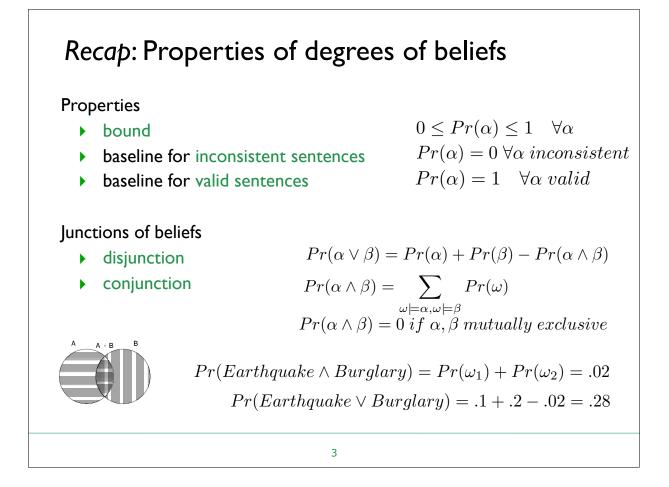


Degree of belief or probability of a world						$Pr(\omega)$	
						~ /	
Degree of belief or probability of a fact (sentence) $Pr(lpha):=\sum Pr(lpha)$							
$\omega \models \alpha$							
+=+=	of holiof on	icint pro	hability	, diataih.	tion		
tate o	of belief or	joint pro	bability	y distribu	ition		
		· ·	,]	ition		
World	Earthquake	Burglary	Alarm	Pr(.)	ition	$\sum Pr(\omega_i) = 1$	
World w1	Earthquake	Burglary true	Alarm true	Pr(.) .0190	ition	$\sum_{\omega_i} Pr(\omega_i) = 1$	
World w1 w2	Earthquake true true	Burglary true true	Alarm true false	Pr(.) .0190 .0010	ition	$\sum_{\omega_i} Pr(\omega_i) = 1$	
World w1 w2 w3	Earthquake true true true	Burglary true true false	Alarm true false true	Pr(.) .0190 .0010 .0560	ition		
World w1 w2 w3 w4	Earthquake true true true true	Burglary true true false false	Alarm true false true false	Pr(.) .0190 .0010 .0560 .0240			
World w1 w2 w3 w4 w5	Earthquake true true true true true false	Burglary true true false false true	Alarm true false true false true	Pr(.) .0190 .0010 .0560 .0240 .1620	Pr	ω_i r(Earthquake) = .1	
World w1 w2 w3 w4	Earthquake true true true true	Burglary true true false false	Alarm true false true false	Pr(.) .0190 .0010 .0560 .0240	Pr	ω_i	



Recap: Updating beliefs new evidence $\beta \rightarrow$ update state of beliefs such that • worlds that contradict evidence get zero prob. • worlds that had zero prob continue to have zero prob. • worlds consistent with evidence and positive prob. maintain relative beliefs conditioning of belief in a world ω : $Pr(\omega|\beta) := \begin{cases} 0 & \omega \models \neg \beta \\ \frac{Pr(\omega)}{Pr(\beta)} & \omega \models \beta \end{cases}$ Bayesian conditioning of belief in event α : $Pr(\alpha|\beta) = \frac{Pr(\alpha \land \beta)}{Pr(\beta)}$ Belief dynamics under incoming evidence is a consequence of the state of beliefs one had

Chain rule & total probability

Repeated application of Bayes Conditioning gives chain rule

 $Pr(\alpha_1 \land \alpha_2 \land \ldots \land \alpha_n) = Pr(\alpha_1 | \alpha_2 \land \ldots \land \alpha_n) Pr(\alpha_2 | \alpha_3 \land \ldots \land \alpha_n) \dots Pr(\alpha_n)$

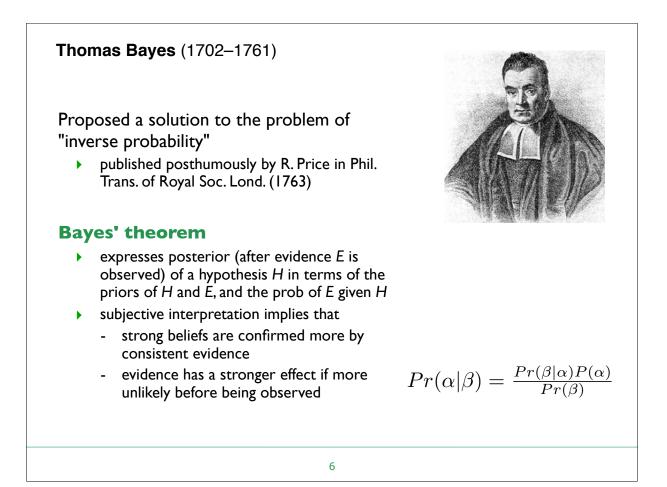
If events β_i are mutually exclusive and exhaustive, we can apply case analysis or law of total probability to compute a belief in α :

 $Pr(\alpha) = \sum_{i} Pr(\alpha \land \beta_i) = \sum_{i} Pr(\alpha | \beta_i) Pr(\beta_i)$

• compute belief in α by adding up beliefs in exclusive cases $\alpha \wedge \beta_i$ that cover the conditions under which α holds

"marginalizing over beta" "Pr(a) marginal prob. of A"

5



Bayes rule

Excercise:

A patient has been tested positive for a disease D, which one in every 1000 people has. The test T is not reliable (2% false positive rate and 5% false negative rate). What is our degree of belief Pr(D|T)?

 $\begin{aligned} Pr(D) &= 1/1000 \\ Pr(T|\neg D) &= 2/100 \implies Pr(\neg T|\neg D) = 98/100 \\ Pr(\neg T|D) &= 5/100 \implies Pr(T|D) = 95/100 \\ P(D|T) &= \frac{95/100 \cdot 1/1000}{Pr(T)} \\ P(T) &= Pr(T|D)Pr(D) + Pr(T|\neg D)Pr(\neg D) \\ Pr(D|T) &= \frac{95}{2093} = 4.5\% \end{aligned}$

7

Soft & hard evidence

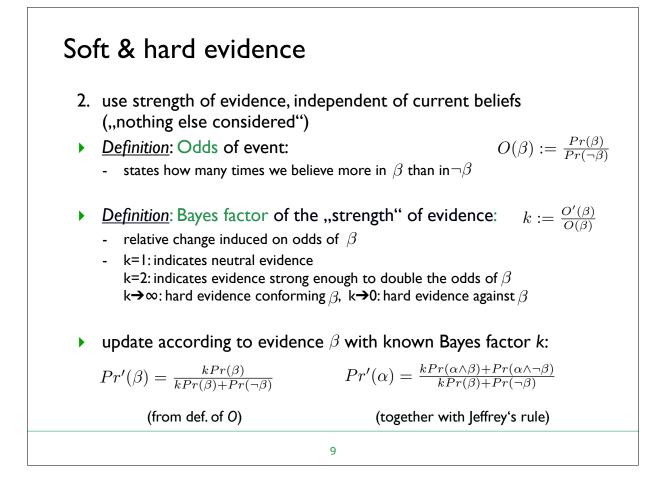
Often useful to distinguish two types of evidence

- hard evidence: information that some event has occurred
- soft evidence: unreliable hint that an event have may occurred
 - neighbor with hearing problem tells us he had heard the alarm trigger
 - can be interpreted in terms of noisy sensors

How to update in light of soft evidence? <u>Two methods</u>:

new state of beliefs Pr['] = old beliefs + new evidence (,,all things considered") → bayesian conditioning leads to Jeffrey's rule:

 $Pr'(\alpha) = qPr(\alpha|\beta) + (1-q)Pr(\alpha|\neg\beta)$ with $Pr'(\beta) = q$ $Pr'(\alpha) = \sum_{i} q_i Pr(\alpha|\beta_i)$ with q_i exclusive and exhaustive



Soft evidence								
 <u>Example</u>: Murder with three suspects, investigator Rich has the following state of belief: O(killer=david) = Pr(david)/Pr(not david) = 2 	$egin{array}{l} \omega_1 \ \omega_2 \ \omega_3 \end{array}$	<i>Killer</i> david dick jane	Pr(.) 2/3 1/6 1/6					
 new soft evidence is obtained that triples the odds of killer=david Bayes factor k=O'(killer=david)/O(killer=david) = 3 								
 → new belief in David being the killer: Pr'(killer=david) = (3*2/3) / (3*2/3+1/3) = 6/7 								
simply the first statement (k; "nothing else considered") can be used by other agents to update their belief according to eta								
10								

Properties of beliefs
 <u>Key observation</u>: Full joint distribution or state of belief is sufficient to model uncertain beliefs and update them in face of any kind of evidence determines prob for every event given any combination of evidence that is, enables all kinds of probabilistic inferences
 Unfortunately, the joint distribution is exponential and therefore costly O(dⁿ) with n random variables and domain size d
 <u>Idea</u>: Exploit independencies in the world, i.e. assumptions that certain variables have nothing to do with each other, and learning about one doesn't change (degree of) belief in the other ,our most basic, robust, and commonly available knowledge about uncertain environments"
11

Independence

A given state of beliefs finds a belief independent of another belief iff

 $Pr(\alpha|\beta) = Pr(\alpha) \text{ or } Pr(\beta) = 0$

Equivalent definition (using product rule): $Pr(\alpha \land \beta) = Pr(\alpha) \cdot Pr(\beta)$

Examples & properties:

- initial state of beliefs, as defined above:
 - Pr(Earthquake)=.1 and Pr(Earthquake | Burglary)=.1
 - Pr(Burglary)=.2 and Pr(Burglary | Earthquake)=.2
 - \rightarrow Earthquake and Burglary are independent
 - \rightarrow knowing one doesn't change degree of belief in the other
- independence is always symmetrical, but different from mutual exclusiveness (of events)

Conditional Independence

Observation: Independence is a dynamical notion

- Earthquake and Burglary get dependent with evidence about Alarm
 - Pr(Burglary | Alarm)=.741 and Pr(Burglary | Alarm A Earthquake)=.253
 - → Earthquake changes the belief in Burglary in presence of Alarm
- new evidence can make independent beliefs dependent, and vice versa!

Definition:

state of belief Pr finds α conditionally independent of β given event γ iff

 $Pr(\alpha|\beta \wedge \gamma) = Pr(\alpha|\gamma) \text{ or } Pr(\beta \wedge \gamma) = 0$

conditional independence is always symmetric

$$Pr(\alpha \wedge \beta | \gamma) = Pr(\alpha | \gamma) Pr(\beta | \gamma) \text{ or } Pr(\gamma) = 0$$

13

Conditional Independence

Example:

Given two noisy, unreliable sensors

Initial beliefs

- Pr(Temp=normal)=.80
- Pr(Sensor I = normal)=.76
- Pr(Sensor2=normal)=.68

Тетр	sensor1	sensor2	Pr(.)
normal	normal	normal	.576
normal	normal	extreme	.144
normal	extreme	normal	.064
normal	extreme	extreme	.016
extreme	normal	normal	.008
extreme	normal	extreme	.032
extreme	extreme	normal	.032
extreme	extreme	extreme	.128

After checking sensor I and finding its reading is normal

Pr(Sensor2=normal | Sensor1=normal) ~ .768 → Sensor1 and Sensor 2 dependent

After observing that temperature is normal

- Pr(Sensor2=normal | Temp=normal) = .80
- Pr(Sensor2=normal | Temp=normal, Sensor I=normal) = .80 → cond. independent

<section-header><text><equation-block><equation-block><list-item><list-item><list-item><list-item><list-item><list-item>

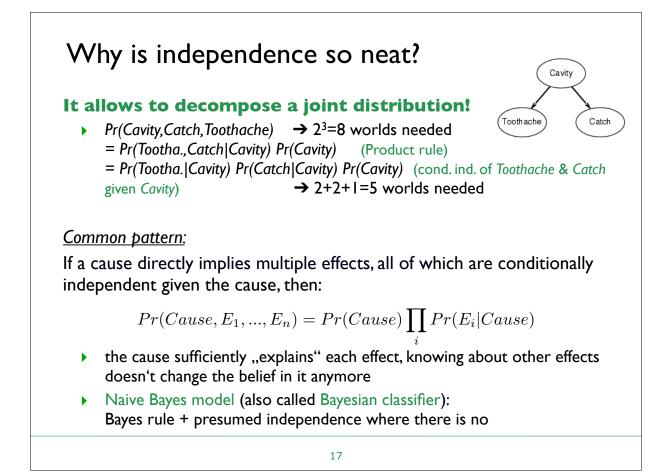
Independence of (sets of) variables

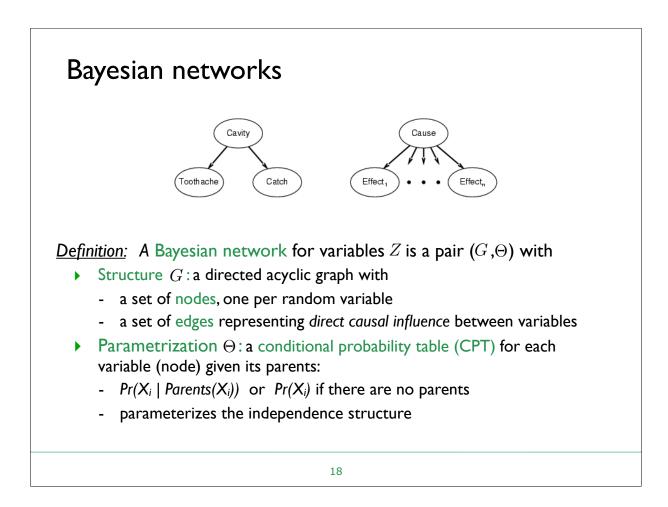
Notation:

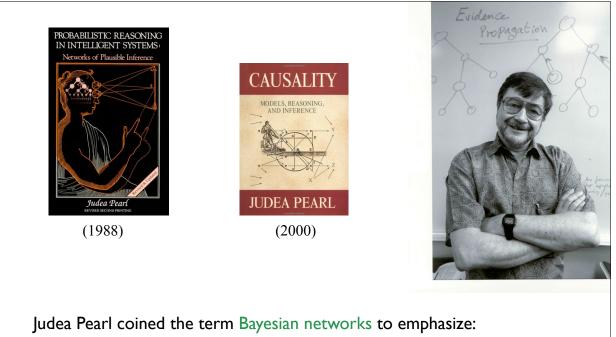
independence between sets of variables **X,Y, Z** in a belief state *Pr* denoted as $I_{Pr}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$

Example:

- ▶ X={A,B}, Y={D,E}, Z={C}
- $I_{Pr}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ denotes $4 \times 2 \times 4 = 32$ different independent statements:
 - $A \land B$ indep. of C given $D \land E$
 - $A \land \neg B$ indep. of C given $D \land E$
 - ..
 - ..
 - $\neg A \land \neg B$ indep. of $\neg C$ given $\neg D \land \neg E$

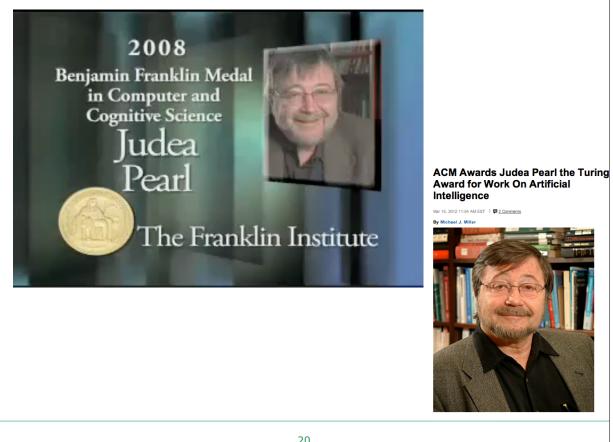






- the subjective nature of the input information
- the reliance on Bayes's conditioning as the basis for updating beliefs
- the distinction between causal and evidential modes of reasoning

19



Summary

Belief updating using probability theory

- chain rule, law of total probability
- Bayes' rule

Update under evidence

- Hard evidence: conditioning
- Soft evidence: Jeffrey's rule, odds, Bayes factor

Independence and mutual information

- symmetrical, dynamic
- unconditional and conditional independence
- allows to decompose joint probability distributions (simplest form: naive Bayes classifier)

21