is conventional to denote the distribution as

Dirichlet (↵|u) (8.5.3)
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Figure 8.4: Top: 200 datapoints x1, . . . , x200 drawn from a
Gaussian distribution. Each vertical line denotes a datapoint
at the corresponding x value on the horizontal axis. Middle:
Histogram using 10 equally spaced bins of the datapoints. Bot-
tom: Gaussian distribution N (x µ = 5, � = 3) from which the
datapoints were drawn. In the limit of an infinite amount of
data, and limitingly small bin size, the normalised histogram
tends to the Gaussian probability density function.

where µ is the mean, ⌫ the degrees of freedom, and � scales the distribution. The variance is given by

var(x) =
⌫

� (⌫ � 2)
, for ⌫ > 2 (8.4.16)

For ⌫ !1 the distribution tends to a Gaussian with mean µ and variance 1/�. As ⌫ decreases the tails
of the distribution become fatter.

The t-distribution can be derived from a scaled mixture

p(x|a, b) =
Z 1

⌧=0

N
�

x µ, ⌧�1

�

Gamis (⌧ |a, b) d⌧ (8.4.17)

=
⇣ ⌧

2⇡

⌘

1
2

Z 1

⌧=0

e�
⌧
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2
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d⌧ (8.4.18)
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�(a)
�(a + 1
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1
⇣

b + 1

2

(x� µ)2
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1
2

(8.4.19)

It is conventional to reparameterise using ⌫ = 2a and � = a/b.

8.5 Multivariate Distributions

Definition 76 (Dirichlet Distribution). The Dirichlet distribution is a distribution on probability distri-
butions:

p(↵) =
1

Z(u)
�

 

Q
X

i=1

↵i � 1

!

Q
Y

q=1

↵
uq�1

q (8.5.1)

where

Z(u) =
QQ

q=1

�(uq)

�
⇣

PQ
q=1

uq

⌘ (8.5.2)

It is conventional to denote the distribution as

Dirichlet (↵|u) (8.5.3)
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(4, 3, 2). (d): (0.05, 0.05, 0.05).

The parameter u controls how strongly the mass of the distribution is pushed to the corners of the
simplex. Setting uq = 1 for all q corresponds to a uniform distribution, fig(8.5). In the binary case Q = 2,
this is equivalent to a Beta distribution.

The product of two Dirichlet distributions is

Dirichlet (✓|u
1

) Dirichlet (✓|u
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) = Dirichlet (✓|u
1
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) (8.5.4)

Marginal of a Dirichlet:
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The marginal of a single component ✓i is a Beta distribution:

p(✓i) = B
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@✓i|ui,
X

j 6=i
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8.6 Multivariate Gaussian

The multivariate Gaussian plays a central role throughout this book and as such we discuss its properties
in some detail.

Definition 77 (Multivariate Gaussian Distribution).

p(x|µ,⌃) = N (x µ,⌃) ⌘ 1
p

det (2⇡⌃)
e�

1
2 (x�µ)

T⌃�1
(x�µ) (8.6.1)

where µ is the mean vector of the distribution, and ⌃ the covariance matrix. The inverse covariance ⌃�1

is called the precision.

One may show

µ = hxiN (x µ,⌃)

, ⌃ =
D

(x� µ) (x� µ)T
E

N (x µ,⌃)

(8.6.2)
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The parameter u controls how strongly the mass of the distribution is pushed to the corners of the
simplex. Setting uq = 1 for all q corresponds to a uniform distribution, fig(8.5). In the binary case Q = 2,
this is equivalent to a Beta distribution.
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Continuous multivariate distributions:
‣ Multivariate Gaussian distribution

‣ Some useful properties
- product of two Gaussians is a Gaussian
- can be conveniently transformed into Eigenvalues

of the Covariance matrix
- can be shifted into linearly transformed parameters
- Entropy independent of mean:

21
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The parameter u controls how strongly the mass of the distribution is pushed to the corners of the
simplex. Setting uq = 1 for all q corresponds to a uniform distribution, fig(8.5). In the binary case Q = 2,
this is equivalent to a Beta distribution.
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The parameter u controls how strongly the mass of the distribution is pushed to the corners of the
simplex. Setting uq = 1 for all q corresponds to a uniform distribution, fig(8.5). In the binary case Q = 2,
this is equivalent to a Beta distribution.
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Definition 78 (Partitioned Gaussian). For a distribution N (z µ,⌃) defined jointly over two vectors x
and y of potentially di↵ering dimensions,

z =
✓

x
y

◆

(8.6.8)

with corresponding mean and partitioned covariance

µ =
✓

µx

µy

◆

⌃ =
✓

⌃xx ⌃xy

⌃yx ⌃yy

◆

(8.6.9)

where ⌃yx ⌘ ⌃T

xy. The marginal distribution is given by

p(x) = N (x µx,⌃xx) (8.6.10)

and conditional

p(x|y) = N
�

x µx + ⌃xy⌃�1

yy

�

y � µy

�

,⌃xx �⌃xy⌃�1

yy ⌃yx

�

(8.6.11)

Definition 79 (Product of two Gaussians). The product of two Gaussians is another Gaussian, with a
multiplicative factor, exercise(114):

N (x µ
1

,⌃
1

)N (x µ
2

,⌃
2

) = N (x µ,⌃)
exp

⇣

�1

2

(µ
1

� µ
2

)T S�1 (µ
1

� µ
2

)
⌘

p

det (2⇡S)
(8.6.12)

where S ⌘ ⌃
1

+ ⌃
2

and the mean and covariance are given by

µ = ⌃
1

S�1µ
2

+ ⌃
2

S�1µ
1

⌃ = ⌃
1

S�1⌃
2

(8.6.13)

Definition 80 (Linear Transform of a Gaussian). For the linear transformation

y = Ax + b (8.6.14)

where x ⇠ N (x µ,⌃),

y ⇠ N
⇣

y Aµ + b,A⌃AT

⌘

(8.6.15)

Definition 81 (Entropy of a Gaussian). The di↵erential entropy of a multivariate Gaussian p(x) =
N (x µ,⌃) is

H(x) ⌘ �hlog p(x)ip(x)

=
1
2

log det (2⇡⌃) +
D

2
(8.6.16)

where D = dimx. Note that the entropy is independent of the mean µ.
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Learning distributions

For a distribution p(x|!) and data X={x1,...,xN}, learning corresponds 

to inferring the parameter ! that best explains data X. Using Bayes:

posterior p(!|X) = likelihood p(X|!) * prior p(!) / evidence p(X)

‣ Bayesian methods: examine posterior p(!|x) ∝ p(X|!) p(!). This 

gives rise to a distribution over !.

‣ Maximum a posteriori:  !MAP=argmax! p(!|X)

‣ Maximum likelihood:  Under a flat prior p(!)=const., the MAP 

solution is equivalent to setting ! to the value that maximizes the 

likelihood of observing the data:  !ML=argmax! p(X|!)

22



Often, a numerical optimization is required to single out the best 
parameter value. Thus it is important to find a good model that makes 
computation feasible, or to find good approximations.

Often, the distributions are also conditioned on the model M

‣ p(!|X,M) = p(X|!,M) p(!|M) / p(X|M)

- model likelihood p(X|M)

For a set of observations x1,...,xN, conditioned on !, we say the X are 
independent and identically distributed (i.i.d.) if there is no dependence 
between the observations: p(X|!)=∏ p(xi|!)

23

Learning distributions

Maximum likelihood estimation (MLE)

With i.i.d. data samples D={x[m]}, m=1...N, what are the parameters 
Θ that makes sampling x from p(x|Θ) as likely as possible?

Maximize

Direct approach:  
‣ maximize the log likelihood: log(L) = ∑m log p(x[m]|Θ)
‣ write down derivative dL/dΘ with respect to each parameter 

and solve for 0

In practice, one is often interested in (assumed) certain distributions, 
whose parameter(s) should be learned

24



Maximum likelihood learning

Direct approach:

‣ optimal mean: search for zero vector derivative

‣ optimal covariance: setting derivative w.r.t. the covariance matrix 
to zero gives

➔ max. likelihood solution for training data X simply sets parameters 
to sample statistics of the empirical distribution, i.e. we can count.

25

Multivariate Gaussian

8.6.3 Gaussian propagation

Let y be linearly related to x through

y = Mx + ⌘ (8.6.29)

where ⌘ ⇠ N (µ,⌃), and x ⇠ N (µx,⌃x).

Then the marginal p(y) =
R

x p(y|x)p(x) is a Gaussian

p(y) = N
⇣

y Mµx + µ,M⌃xMT + ⌃
⌘

(8.6.30)

8.6.4 Whitening and centering

For a set of data x1, . . . ,xN , with dimxn = D, we can transform this data to y1, . . . ,yN with zero mean
using centering :

yn = xn �m (8.6.31)

where the mean m of the data is given by

m =
1
N

N
X

n=1

xn (8.6.32)

Furthermore, we can transform to a values z1, . . . , zN that have zero mean and unit covariance using
whitening

zn = S�
1
2 (xn �m) (8.6.33)

where the covariance S of the data is given by

S =
1
N

N
X

n=1

(xn �m) (xn �m)T (8.6.34)

An equivalent approach is to compute the SVD decomposition of the matrix of centered datapoints

USVT = Y, Y =
⇥

y1, . . . ,yN
⇤

(8.6.35)

then

Z =
p

Ndiag (1/S
1,1, . . . , 1/SD,D)UTY (8.6.36)

has zero mean and unit covariance, see exercise(111).

8.6.5 Maximum likelihood training

Given a set of training data X =
�

x1, . . . ,xN
 

, drawn from a Gaussian N (x µ,⌃) with unknown mean
µ and covariance ⌃, how can we find these parameters? Assuming the data are drawn i.i.d. the log
likelihood is

L(µ,⌃) ⌘
N
X

n=1

log p(x|µ,⌃) = �1
2

N
X

n=1

(xn � µ)T ⌃�1 (xn � µ)� N

2
log det (2⇡⌃) (8.6.37)
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Optimal µ

Taking the partial derivative with respect to the vector µ we obtain the vector derivative

rµL(µ,⌃) =
N

X

n=1

⌃�1 (xn � µ) (8.6.38)

Equating to zero gives that at the optimum of the log likelihood,

N
X

n=1

⌃�1xn = Nµ⌃�1 (8.6.39)

and therefore, optimally

µ =
1
N

N
X

n=1

xn (8.6.40)

Optimal ⌃

The derivative of L with respect to the matrix ⌃ requires more work. It is convenient to isolate the
dependence on the covariance, and also parameterise using the inverse covariance, ⌃�1,
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Using M = MT, we obtain

@

@⌃�1
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2
M +

N

2
⌃ (8.6.42)

Equating the derivative to the zero matrix and solving for ⌃ gives

⌃ =
1
N

N
X

n=1

(xn � µ) (xn � µ)T (8.6.43)

Equations (8.6.40) and (8.6.43) define the Maximum Likelihood solution mean and covariance for training
data X . Consistent with our previous results, in fact these equations simply set the parameters to their
sample statistics of the empirical distribution. That is, the mean is set to the sample mean of the data
and the covariance to the sample covariance.

8.6.6 Bayesian Inference of the mean and variance

For simplicity here we deal with the univariate case. Assuming i.i.d. data the likelihood is

p(X|µ,�2) =
1

(2⇡�2)N/2

e�
1

2�2

PN
n=1(xn�µ)

2

(8.6.44)

For a Bayesian treatment, we require the posterior of the parameters

p(µ,�2|X ) / p(X|µ,�2)p(µ,�2) = p(X|µ,�2)p(µ|�2)p(�2) (8.6.45)

Our aim is to find conjugate priors for the mean and variance. A convenient choice for a prior on the
mean µ is that it is a Gaussian centred on µ

0
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p(µ|µ
0
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2�2
0
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Multivariate Gaussian
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Multivariate Gaussian

Optimal µ
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Multivariate Gaussian

Optimal µ

Taking the partial derivative with respect to the vector µ we obtain the vector derivative
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Example
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Maximum Likelihood Training of Belief Networks

Consider the following model of the relationship between exposure to asbestos (a),
being a smoker (s) and the incidence of lung cancer (c)

p(a, s, c) = p(c|a, s)p(a)p(s)

Each variable is binary, dom(a) = {0, 1}, dom(s) = {0, 1}, dom(c) = {0, 1}.
Furthermore, we assume that we have a list of patient records, where each row
represents a patient’s data.
a s c

1 1 1

1 0 0

0 1 1

0 1 0

1 1 1

0 0 0

1 0 1

A database containing information about the Asbestos ex-
posure (1 signifies exposure), being a Smoker (1 signifies
the individual is a smoker), and lung Cancer (1 signifies the
individual has lung Cancer). Each row contains the infor-
mation for an individual, so that there are 7 individuals in
the database.



Learning the table

a s c

1 1 1

1 0 0

0 1 1

0 1 0

1 1 1

0 0 0

1 0 1

c

n

a

n
s

n

✓c

✓a ✓s

n = 1 : N

To learn the table entries p(c|a, s) we can do so by counting the number of c is in
state 1 for each of the 4 parental states of a and s:

p(c = 1|a = 0, s = 0) = 0, p(c = 1|a = 0, s = 1) = 0.5

p(c = 1|a = 1, s = 0) = 0.5 p(c = 1|a = 1, s = 1) = 1

Similarly, based on counting, p(a = 1) = 4/7, and p(s = 1) = 4/7. These three
CPTs then complete the full distribution specification.
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Choosing a structure and learning the table

Example
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Maximum likelihood and KL divergence

Maximum Likelihood and the KL divergence

KL(q(x)|p(x|✓)) =
⌧
log

q(x)

p(x|✓)

�

q(x)

� 0

Let q be the empirical distribution:

q(x) =

1

N

NX

n=1

I [x = x

n
]

Then

KL(q|p(x|✓)) = hlog q(x)iq(x) � hlog p(x|✓)iq(x)

= � 1

N

NX

n=1

log p(x

n|✓) + const.

Hence setting parameters of p that maximise the likelihood is equivalent to setting
parameters of p that minimise the KL divergence between p and the empirical
distribution.

Maximum likelihood learning
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Maximum likelihood BN training and counting
Maximum Likelihood BN training and counting

A BN takes the form:

p(x) =

KY

i=1

p(xi|pa (xi))

For the BN p(x), and empirical distribution q(x) we have

KL(q|p) = �
*

KX

i=1

log p (xi|pa (xi))

+

q(x)

+ const.

= �
KX

i=1

hlog p (xi|pa (xi))iq(xi,pa(xi))
+ const.

=

KX

i=1

h
hlog q(xi|pa (xi))iq(xi,pa(xi))

� hlog p (xi|pa (xi))iq(xi,pa(xi))

i
+ const.

=

KX

i=1

hKL(q(xi|pa (xi))|p(xi|pa (xi)))iq(pa(xi))
+ const.

Maximum likelihood learning
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Maximum likelihood BN training and counting

Maximum Likelihood BN training and counting

KL(q|p) =
KX

i=1

hKL(q(xi|pa (xi))|p(xi|pa (xi)))iq(pa(xi))
+ const.

The minimal Kullback-Leibler setting, and that which corresponds to Maximum
Likelihood, is therefore

p(xi|pa (xi)) = q(xi|pa (xi))

In terms of the original data, this is

p(xi = s|pa (xi) = t) /
NX

n=1

I [xn
i = s]

Y

xj2pa(xi)

I
⇥
x

n
j = tj

⇤

The table entry p(xi|pa (xi)) can be set by counting the number of times the state
{xi = s, pa (xi) = t} occurs in the dataset (where t is a vector of parental states).
The table is then given by the relative number of counts of being in state s
compared to the other states s0, for fixed joint parental state t.

Maximum likelihood learning
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E B

A

C

ML learning, more generally, requires:
‣ Network structure specified
‣ Complete training data

Training data D has the form:

Maximum likelihood learning

=

32

E B

A

C

Assume i.i.d. data samples D, we have 

P(D|Θ)=

Maximum likelihood learning



Generalizing for any Bayesian network:
P(D|Θ)=

With complete data, parameter learning for a Bayesian 
network decomposes into independent estimation (learning) 
problems, one for each parameter

33

Θi

Maximum likelihood learning

P(D|Θi)

Summary: Maximum likelihood learning

‣ assumes uniform priors
- ok for large data sets 

‣ either sets tables from sample statistics of the empirical 
distribution

‣ ... or chooses a parameterized family of models to describe the 
data and
- write down likelihood of the data as a function of the parameters
- write down derivative of the log likelihood w.r.t. each parameter
- find the parameter values such that the derivatives are zero
- may be hard/impossible; computational optimization techniques help 

If only small data sets available or if we have additional knowledge, we 
need to place a prior on the tables ➔ Bayesian learning approach

34



Bayesian Belief Net training

35

Bayesian Belief Net training

We continue with the Asbestos, Smoking, Cancer scenario,

p(a, c, s) = p(c|a, s)p(a)p(s)

and a set of visible observations, V = {(an, sn, cn) , n = 1, . . . , N}. With all
variables binary we have parameters such as

p(a = 1|✓a) = ✓a, p(c = 1|a = 0, s = 1, ✓c) = ✓

0,1
c

The parameters are

✓a, ✓s, ✓
0,0
c , ✓

0,1
c , ✓

1,0
c , ✓

1,1
c| {z }

✓c

In Bayesian learning of BNs, we need to specify a prior on the joint table entries.
Since in general dealing with multi-dimensional continuous distributions is
computationally problematic, it is useful to specify only uni-variate distributions in
the prior. As we show below, this has a pleasing consequence that for i.i.d. data
the posterior also factorises into uni-variate distributions.

Learning the table

a s c

1 1 1

1 0 0

0 1 1

0 1 0

1 1 1

0 0 0

1 0 1

c

n

a

n
s

n

✓c

✓a ✓s

n = 1 : N

To learn the table entries p(c|a, s) we can do so by counting the number of c is in
state 1 for each of the 4 parental states of a and s:

p(c = 1|a = 0, s = 0) = 0, p(c = 1|a = 0, s = 1) = 0.5

p(c = 1|a = 1, s = 0) = 0.5 p(c = 1|a = 1, s = 1) = 1

Similarly, based on counting, p(a = 1) = 4/7, and p(s = 1) = 4/7. These three
CPTs then complete the full distribution specification.

Global parameter independence
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Global parameter independence

A convenient assumption is that the prior factorises over parameters. For our
Asbestos, Smoking, Cancer example, we assume

p(✓a, ✓s, ✓c) = p(✓a)p(✓s)p(✓c)

Assuming the data is i.i.d., we then have the joint model

p(✓a, ✓s, ✓c,V) = p(✓a)p(✓s)p(✓c)

Y

n

p(a

n|✓a)p(sn|✓s)p(cn|sn, an, ✓c)

Learning then corresponds to inference of

p(✓a, ✓s, ✓c|V) =
p(V|✓a, ✓s, ✓c)p(✓a, ✓s, ✓c)

p(V) =

p(V|✓a, ✓s, ✓c)p(✓a)p(✓s)p(✓c)
p(V)

The posterior also factorises, since

p(✓a, ✓s, ✓c|V) / p(✓a, ✓s, ✓c,V)

=

(
p(✓a)

Y

n

p(a

n|✓a)
)(

p(✓s)

Y

n

p(s

n|✓s)
)(

p(✓c)

Y

n

p(c

n|sn, an, ✓c)
)

/ p(✓a|Va)p(✓s|Vs)p(✓c|Vc)

Learning the table

a s c

1 1 1

1 0 0

0 1 1

0 1 0

1 1 1

0 0 0

1 0 1

c

n

a

n
s

n

✓c

✓a ✓s

n = 1 : N

To learn the table entries p(c|a, s) we can do so by counting the number of c is in
state 1 for each of the 4 parental states of a and s:

p(c = 1|a = 0, s = 0) = 0, p(c = 1|a = 0, s = 1) = 0.5

p(c = 1|a = 1, s = 0) = 0.5 p(c = 1|a = 1, s = 1) = 1

Similarly, based on counting, p(a = 1) = 4/7, and p(s = 1) = 4/7. These three
CPTs then complete the full distribution specification.



Local parameter independence
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Local parameter independence

If we further assume that the prior for the table factorises over all states a, c:

p(✓c) = p(✓

0,0
c )p(✓

1,0
c )p(✓

0,1
c )p(✓

1,1
c )

then the posterior

p(✓c|Vc) / p(Vc|✓c)p(✓0,0c )p(✓

1,0
c )p(✓

0,1
c )p(✓

1,1
c )

=

⇥
✓

0,0
c

⇤](a=0,s=0)
p(✓

0,0
c )

| {z }
/p(✓0,0

c |Vc)

⇥
✓

0,1
c

⇤](a=0,s=1)
p(✓

0,1
c )

| {z }
/p(✓0,1

c |Vc)

⇥
⇥
✓

1,0
c

⇤](a=1,s=0)
p(✓

1,0
c )

| {z }
/p(✓1,0

c |Vc)

⇥
✓

1,1
c

⇤](a=1,s=1)
p(✓

1,1
c )

| {z }
/p(✓1,1

c |Vc)

so that the posterior also factorises over the parental states of the local conditional
table.

Learning the table

a s c

1 1 1

1 0 0

0 1 1

0 1 0

1 1 1

0 0 0

1 0 1

c

n

a

n
s

n

✓c

✓a ✓s

n = 1 : N

To learn the table entries p(c|a, s) we can do so by counting the number of c is in
state 1 for each of the 4 parental states of a and s:

p(c = 1|a = 0, s = 0) = 0, p(c = 1|a = 0, s = 1) = 0.5

p(c = 1|a = 1, s = 0) = 0.5 p(c = 1|a = 1, s = 1) = 1

Similarly, based on counting, p(a = 1) = 4/7, and p(s = 1) = 4/7. These three
CPTs then complete the full distribution specification.

Using a Beta prior

38

Using a Beta prior

p(✓a) = B (✓a|↵a,�a) =
1

B(↵a,�a)
✓

↵a�1
a (1� ✓a)

�a�1

for which the posterior is also a Beta distribution:

p(✓a|Va) = B (✓a|↵a + ] (a = 1) ,�a + ] (a = 0))

The marginal table is given by

p(a = 1|Va) =

Z

✓a

p(✓a|Va)✓a =

↵a + ] (a = 1)

↵a + ] (a = 1) + �a + ] (a = 0)

hyperparameters
The prior parameters ↵a,�a are called hyperparameters. If one had no preference,
one would set ↵a = �b = 1.

Using a Beta prior

p(✓a) = B (✓a|↵a,�a) =
1

B(↵a,�a)
✓

↵a�1
a (1� ✓a)

�a�1

for which the posterior is also a Beta distribution:

p(✓a|Va) = B (✓a|↵a + ] (a = 1) ,�a + ] (a = 0))

The marginal table is given by

p(a = 1|Va) =

Z

✓a

p(✓a|Va)✓a =

↵a + ] (a = 1)

↵a + ] (a = 1) + �a + ] (a = 0)

hyperparameters
The prior parameters ↵a,�a are called hyperparameters. If one had no preference,
one would set ↵a = �b = 1.

Bayes vs ML

p(a = 1|Va) =

Z

✓a

p(✓a|Va)✓a =

↵a + ] (a = 1)

↵a + ] (a = 1) + �a + ] (a = 0)

Corresponds in this case to adding ‘pseudo counts’ to the data.

No data limit
The marginal probability table corresponds to the prior ratios:

p(a = 1) =

↵a

↵a + �a

For a flat prior ↵ = � = 1, p(a = 1) = 0.5.

Infinite data limit
The marginal probability tables are dominated by the data counts:

p(a = 1|V) ! ] (a = 1)

] (a = 1) + ] (a = 0)

which corresponds to the Maximum Likelihood solution.
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Summary: Learning Parameters

Estimation relies on sufficient statistics

Maximum-likelihood (estimation) (ML/MLE)
‣ standard (non-bayesian) statistical learning
‣ useful for large data sets, where priors get irrelevant

Bayesian parameter learning
‣ Include prior probabilities, useful when data sets smaller

‣ Prediction is standard Bayesian inference

MLE vs. Bayesian learning
‣ Both are asymptotically equivalent and consistent

‣ Both can be implemented in an on-line manner by accumulating 
sufficient statistics

Outlook

Next week:

Learning with missing data (hidden variables)
‣ Expectation Maximization

Learning network structure
‣ PC (local search)
‣ scoring (global search)
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