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Bayesian networks as models

Compact representation of probability distributions via
conditional independence
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How to get a Bayesian network in general?

Method |:Model from given facts/knowledge, where possible
» variables (evidence, query, intermediary) and their possible values
» network structure (cause-effect relations, conditional independencies)
» network parameters (CPTs)

Method |l: Learn from data, either partially or completely

» collect or gather data and prior information: enough samples, cover all
relevant variables, cover all relevant events (variations)

» use to learn network parameters (distributions) or structure

Also combination of both methods if possible, but most often
one has to use learning to build a Bayesian model

Learning Bayesian networks
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Known Structure, Complete Data
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Network structure is specified, learner needs to estimate
parameters
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Network structure is not specified, learner needs to select
graph structure & estimate parameters




Known Structure, Incomplete Data
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Network structure is specified but data contains missing
values, learner need to consider assignments to missing values
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is not specified and data contains missing

values, learner needs to select graph structure, estimate
parameters, assign missing values
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Example: Learning the bias of a coin

o 1 if on toss n the coin comes up heads
] 0 ifon tossn the coin comes up tails

Our aim is to estimate the probability # that the coin will be a head,
p(v™ = 1|0) = 0 — called the 'bias’ of the coin.

Approach: Learning as probabilistic inference over variables

Building a model

The variables are v!,...,v" and 6§ and we require a model of the probabilistic
interaction of the variables, p(v?, ..., v, 0). Assuming there is no dependence
between the observed tosses, except through 6, we have the belief network

N O
p(vl,..., oM, 0) = p(h) Hp(v”]@) 0

DGO v

Plate notation

Example: Learning the bias of a coin

The posterior

N
pOfo, ..., o) o p(0) [ p(v™16)
n=1
N n
— p(e) H 9]1[1)":1] (1 . 0)]1[1) =0]
n=1

x p(g)ngﬂ T=1] (1 — 9)25:1 I[v™=0]
Hence
pOvt, ... o) o p(0)6NH (1 — )N
Ny = Zgzl [[v™ = 1] is the number of occurrences of heads.

Nr = ij:l I[v™ = 0] is the number of tails.
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Example: Learning the bias of a coin
The prior

We still need to fully specify the prior p(6). To avoid complexities resulting from
continuous variables, we'll consider a discrete 6 with only three possible states,

0 € {0.1,0.5,0.8}. Specifically, we assume

p(6=0.1) =0.15, p(6 = 0.5) = 0.8, p(f = 0.8) = 0.05

0.1 0.5 08
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Example: Learning the bias of a coin

Coin posterior after observations

For an experiment with Ny = 2, Ny = 8, the posterior distribution is

| 1 o

0.1 0.5 08 0.1 0.5 0.8
0 0

If we were asked to choose a single a posteriori most likely value for 6, it would be
= 0.5, although our confidence in this is low since the posterior belief that

0 = 0.1 is also appreciable. This result is intuitive since, even though we observed

more Tails than Heads, our prior belief was that it was more likely the coin is fair.
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Example: Learning the bias of a coin

Repeating the above with Ny = 20, Ny = 80, the posterior changes to

—0

‘ i o—

0.1 0.5 08 0.1 0.5 08
0 0

so that the posterior belief in § = 0.1 dominates. There are so many more tails
than heads that this is unlikely to occur from a fair coin. Even though we a priori
thought that the coin was fair, a posteriori we have enough evidence to change our
minds.

The posterior effect
Note that in both examples, Np /Ny = 4, although in the latter we are much more
confident that § = 0.1
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Math background: Distributions

» univariate p(x) or multivariate p(X)

» mode: state(s) where p takes its maximum value ** = #r&ax p()

» average or expectation of f(x) w.r.t. distr. p(x) E(z)
N=2f@ = =x) (f@) = [ fepl)ds

- average of f(x) conditioned on y (w.r.t. to distribution p(x|y)):  (f(z)|y)
» mean:first moment of a distr. = (z)

» variance: o°= <(ﬂc - <x>)2> (square root = standard deviation)

p(z)

) covariance matrix of multivariate distr.: i = (% — i) (x5 — pj))

» correlation matrix: <( >
ij =
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Math background: Distributions

» Skewness of p:
>0: p is heavy-tail to the right
<0: p is heavy-tail to the left

» Kurtosis of p: how peaked p is around the mean

>0: more mass around the mean than a Gaussian with
similar mean and variance (super Gaussian)

<0: less mass around the mean (sub Gaussian)

» Dirac delta function: continuous function that is 0
everywhere except at x0, with
SR8 —zo)dr =1 [ 8- a0) @)= (o)

(0.0}

discrete case: Kronecker delta O
» L0
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Math background: Distributions

Unbiased estimator: given data X from a distr. 2(#(0) , we can use
xl,...,xn to estimate the parameter d that was used to generate X.The

estimator is a function of the data: 5(;{)

» for an unbiased estimator: <é(X)> o
p

Kullback-Leibler Divergence KL(q|p)

» measure of the ,,difference” between two distr. q and p

KL(¢g|p) = (log g(z) — log p(z)) 4,y = 0

» KL(q|p) =0 iff p and g are exactly the same
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Math background: Distributions

Classical discrete distributions

» Bernoulli distribution: discrete variable xe{0, 1}, with
plx=1)=0 plx=0=1-10
() =0xplz=0)+1xplx=1)=40 var(z) = 6 (1 —0)
» Categorical distribution: generalization to states {l,...,.C}

p(x =c) =6, Zﬁczl
C

» Binomial distribution: discrete, two-state symbolic variable. Prob.
to observe k “success’states | in n Bernoulli trials is

ply = k1) = (Z)@’“(l —O" {y)=nb,  var(z) =nf (1-0)
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Math background: Distributions

Classical continuous distributions

» Exponential distribution: for x=0

— -z I _1
p(z|\) = Xe (@)= var(z) = 35
b=1/\ is called the scale.

» Laplace (double exponential) distribution:

1
p(z|A) = e~ sl=H (x)y =, var(z) = 2b
» Gamma distribution: : —
ot : e
Gam (z|a, §) = L (E) e B x>0,a>0,08>1 2 i
Br(y) \B B .
« is called the shape parameter, (3 is the scale parameter and !
o 9 s2
M= [~ eteta a= (&) p== o
0 S 1% =21
a=2p=2

(s std. deviation)
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Math background: Distributions \

Classical continuous distributions <\
» Beta distribution: —
peias) = Blals) = g™ (-0, 0gest 2
where the beta function is defined as TR, o6 oe d
L(a)T(8) (x) = —2— af
B(a,pf) = ——= var(x) =
@) =Tarp) ath ) S ar B4 D)

» Univariate Gaussian distribution ) ) 1 1y
o plalp,0?) = N (2|p, 0%) = e 22
(Normal distribution) V2ro?
_ 2 _ _ 2
m= <$>N(x‘“"72) ’ 7= <(Jj #) >N(z\#,o2)
% ' ' j 0.2 ¢
10 ot |
‘ o ,
0 5 10 15 -5 0 5 10 15 5 0 5 10 15

Math background: Distributions

Continuous multivariate distributions:
» Dirichlet distribution: a distribution on distributions

19, D (uy)

pla) = Lé XQ:aZ- -1 ﬁag"_l Z(u) =
Z(u) i=1 g=1 r (Z?:l “q)

Dirichlet («|u)

- u:controls how much the mass is pushed to corners of the simplex

- closed under multiplication: Dirichlet (f|u;) Dirichlet (|uz) = Dirichlet (6lu; + us)

- Marginal of a single component is a Beta distribution
p(@l) =B 9i|ui, Zuj
JFi

u=(0.05,0.05,0.05)




Math background: Distributions

Continuous multivariate distributions:
» Multivariate Gaussian distribution

p(x|p, B) = N (x|p, 5) = L s e

©/det (21%)

1 is the mean vector of the distribution, and 3 the covariance matrix.

P= XNy = <(X Sl ”)T>N(xm,z)

» Some useful properties

0.08
- product of two Gaussians is a Gaussian . »

- can be conveniently transformed into Eigenvalues
of the Covariance matrix

0.02

Lo b b L e 4 e e s

- can be shifted into linearly transformed parameters

- Entropy independent of mean:

1 D
H(x) = — (log p(%)),x) = 5 logdet (27X) + > D = dimx
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Learning distributions

For a distribution p(x|6) and data X={xl,...,xN}, learning corresponds

to inferring the parameter 0 that best explains data X. Using Bayes:
posterior p(8]|X) = likelihood p(X|0) * prior p(0) / evidence p(X)

» Bayesian methods: examine posterior p(0]x) o p(X|60) p(6).This

gives rise to a distribution over 0.
» Maximum a posteriori: @MAP=argmaxs p(6|X)

» Maximum likelihood: Under a flat prior p(8)=const., the MAP
solution is equivalent to setting 0 to the value that maximizes the

likelihood of observing the data: O™-=argmaxs p(X|6)
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Learning distributions

Often, a numerical optimization is required to single out the best
parameter value.Thus it is important to find a good model that makes
computation feasible, or to find good approximations.

Often, the distributions are also conditioned on the model M
> p(O|X.M) = p(X|6,M) p(OIM) / p(X|M)
model likelihood p(X|M)

For a set of observations xl1,...,xN, conditioned on 0, we say the X are

independent and identically distributed (i.i.d.) if there is no dependence
between the observations: p(X|0)=[] p(xi|O)
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Maximum likelihood estimation (MLE)

With i.i.d. data samples D={x[m]}, m=1...N, what are the parameters
O that makes sampling x from p(x|©) as likely as possible?

Maximize P(D|06)= HP (x[m]]6)

Direct approach:

» maximize the log likelihood: log(L) = >m log p(x[m]|©)

» write down derivative dL/dO with respect to each parameter
and solve for O

In practice, one is often interested in (assumed) certain distributions,
whose parameter(s) should be learned
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Maximum likelihood learning

Given a set of training data X = {xl, . ,XN}, drawn from a Gaussian N (x|u, ) with unknown mean
p and covariance 3, how can we find these parameters? Assuming the data are drawn i.i.d. the log
likelihood is

N
L(p,X%) = Zlogp(:c“t, )= f% Z x"— )" (X" — ) — %log det (27 X0) (8.6.37)

n=1 n=1

Direct approach:
» optimal mean: search for zero vector derivative

N N 1 1 _ 1 al n
Vul(p,2) =Y =7 (x" — ) > X" = Npx© r= zzlx
n=1 n=1 n=

» optimal covariance: setting derivative w.r.t. the covariance matrix
. N
1
tO Zero glveS > - N nz::l (Xn _ /J') (xn _ /J')T
=> max. likelihood solution for training data X simply sets parameters
to sample statistics of the empirical distribution, i.e. we can count.
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Example

Consider the following model of the relationship between exposure to asbestos (a),
being a smoker (s) and the incidence of lung cancer (c)

p(a;s,c) = p(cla, s)p(a)p(s)

Each variable is binary, dom(a) = {0,1}, dom(s) = {0,1}, dom(c) = {0, 1}.
Furthermore, we assume that we have a list of patient records, where each row
represents a patient’s data.

a S C

1111 A database containing information about the Asbestos ex-
100 posure (1 signifies exposure), being a Smoker (1 signifies
0|11 the individual is a smoker), and lung Cancer (1 signifies the
010 individual has lung Cancer). Each row contains the infor-
1]1]1 mation for an individual, so that there are 7 individuals in
0]0]0 the database.

1101
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Example

Choosing a structure and learning the table

ol lolor o
oo R R oOol~lun
RO O ROl O

To learn the table entries p(c|a, s) we can do so by counting the number of ¢ is in
state 1 for each of the 4 parental states of a and s:

plc=1a=0,s=0)=0, plc=1la=0,s=1)=
plc=1lla=1,s=0)=05 plc=1lla=1,s=1)=1

Similarly, based on counting, p(a = 1) =4/7, and p(s = 1) = 4/7. These three
CPTs then complete the full distribution specification.
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Maximum likelihood learning
Maximum likelihood and KL divergence

Let g be the empirical distribution:

1 N
= — H = n
q(z) NnE:I [z = 2"
Then

KL(q|p(x|0)) = (log q(2)) 44y — (log p(20)) 4

N
1
=5 Z log p(x™|0) + const.

n=1

Hence setting parameters of p that maximise the likelihood is equivalent to setting
parameters of p that minimise the KL divergence between p and the empirical
distribution.

28




Maximum likelihood learning

Maximum likelihood BN training and counting
A BN takes the form:

K
= Hp(xih)a (z:))

For the BN p(z), and empirical distribution g(x) we have

KL(qlp) = <210gp (zi|pa (xz))> + const.
q(z)

i=1

K
Z logp xz|pa ‘rl))>q(zi,pa(zi)) -+ const.
=1

K
Z [ log q(z;|pa xl))>q(mi’pa(zi)) — (log p (z;|pa (‘ri))>q(:vi,pa(a:i)):| +
1

<.
Il

I
] =

(KL(q(s|pa (z;))|p(xi|pa (i) 4 (pa(e:)) + const.
1

.
Il
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Maximum likelihood learning

Maximum likelihood BN training and counting

The minimal Kullback-Leibler setting, and that which corresponds to Maximum
Likelihood, is therefore

p(zilpa (zi)) = q(zi|pa (z;))

In terms of the original data, this is

p( - S’pa xz - t

i Mz
—
=
X

3
I
<.

xjEpa(z;)

The table entry p(z;|pa(z;)) can be set by counting the number of times the state
{z; = s,pa(x;) =t} occurs in the dataset (where t is a vector of parental states).
The table is then given by the relative number of counts of being in state s
compared to the other states s/, for fixed joint parental state t.
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Maximum likelihood learning

ML learning, more generally, requires:
» Network structure specified

» Complete training data L &
» CAD
Training data D has the form:
E[] B{] A[l] C[I]] -
X X X X
D =
X X X X
E[M] B[M] AIM] C[M]]
Maximum likelihood learning
Assume i.i.d. data samples D, we have
o &>
P(D|©)= [ [P(E[m],B[m],Alm].C[m]: ©)
P(Em[ ]:0)
= ml:
P(B[m]:®)

_P(A[m] |B[Mm],E[m]: ®)

o Ep\ /B[] ci]
| __P(C [m]|A[m]: ©) y } 3
EMm] \Bm \ (M)
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Maximum likelihood learning

Generalizing for any Bayesian network:

P(DIO)=[ TP (x,Im].....x,[m]: ©)

= [ [| [P [m]lPa[m]:©,)

i T

= | | P(DI®)

With complete data, parameter learning for a Bayesian
network decomposes into independent estimation (learning)
problems, one for each parameter ;

33

Summary: Maximum likelihood learning

» assumes uniform priors
ok for large data sets
» either sets tables from sample statistics of the empirical
distribution
» ...or chooses a parameterized family of models to describe the
data and
write down likelihood of the data as a function of the parameters
write down derivative of the log likelihood w.r.t. each parameter
find the parameter values such that the derivatives are zero
may be hard/impossible; computational optimization techniques help

If only small data sets available or if we have additional knowledge, we
need to place a prior on the tables = Bayesian learning approach
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Bayesian Belief Net training

We continue with the Asbestos, Smoking, Cancer scenario,

p(a,c,s) = p(cla, s)p(a)p(s)

and a set of visible observations, V = {(a", s",c"),n=1,...,N}. With all
variables binary we have parameters such as

pla=1|0,) =04, plc=1la=0,s=1,0,) =%
The parameters are

0,0 0,1 p1,0 pl1,1
60«708790 7007 7907 7007

9(‘.

In Bayesian learning of BNs, we need to specify a prior on the joint table entries.
Since in general dealing with multi-dimensional continuous distributions is
computationally problematic, it is useful to specify only uni-variate distributions in
the prior. As we show below, this has a pleasing consequence that for i.i.d. data
the posterior also factorises into uni-variate distributions.
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Global parameter independence

A convenient assumption is that the prior factorises over parameters. For our
Asbestos, Smoking, Cancer example, we assume

P(0a,0s,0:.) = p(0a)p(0s)p(0.)

Assuming the data is i.i.d., we then have the joint model

P04, 05,0, V) = p(0.)p(05)p(0.) Hp(an‘ea)p(snlesw(cnbna a”,0.)

Learning then corresponds to inference of

p(V)0a; 0s,6c)p(0a,05,0c) _ p(V|0a, b5, 0c)p(0a)p(0s)p(6e)
)

P(04,05,0.|V) = V) = (v

The posterior also factorises, since

p(ea; 087 QL‘V) X p(em 037 967 V)

= {p(@a) Hp(a”|9a)} {p(@s) Hp(5n|08)} {p(@c) Hp(cn|5n> a”, 06)}

X p(9a|Va)p(es|vs)p(ec|Vc)
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Local parameter independence

If we further assume that the prior for the table factorises over all states a, c:

p(0e) = p(02°)p(0:°)p(02 )p(A2)

then the posterior

p(0c|Ve) < p(Vel0e)p(00°)p(02))p(62 )p(8:)
_ [gg,ow(a=078=0) p(QS’O) [08,1]11(@:075:1)1)(08,1)

-~

xp(62°(V.) xp(021Ve)
t(a=1,s=0 f(a=1,s=1

x 1T o) [ o
cxp(a?)\vc) xp(02"|Ve)

so that the posterior also factorises over the parental states of the local conditional
table.

37
Using a Beta prior
P(6a) = B (Bulta, ) = me (1 0,)%

for which the posterior is also a Beta distribution:
P(0a|Va) = B (Ou|lag +H(a=1),8, + 1 (a=0))
The marginal table is given by

a, +H(a=1)
ot E@=1)+Bot+E(@=0)

p(a = 1|Va) = /9 p(ea‘va)ea =

Corresponds in this case to adding ‘pseudo counts’ to the data.

hyperparameters
The prior parameters oy, 3, are called hyperparameters. If one had no preference,
one would set o, = B = 1.
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Summary: Learning Parameters

Estimation relies on sufficient statistics

Maximum-likelihood (estimation) (ML/MLE)
» standard (non-bayesian) statistical learning
» useful for large data sets, where priors get irrelevant
Bayesian parameter learning
» Include prior probabilities, useful when data sets smaller
» Prediction is standard Bayesian inference

MLE vs. Bayesian learning
» Both are asymptotically equivalent and consistent

» Both can be implemented in an on-line manner by accumulating
sufficient statistics
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Outlook

Next week:

Learning with missing data (hidden variables)
» Expectation Maximization

Learning network structure

» PC (local search)
» scoring (global search)
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