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Beliefs, Evidence & Independence

Reasoning and Decision-Making 
under Uncertainty

Degree of belief or probability of a world

Degree of belief or probability of a fact (sentence)

State of belief or joint probability distribution

2

Pr(�)

Pr(�) :=
X

!✏↵

Pr(⇥)

World Earthquake Burglary Alarm Pr(.)

w1 true true true .0190

w2 true true false .0010

w3 true false true .0560

w4 true false false .0240

w5 false true true .1620

w6 false true false .0180

w7 false false true .0072

w8 false false false .7128

X

�i

Pr(�i) = 1

Pr(Earthquake) = .1
Pr(Burglary) = .2
Pr(Alarm) = .2442

Recap: Degree of belief as probability



Recap: Properties of degrees of beliefs

Properties
‣ bound
‣ baseline for inconsistent sentences
‣ baseline for valid sentences

Junctions of beliefs
‣ disjunction
‣ conjunction
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0  Pr(�)  1 8�

Pr(�) = 1 8� valid

Pr(�) = 0 8� inconsistent

Pr(� _ ⇥) = Pr(�) + Pr(⇥)� Pr(� ^ ⇥)

Pr(� ^ ⇥) = 0 if �, ⇥ mutually exclusive

Pr(Earthquake _Burglary) = .1 + .2� .02 = .28

Pr(Earthquake ^Burglary) = Pr(�1) + Pr(�2) = .02

Pr(↵ ^ �) =
X

!|=↵,!|=�

Pr(!)

Recap: Updating beliefs

new evidence       ➔  update state of beliefs such that
‣ worlds that contradict evidence get zero prob.
‣ worlds that had zero prob continue to have zero prob.
‣ worlds consistent with evidence and positive prob. maintain relative beliefs

conditioning of belief in a world     :

Bayesian conditioning of belief in event    :

Belief dynamics under incoming evidence is a consequence of the state 
of beliefs one had
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�

Pr(⇥|�) :=

(
0 ⇥ ✏ ¬�
Pr(⇥)
Pr(�) ⇥ ✏ �

Pr(�|⇥) = Pr(�^⇥
Pr(⇥)

!

↵



Repeated application of Bayes Conditioning gives chain rule

If events     are mutually exclusive and exhaustive, we can apply case 
analysis or law of total probability to compute a belief in    :

‣ compute belief in    by adding up beliefs in exclusive cases 
that cover the conditions under which    holds

Chain rule & total probability
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Pr(�1 � �2 � ... � �n) = Pr(�1|�2 � ... � �n)Pr(�2|�3 � ... � �n)...P r(�n)

�i

↵

Pr(�) =
P

i Pr(� � ⇥i) =
P

i Pr(�|⇥i)Pr(⇥i)

↵

↵ ^ �i↵

„marginalizing over beta“
„Pr(a) marginal prob. of A“

Proposed a solution to the problem of 
"inverse probability"
‣ published posthumously by R. Price in Phil. 

Trans. of Royal Soc. Lond. (1763)

Bayes' theorem
‣ expresses posterior (after evidence E is 

observed) of a hypothesis H in terms of the 
priors of H and E, and the prob of E given H

‣ subjective interpretation implies that 
- strong beliefs are confirmed more by 

consistent evidence
- evidence has a stronger effect if more 

unlikely before being observed
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Thomas Bayes (1702–1761) 

Pr(�|⇥) = Pr(⇥|�)P (�)
Pr(⇥)



Bayes rule

Excercise:  
A patient has been tested positive for a disease D, which one in every 
1000 people has. The test T is not reliable (2% false positive rate and 5% 
false negative rate).  What is our degree of belief Pr(D|T)?
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Pr(D) = 1/1000

Pr(T |¬D) = 2/100 Pr(¬T |¬D) = 98/100

Pr(¬T |D) = 5/100 Pr(T |D) = 95/100
)
)

P (D|T ) = 95/100·1/1000
Pr(T )

P (T ) = Pr(T |D)Pr(D) + Pr(T |¬D)Pr(¬D)

Pr(D|T ) = 95
2093 = 4.5%

Soft & hard evidence

Often useful to distinguish two types of evidence
‣ hard evidence: information that some event has occurred
‣ soft evidence: unreliable hint that an event have may occurred

- neighbor with hearing problem tells us he had heard the alarm trigger
- can be interpreted in terms of noisy sensors

How to update in light of soft evidence? Two methods:

1. new state of beliefs Pr‘ = old beliefs + new evidence („all things 
considered“) ➔ bayesian conditioning leads to Jeffrey‘s rule: 
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Pr0(�) = qPr(�|⇥) + (1� q)Pr(�|¬⇥) with Pr0(⇥) = q

Pr0
(�) =

P
i qiPr(�|⇥i) with qi exclusive and exhaustive



Soft & hard evidence

2. use strength of evidence, independent of current beliefs 
(„nothing else considered“)

‣ Definition: Odds of event: 
- states how many times we believe more in     than in      

‣ Definition: Bayes factor of the „strength“ of evidence:
- relative change induced on odds of 
- k=1: indicates neutral evidence

k=2: indicates evidence strong enough to double the odds of
k➔∞: hard evidence conforming   ,  k➔0: hard evidence against 

‣ update according to evidence    with known Bayes factor k:

9

O(�) := Pr(�)
Pr(¬�)

� ¬�

�
k := O0(�)

O(�)

�
� �

Pr�(�) = kPr(�)
kPr(�)+Pr(¬�)

�

Pr�(�) = kPr(�⇥⇥)+Pr(�⇥¬⇥)
kPr(⇥)+Pr(¬⇥)

(from def. of O) (together with Jeffrey‘s rule)

Soft evidence

Example: Murder with three suspects, 
investigator Rich has the following state of belief:
‣ O(killer=david) = Pr(david)/Pr(not david) = 2

new soft evidence is obtained that triples the odds of killer=david
‣ Bayes factor k=O‘(killer=david)/O(killer=david) = 3

➔  new belief in David being the killer:
‣ Pr‘(killer=david) = (3*2/3) / (3*2/3+1/3) = 6/7

simply the first statement (k; „nothing else considered“) can be used 
by other agents to update their belief according to 
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Killer Pr(.)

david 2/3

dick 1/6

jane 1/6

!1

!2

!3

�



Key observation: Full joint distribution or state of belief is sufficient to 
model uncertain beliefs and update them in face of any kind of evidence
‣ determines prob for every event given any combination of evidence
‣ that is, enables all kinds of probabilistic inferences

Unfortunately, the joint distribution is exponential and therefore costly
‣ O(dn) with n random variables and domain size d

Idea: Exploit independencies in the world, i.e. assumptions that certain 
variables have nothing to do with each other, and learning about one 
doesn‘t change (degree of) belief in the other
‣ „our most basic, robust, and commonly available knowledge about uncertain 

environments“
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Properties of beliefs

Independence

A given state of beliefs finds a belief independent of another belief iff

Equivalent definition (using product rule): 

Examples & properties:

‣ initial state of beliefs, as defined above:
- Pr(Earthquake)=.1   and   Pr(Earthquake | Burglary)=.1
- Pr(Burglary)=.2   and   Pr(Burglary | Earthquake)=.2

➔ Earthquake  and  Burglary are independent
➔ knowing one doesn‘t change degree of belief in the other

‣ independence is always symmetrical, but different from mutual 
exclusiveness (of events)
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Pr(�|⇥) = Pr(�) or Pr(⇥) = 0

Pr(� � ⇥) = Pr(�) · Pr(⇥)



Observation:  Independence is a dynamical notion
‣ Earthquake and Burglary get dependent with evidence about Alarm

- Pr(Burglary | Alarm)=.741   and   Pr(Burglary | Alarm∧Earthquake)=.253

➔ Earthquake changes the belief in Burglary  in presence of Alarm

‣ new evidence can make independent beliefs dependent, and vice 
versa!

Definition:
state of belief Pr finds    conditionally independent of    given event    iff

‣ conditional independence is always symmetric

Conditional Independence
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�

Pr(�|⇥ � ⇤) = Pr(�|⇤) or Pr(⇥ � ⇤) = 0

↵ �

Pr(� � ⇥|⇤) = Pr(�|⇤)Pr(⇥|⇤) or Pr(⇤) = 0

Example:
Given two noisy, unreliable sensors

Initial beliefs
‣ Pr(Temp=normal)=.80

‣ Pr(Sensor1=normal)=.76

‣ Pr(Sensor2=normal)=.68

After checking sensor1 and finding its reading is normal
‣ Pr(Sensor2=normal | Sensor1=normal) ~ .768   ➔ Sensor1 and Sensor 2 dependent

After observing that temperature is normal 
‣ Pr(Sensor2=normal | Temp=normal) = .80

‣ Pr(Sensor2=normal | Temp=normal, Sensor1=normal) = .80  ➔ cond. independent
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Conditional Independence

Temp sensor1 sensor2 Pr(.)

normal normal normal .576

normal normal extreme .144

normal extreme normal .064

normal extreme extreme .016

extreme normal normal .008

extreme normal extreme .032

extreme extreme normal .032

extreme extreme extreme .128



Conditional Independence

Is a special case of mutual information, which quantifies the impact of 
observing one variable on the uncertainty in another:

‣ non-negative
‣ zero iff X and Y are independent

Relation to entropy:

‣ with conditional entropy:

‣ Note:
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MI(X;Y ) :=
P

x,y

Pr(x, y)log2
Pr(x,y

Pr(x)Pr(y)

MI(X;Y ) := ENT (X)� ENT (X|Y ) = ENT (Y )� ENT (Y |X)

ENT (X|Y ) :=
P

y Pr(y)log2ENT (X|y)

ENT (X|y) := �
P

x

Pr(x|y)log
s

Pr(x|y)
ENT (X|Y ) � ENT (X)

Independence of (sets of) variables

Notation:  
independence between sets of variables X,Y, Z in a belief state Pr 
denoted as 

Example: 
‣ X={A,B}, Y={D,E}, Z={C}
‣                    denotes 4x2x4=32 different independent statements:

- A∧B  indep. of C given D∧E

- A∧¬B indep. of C given D∧E

- ..
- ..
- ¬A∧¬B indep. of ¬C given ¬D∧¬E
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IPr(X,Y,Z)

IPr(X,Y,Z)



It allows to decompose a joint distribution!
‣ Pr(Cavity,Catch,Toothache)    ➔ 23=8 worlds needed

= Pr(Tootha.,Catch|Cavity) Pr(Cavity)     (Product rule)
= Pr(Tootha.|Cavity) Pr(Catch|Cavity) Pr(Cavity)  (cond. ind. of Toothache & Catch 
given Cavity)                           ➔ 2+2+1=5 worlds needed

Common pattern: 
If a cause directly implies multiple effects, all of which are conditionally 
independent given the cause, then:

‣ the cause sufficiently „explains“ each effect, knowing about other effects 
doesn‘t change the belief in it anymore

‣ Naive Bayes model (also called Bayesian classifier): 
Bayes rule + presumed independence where there is no 
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Pr(Cause, E1, ..., En) = Pr(Cause)
Y

i

Pr(Ei|Cause)

Why is independence so neat?

Definition:   A Bayesian network for variables    is a pair (   ,   ) with
‣ Structure     : a directed acyclic graph with

- a set of nodes, one per random variable
- a set of edges representing direct causal influence between variables

‣ Parametrization    : a conditional probability table (CPT) for each 
variable (node) given its parents:
- Pr(Xi | Parents(Xi))  or  Pr(Xi) if there are no parents
- parameterizes the independence structure
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Bayesian networks

GZ ⇥
G

⇥
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(1988)

Judea Pearl coined the term Bayesian networks to emphasize:

‣ the subjective nature of the input information
‣ the reliance on Bayes's conditioning as the basis for updating beliefs
‣ the distinction between causal and evidential modes of reasoning

(2000)
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Summary

Belief updating using probability theory
‣ chain rule, law of total probability
‣ Bayes‘ rule

Update under evidence
‣ Hard evidence: conditioning
‣ Soft evidence: Jeffrey‘s rule, odds, Bayes factor

Independence and mutual information
‣ symmetrical, dynamic
‣ unconditional and conditional independence
‣ allows to decompose joint probability distributions 

(simplest form: naive Bayes classifier)
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