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Learning Bayesian networks
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Known Structure, Complete Data
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Network structure is specified, assuming a distribution model, the 
learner needs to estimate its parameters

Learner

 E, B, A
<Y,N,N>
<Y,N,Y>
<N,N,Y
>
<N,Y,Y>
      .
      .
<N,Y,Y>

Learning as inference over variables

For a distribution p(x|!) and data X={x1,...,xN}, learning corresponds 

to inferring the parameter ! that best explains the data X. Using Bayes:

posterior p(!|X) = likelihood p(X|!) * prior p(!) / evidence p(X)

‣ Bayesian methods: examine posterior p(!|x) ∝ p(X|!) p(!). This 

gives rise to a distribution over !.

‣ Maximum a posteriori: !MAP=argmax! p(!|X)

‣ Maximum likelihood: Under a flat prior p(!)=const. the MAP 

solution is equivalent to setting ! to the value that maximizes the 

likelihood of observing the data:  !ML=argmax! p(X|!)
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Maximum Likelihood learning

‣ Assume uniform priors (ok for large data sets)
‣ Either set tables from sample statistics of the empirical 

distribution
‣ ... or choose a parameterized family of distribution models to 

describe the data and
- write down likelihood of the data as a function of the parameters
- write down derivative of the log likelihood w.r.t. each parameter
- find the parameter values such that the derivatives are zero
- may be hard/impossible; computational optimization techniques help 

If only small data sets available or if we have additional knowledge, we 
need to place a prior on the tables ➔ Bayesian learning approach

In both cases, only local information need to be considered.
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Known Structure, Incomplete Data
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Network structure is specified but data contains missing values, 
learner need to consider assignments to missing values
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Incomplete Data

Data is often incomplete, i.e. some variables of interest do not have 
assigned values.  Two possible reasons:

Missing values:
‣ Some variables are unobserved in some instances

‣ Missing systematically or missing at random?
Hidden („latent“) variables:
‣ Some variables are never observed in the data

‣ We might not even know they exist

Two problems:
‣ parameter estimation (values of hidden var‘s ??)

‣ structure search (existence of hidden var‘s ??)
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Hidden (Latent) Variables

Why should we care about unobserved variables?

X1 X2 X3

H

Y1 Y2 Y3

X1 X2 X3

Y1 Y2 Y3

17 parameters 59 parameters

1 1 1

8

2 2 2

1 1 1

8 16 32

Latent var‘s reduce number of required param‘s, but 
complicate the learning problem



Maximum Likelihood
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Maximum Likelihood

For hidden variables h, and visible variable v we still have a well defined
likelihood

p(v|✓) =
X

h

p(v, h|✓)

Our task is to find the parameters ✓ that optimise p(v|✓).
This task is more numerically complex than in the case when all the variables
are visible.

Nevertheless, we can perform numerical optimisation using any routine we
wish to find ✓.

The Expectation-Maximisation algorithm is an alternative optimisation
algorithm that can be very useful in producing simple and elegant updates for
✓ that converge to a local optimum.

Just to hammer this home: We don’t ‘need’ the EM algorithm, but it can be
very handy.
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Expectation Maximization (EM)

A general purpose method for learning from incomplete data

Idea:
‣ If we had all variables, we could estimate the parameters

‣ Let‘s pretend we know all parameters of the model

‣ We „complete“ counts using probabilistic inference from the model, 
based on our current parameter assignment

‣ Then use completed variables as if real, to re-estimate (refit) the 
parameters to the data thereby infering distr. over hidden var‘s

‣ Iterate this until parameter(s) or likelihood converge
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Expectation Maximization (EM)
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Expectation Maximization (EM)

Training
Data
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Variational Expectation Maximization (V-EM)
Variational EM
The key feature of the EM algorithm is to form an alternative objective function
for which the parameter coupling e↵ect discussed is removed, meaning that
individual parameter updates can be achieved, akin to the case of fully observed
data. The way this works is to replace the marginal likelihood with a lower bound
– it is this lower bound that has the decoupled form.

Single observation
Consider the Kullback-Leibler divergence between a ‘variational’ distribution q(h|v)
and the parametric model p(h|v, ✓):

KL(q(h|v)|p(h|v, ✓)) ⌘ hlog q(h|v)� log p(h|v, ✓)iq(h|v) � 0

Using Bayes’ rule, p(h|v, ✓) = p(h, v|✓)/p(v|✓) and the fact that p(v|✓) does not
depend on h,

log p(v|✓) � �hlog q(h|v)iq(h|v)
| {z }

Entropy

+ hlog p(h, v|✓)iq(h|v)
| {z }

Energy

The bound is potentially useful since the energy is similar in form to the fully
observed case, except that terms with missing data have their log likelihood
weighted by a prefactor.
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Variational Expectation Maximization (V-EM)
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Expectation Maximization (EM)

Algorithm:
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Expectation Maximization (EM)

Example:
A one-parameter one-state example
The model is on a single visible variable v and single two-state hidden variable
h 2 {1, 2}. We define a model p(v, h) = p(v|h)p(h) with

p(v|h, ✓) = 1p
2⇡�

2
e

� 1
2�2 (v�✓h)2

and p(h = 1) = p(h = 2) = 0.5. For an observation v = 2.75 and �

2
= 0.5 our

interest is to find the parameter ✓ that optimises the likelihood

p(v = 2.75|✓) = 1

2

p
⇡

X

h=1,2

e

�(2.75�✓h)2

The lower bound, as a function of ✓ and q (we need only say q(h = 2) since
q(h = 1) = 1� q(h = 2)) is

log p(v = 2.75|✓) � LB(q(h = 2), ✓)

LB(q(h = 2), ✓) ⌘ �q(h = 1) log q(h = 1)� q(h = 2) log q(h = 2)

�
X

h=1,2

q(h) (2.75� ✓h)

2
+ log 2

A one-parameter one-state example
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Figure: (a): The log likelihood. (b): Contours of the lower bound LB(q(h = 2), ✓). For
an initial choice q(h = 2) = 0.5 and ✓ = 1.9, successive updates of the E (vertical) and M

(horizontal) steps are plotted. (c): Starting at ✓ = 1.95, the EM algorithm converges to

a local optimum.



Remarks:

‣ EM is easy to implement and can make large jumps in parameter space, 
particulary in initial iterations

‣ EM monotonically increases the marginal likelihood
(not only the lower bound)

‣ Convergence of EM can be slow, particularly when
#missing observations > #visible observations
- often combined with gradient-based methods to improve convergence

‣ EM can run into local optimum, solution often depends on initialization

‣ Straightforward application of EM training to learn the CPTs in a 
Bayesian network under missing data (see Barber Chapt. 11)
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Expectation Maximization (EM)
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Unknown Structure, Complete Data
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Network structure is not specified, learner needs to select graph 
structure & estimate parameters
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Structure Learning
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Structure Learning

Lack of a priori independence knowledge
We assume we have a dataset, but don’t know the independence assumptions we
should make.

No missing data
For simplicity, we assume that the dataset is complete (there are no missing
observations).

(almost) Complete ignorance
One could also consider the case of knowing some conditional independence
assumptions, but not all. For simplicity, we assume that none are known.

Di�culty
Number of DAGs on N nodes is at least

NY

n=1

2

n

= 2

N(N�1)/2

and less than N !2

N(N�1)/2 (the N ! comes from the node ordering, but this will
overcount). The exact number is bigger than 10

18 for N = 10.
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Why Struggle for Accurate Structure?

Increased parameters to be 
estimated
Wrong assumptions about 
domain structure

Cannot be compensated for by 
fitting parameters
Wrong assumptions about 
domain structure

Earthquake Alarm Set

Sound

Burglary Earthquake Alarm Set

Sound

Burglary

Earthquake Alarm Set

Sound

Burglary

Truth

Adding an arcMissing an arc



A Bayesian Network represents a causal model, i.e. finding a graph 
structure means to detect causal structure
‣ but, statistical analysis is driven by correlation, not causation!

How to detect cause-effect relationships?
‣ cues used by humans: temporal and statistical (cond. indep.)
‣ careful manipulations of variables to test effects (experiments)

Normally not possible from mere observation in an environment!
‣ can look for patterns that are characteristic of causal relations
‣ but problems (cf. Pearl (2009), Chapt. 2): 

- latent variables, parents (Markov condition), spurious associations, non-temporal 
data, non-uniqueness of structure, minimal models, stability of distributions, etc. 
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How to learn a causal structure?

Recall: There are three types of causal structures in a graph, associated 
with probabilistic conditional independence relations
‣ „valves“ that can be either open or closed to block a path, implying 

conditional independence 

‣ „sufficient“ causality to explain the observations (causes for effects)
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Blocked if 
W is given

Sequential, chain Divergent, fork Convergent, collider, 
inverse fork

Blocked if
W is given

Blocked if W is 
not given

How to learn a causal structure?
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Need heuristic search

Global search
Traverse space of possible structures looking for high-scoring structures

‣ operators make small changes to structure (e.g. add/remove edges)

‣ Greedy hill-climbing, Best first search, Simulated Annealing

Local Search
Start with a network (empty vs. best tree vs. random)
‣ operators evaluate possible local changes and apply change based on 

maximum score
‣ stop if no modification improves score, but beware of pitfalls!

In practice, search is relatively fast (~100 vars in ~2-5 min)
Adding randomness to search is critical

PC algorithm: Learning the skeleton
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PC algorithm: Learning the skeleton

Removing links

Start with a complete skeleton G

Test all pairs x??y? If an x and y pair are deemed independent then the link
x� y is removed from G.

In the next round, for the remaining graph, one examines each x� y link and
conditions on a single neighbour z of x. If x??y|z then remove the link x� y.

At each subsequent round the number of neighbours in the conditioning set is
increased by one and all x??y|Z are tested.

Storing conditions of independence
Whenever a (conditional) independence is found x??y|Z, then these conditioning
variables are stored in a set S

x,y

= Z (this could be the empty set).



Assessing independence hypotheses

25

Assessing Empirical Independence

Given a dataset of observations, how can we decide if two variables x and y are
independent?

Mutual Information
We can form the empirical distributions p(x) and p(y) and p(x, y). Define the
mutual information

MI ⌘ KL(p(x, y)|p(x)p(y)) � 0

If MI = 0 then x and y are independent.

Problem
Since we formed p(x) and p(y) based on a set of observations, it’s likely that, even
for data sampled from a distribution for which x??y, then the MI will not be zero.
The classical approach is to use a hypothesis test, assuming that MI is chi-square
distributed. This doesn’t work well for small numbers of observations.
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MI ⌘ KL(p(x, y)|p(x)p(y)) � 0

If MI = 0 then x and y are independent.

Problem
Since we formed p(x) and p(y) based on a set of observations, it’s likely that, even
for data sampled from a distribution for which x??y, then the MI will not be zero.
The classical approach is to use a hypothesis test, assuming that MI is chi-square
distributed. This doesn’t work well for small numbers of observations.

Bayesian Empirical Independence test
A Bayesian approach to testing for independence can be made by comparing
the likelihood of the data under the independence hypothesis, versus the
likelihood under the dependent hypothesis.

Which model has the higher likelihood will inform us about independence.

Need to use a Bayesian approach to avoid overfitting (otherwise the
dependence model will always win).

Independence

p(X ,Y|H
indep

)
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n

y
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✓

x

✓
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Dependence

p(X ,Y|H
dep
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x,y

N

PC algorithm
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1. round (c-l):

2. round (m-o):

3. round (p,q):

terminate since no nodes with more than 3 neighbors left
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Skeleton Orienting

z

x

y

x??y|; )
z

x

y

If x is (unconditionally) independent of y, it must be that z is a collider since
otherwise marginalising over z would introduce a dependence between x and y.

z

x

y

x??y|z )
z

x

y

If x is independent of y conditioned on z, z must not be a collider. Any other
orientation is appropriate.

Skeleton orienting
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Skeleton Orienting
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Figure: Skeleton orientation algorithm. (a): The skeleton along with

S

x,y

= ;, S
x,w

= ;, S
z,w

= y, S

x,t

= {z, w} , S
y,t

= {z, w}. (b): z 62 S

x,y

, so form

collider. (c): t 62 S

z,w

, so form collider. (d): Final partially oriented DAG. The

remaining edge may be oriented as desired, without violating the DAG condition.
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Network scoring

E B

A

E

B

A
E

B A

Idea: define scoring function that evaluates how well a 
structure matches the data and optimize structure to 
maximize this score

 E, B, A
<Y,N,N>
<Y,Y,Y>
<N,N,Y>
<N,Y,Y>
      .
      .
<N,Y,Y>

Network scoring

30

Network Scoring

Local versus global methods
The PC algorithm is local in the sense that links are added based on the evidence
for a link on the basis of local data. In a global method, a link is added based on
how well that resulting distribution fits the data.

A probabilistic approach

In a probabilistic context, given a model structure M , we wish to compute
p(M |D) / p(D|M)p(M).

We have to first ‘fit’ each model with parameters ✓, p(V|✓,M) to the data D.
If we do this using Maximum Likelihood alone, with no constraints on ✓, we
will favour that model M with the most complex structure.

This can be remedied by using the Bayesian technique

p(D|M) =

Z

✓

p(D|✓,M)p(✓|M)
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We have to first ‘fit’ each model with parameters ✓, p(V|✓,M) to the data D.
If we do this using Maximum Likelihood alone, with no constraints on ✓, we
will favour that model M with the most complex structure.
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Network Scoring Example

x8

x3 x4

x1 x2

x6 x7

x5

(a)

x8

x3 x4

x1 x2

x6 x7

x5

(b)

x8

x3 x4

x1 x2

x6 x7

x5

(c)

Figure: Learning the structure of a Bayesian network. (a): The correct structure in

which all variables are binary. The ancestral order is x2, x1, x5, x4, x3, x8, x7, x6. The

dataset is formed from 1000 samples from this network. (b): The learned structure

based on the PC algorithm using the Bayesian empirical conditional independence test.

Undirected edges may be oriented arbitrarily (provided the graph remains acyclic). (c):

The learned structure based on the Bayes Dirichlet network scoring method (assuming we

know the ancestral order and have maximally two parents).
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Learning in Practice:  Alarm domain
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Learn both structure & params



Network structure is not specified and data contains missing values, need 
to select graph structure, estimate parameters, assign missing values
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Unknown Structure, Incomplete Data
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Structural EM

Idea: 

‣ Instead of optimizing the real score, find decomposable 
alternative score

‣ Use current model to help evaluate new structures

Outline:
‣ Perform combined search in (Structure, Parameters)-space
‣ At each iteration, use current model for finding either:

- better scoring parameters: “parametric” EM step
- better scoring structure: “structural” EM step
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Training
Data

Expected Counts
N(X1)

N(X2)
N(X3)
N(H, X1, X1, X3)
N(Y1, H)
N(Y2, H)
N(Y3, H)

Computation

X1 X2 X3

H

Y1 Y2 Y3

X1 X2 X3

H

Y1 Y2 Y3+

Score 
&

 Parameterize

X1 X2 X3

H

Y1 Y2 Y3

Reiterate

N(X2,X1)
N(H, X1, X3)
N(Y1, X2)
N(Y2, Y1, H)

X1 X2 X3

H

Y1 Y2 Y3

Summary: Statistical Learning

Learn network structure & parameters from data

Parameter Estimation
‣ Maximum-likelihood estimation (MLE)
‣ Bayesian estimation when priors available

Model Selection (Structure learning)
‣ Local tests of independence
‣ Global structure search as score-based optimization

Learning from incomplete data (missing observations, hidden var‘s)
‣ Expectation Maximization (EM)
‣ Combined structure & parameter search
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gentsSociable

Want to work with us?

Manifold sources of uncertainty:

‣ complex communication system (language, 
nonverbal behavior)

‣ noisy recognition and processing problems

‣ vague & underspecified meanings, implied meaning
‣ implicit communication, underlying intentions

‣ dynamic nature of interpersonal coordination
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Applying advanced A.I. methods and 
cognitive models to increase 
interaction abilities of 
technical systems


