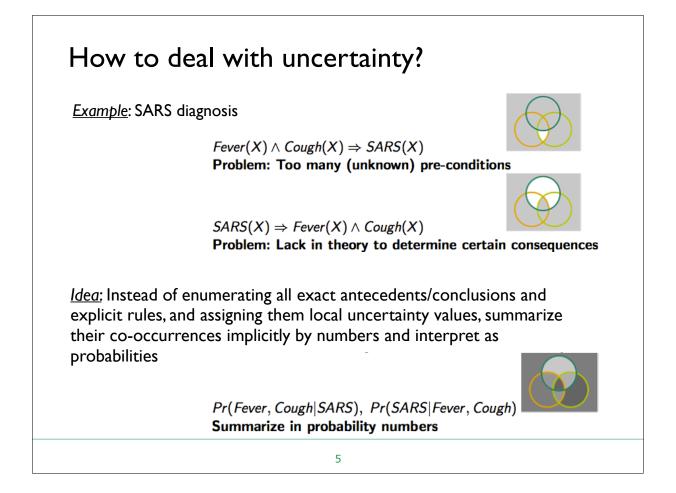
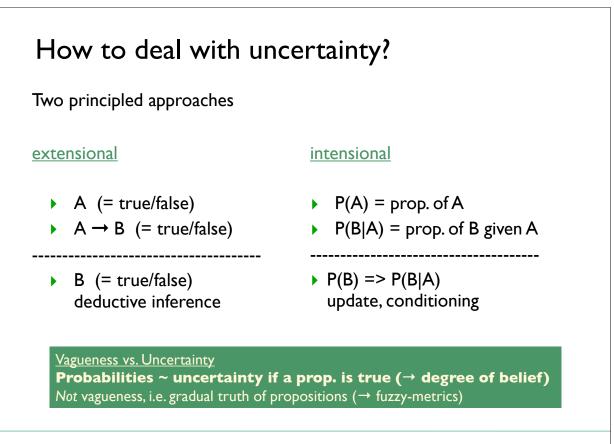
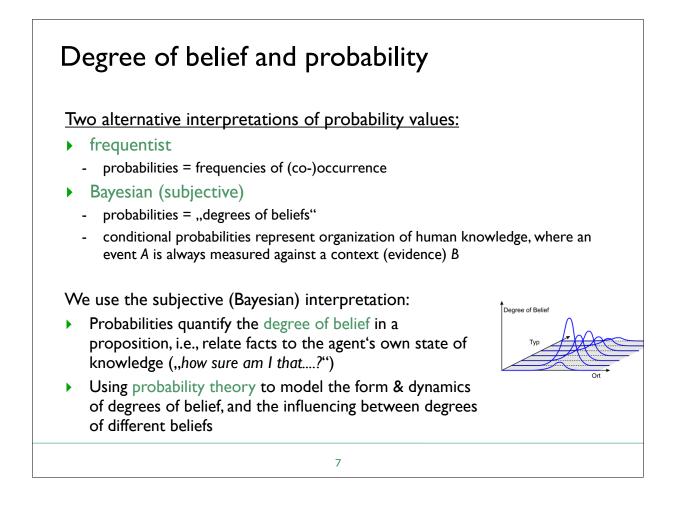


The need to cope with uncertainty
 Many causes for uncertainty in reasoning and decision-making incomplete knowledge, "invisible facts" environment not fully observable and non-deterministic state of the world might have changed already actions might not have desired effects reliance on default assumptions
 non-adequate formalism (calculus), trading adequacy for tractability frame problem, qualification problem, ramification problem modularity (locality and detachment) of logical inference limited horizon in planning, bounded rationality cumulating uncertainties when drawing inferences combinatorial explosion when accounting for contingencies and indeterminacy
3

How to deal with uncertainty?


Two principled approaches:


- <u>extensional</u> (rule-based): assign certainties locally to formulae and update during inference
 - computationally convenient, semantically sloppy


rule $A \xrightarrow{x} B$ reads as follows: "If you see the certainty of A undergoing a change δ_A , then regardless of what other things the knowledge base contains and regardless of how δ_A was triggered, you are given an unqualified license to modify the current certainty of B by some amount δ_B , which may depend on x, on δ_A , and on the current certainty of B."[†]

- intensional (model-based): assign certainties globally to possible worlds which can be more or less exactly specified
 - computationally clumsy, semantically clear

Judea Pearl, Probabilistic reasoning in intelligent systems, Morgan Kaufmann, 1988.

Degree of belief and probability calculus

Example:

- A = "Ted Kennedy will seek nomination for president in 2012"
- Pr(A|K) ~ agent's subjective (degree of) belief in the event described by A, given an available body of knowledge K
- ▶ may change entirely when new evidence K' arrives!
- how to update the degree of belief in A, conditioned upon knowledge K and K' ?

Degrees of belief obey the laws of probability theory, i.e. can use probability calculus for modeling and updating degrees of belief

ropo	= state o sitional vai variable ass	riable is	known	ω
	s = worlds every sente			$Mous(\alpha) = \{\omega : \omega \vdash \alpha\}$
	et of world	•		
		•		ent
S	et of world	s = (ato	mic) ev	ent
S World	et of world	s = (ato	mic) ev	ent $Mods(lpha \wedge eta) = Mods(lpha) \cap Mods(lpha)$
S <u>World</u> w1	Earthquake	s = (ato	mic) ev	ent $Mods(lpha \wedge eta) = Mods(lpha) \cap Mods(lpha)$
S World w1 w2	Earthquake	s = (ato Burglary true true	Mic) ev	$Mods(\alpha \land \beta) = Mods(\alpha) \cap Mods(\alpha)$ $Mods(\alpha \lor \beta) = Mods(\alpha) \cup Mods(\alpha)$
World w1 w2 w3	Earthquake true true true	s = (ato Burglary true true false	Alarm true false true	ent $Mods(lpha \wedge eta) = Mods(lpha) \cap Mods(lpha)$
S World w1 w2 w3 w4	Earthquake true true true true true	S = (ato Burglary true true false false	Alarm true false true false	$Mods(\alpha \land \beta) = Mods(\alpha) \cap Mods(\alpha)$ $Mods(\alpha \lor \beta) = Mods(\alpha) \cup Mods(\alpha)$
World w1 w2 w3 w4 w5	Earthquake true true true true false	S = (ato Burglary true true false false true	Alarm true false true false true	$Mods(\alpha \land \beta) = Mods(\alpha) \cap Mods(\alpha)$ $Mods(\alpha \lor \beta) = Mods(\alpha) \cup Mods(\alpha)$

important prope	rties of sentences		
• consistent	/ satisfiable	$Mods(\alpha) \neq \{\}$	
 valid 		$Mods(\alpha) \neq \Omega$	$\models \alpha$
equivalentmutually ex	clusive	$Mods(\alpha) = Mods(\alpha)$ $Mods(\alpha) \cap Mods(\alpha)$ $Mods(\alpha) \cup Mods(\alpha)$	$(\beta) = \{$

Monotonicity of logical reasoning

World	Earthquake	Burglary	Alarm
w1	true	true	true
w2	true	true	false
w3	true	false	true
w4	true	false	false
w5	false	true	true
w6	false	true	false
w7	false	false	true
w8	false	false	false

$$\alpha : (Earthquake \lor Buglary) \Rightarrow Alarm$$
$$Mods(\alpha) = \{\omega_1, \omega_3, \omega_5, \omega_7, \omega_8\}$$

$$\beta: Earthquake \Rightarrow Burglary$$

$$Mods(\alpha \land \beta)$$

= $Mods(\alpha) \cap Mods(\beta)$
= { $\omega_1, \omega_5, \omega_7, \omega_8$ }

Monotonicity

learning new information can only rule out worlds!

- if a implies c, then (a and b) will imply c as well
- especially problematic in light of qualification problem

11

+

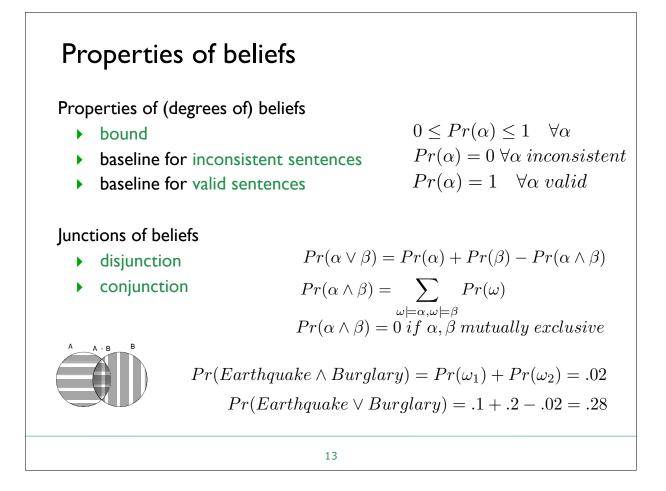
Modeling degrees of belief as probabilities

Degree of belief or probability of a world

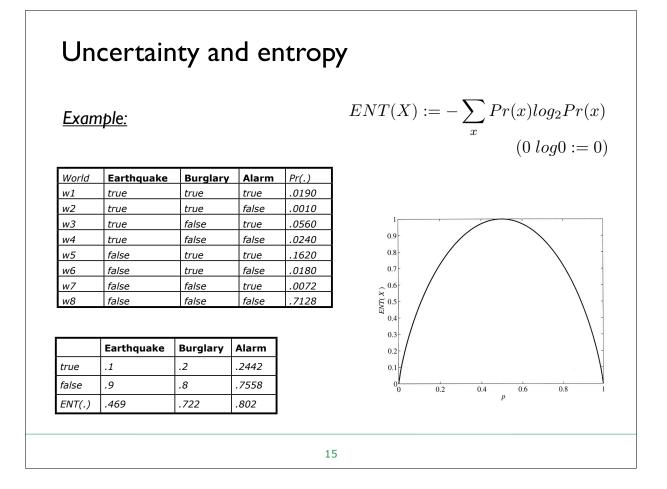
 in fuzzy logic, interpreted as possibility/ vagueness (not the view adopted here)

Degree of	belief or	probability	of a sentence
-----------	-----------	-------------	---------------

State of belief or joint probability distribution


World	Earthquake	Burglary	Alarm	Pr(.)
w1	true	true	true	.0190
w2	true	true	false	.0010
w3	true	false	true	.0560
w4	true	false	false	.0240
w5	false	true	true	.1620
w6	false	true	false	.0180
w7	false	false	true	.0072
w8	false	false	false	.7128

$$Pr(\alpha) := \sum_{\omega \vDash \alpha} Pr(\omega)$$


 $Pr(\omega)$

$$\sum_{\omega_i} \Pr(\omega_i) = 1$$

$$Pr(Earthquake) = .1$$

 $Pr(Burglary) = .2$
 $Pr(Alarm) = .2442$

Degree of belief and probability calculus Given an agent's belief state (= degree of beliefs about all possible values of a variable X) its uncertainty about the outcome of the event described by X can be quantified using the (Shannon) entropy: $ENT(X) := -\sum_{x} Pr(x) log_2 Pr(x)$ $(0 \ log 0 := 0)$ Minimum entropy Maximum entropy ENT(A)=0 ENT(A)=I Pr(a) Pr(a) I 0.5 0 а 0 0 Information theory (Shannon): measure of the amount of information that is missing before reception, expected amount of information in a message 14

Updating beliefs β Evidence = a piece of information known to hold $Pr(.) \rightarrow Pr(.|\beta)$ \rightarrow requires to update state of belief such that worlds that contradict evidence $Pr(\beta|\beta) = 1$ get zero prob $Pr(\omega|\beta) = 0 \quad for \ all \ \omega \vDash \neg \beta$ $\sum_{\omega\vDash\beta} \Pr(\omega|\beta) = 1$ normalized $Pr(\omega) = 0 \rightarrow Pr(\omega|\beta) = 0$ retain impossible worlds $\frac{Pr(\omega)}{Pr(\omega')} = \frac{Pr(\omega|\beta)}{Pr(\omega'|\beta)}$ worlds consistent with evidence and positive prob. retain relative $\forall \omega, \omega' \vDash \beta, \Pr(\omega) > 0, \Pr(\omega') > 0$ beliefs in possible worlds 16

Updating beliefs

 \rightarrow update old state of beliefs through **conditioning** on evidence β

$$Pr(\omega|\beta) := \begin{cases} 0 & \omega \models \neg \beta \\ \frac{Pr(\omega)}{Pr(\beta)} & \omega \models \beta \end{cases}$$

new belief state = old belief state, normalized with old belief in new evidence

Earthquake	Burglary	Alarm	Pr(.)	
true	true	true	.0190	
true	true	false	.0010	
true	false	true	.0560	
true	false	false	.0240	Alarm=true
false	true	true	.1620	
false	true	false	.0180	
false	false	true	.0072	
false	false	false	.7128	

Earthquake	Burglary	Alarm	Pr(. Alarm)
true	true	true	.0190/.2442
true	true	false	0
true	false	true	.0560 /.2442
true	false	false	0
false	true	true	.1620 /.2442
false	true	false	0
false	false	true	.0072 /.2442
false	false	false	0

 $Pr(Burglary) = .2 \rightarrow Pr(Burglary|Alarm) = .741$

17

Updating beliefs

<u>More efficient</u>: direct update of a *local* sentence from new evidence through **Bayesian conditioning**

$$Pr(\alpha|\beta) = \frac{Pr(\alpha \wedge \beta)}{Pr(\beta)}$$

follows from the following commitments:

- worlds that contradict evidence have zero prob
- worlds that have zero prob continue to have zero prob
- worlds that are consistent with evidence and have positive prob will maintain their relative beliefs

<u>Note</u>: Bayesian conditioning is nothing else than application of the basic product rule

$$Pr(\alpha \land \beta) = Pr(\alpha|\beta) \cdot Pr(\beta)$$

Updating beliefs				
Example: State of belief from above		Pr(Earthquake)	Pr(Burglary)	Pr(Alarm)
<u>Example</u> : State of belief from above	true	.1	.2	.2442
Conditioning on first evidence:		Pr(E Alarm)	Pr(B Alarm)	Pr(A Alarm)
Alarm=true	true	.307	.741	1
Conditioning on second evidence: Earthquake=true	true	Pr(E A∧E)	Pr(B A∧E)	Pr(A A∧E)
→ <u>Note</u> : belief dynamics under incom consequence of the initial sta	ing ev	idence is a		-
•				

Updating beliefs

Updating the belief state is possible, but computationally costly as soon as worlds become complex, i.e. many variables with large domains

- need to sum over all worlds consistent with new evidence, eventually need joint distribution to have prob for any combination of evidence
- no.'s of worlds exponential in no.'s of variables, so is the joint distribution
 - O(dn) with n random variables and domain size d

<u>Idea</u>: Exploit independencies in the world, i.e. assumptions that certain variables have nothing to do with each other, and learning about one doesn't change (degree of) belief in the other

 "our most basic, robust, and commonly available knowledge about uncertain environments" -- especially a specific kind of independence...