
gentsSociable

Prof. Dr.-Ing. Stefan Kopp
Center of Excellence „Cognitive Interaction Technology“

AG Sociable Agents

5. Session: Bayesian (Belief) Networks
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Independence

A given state of beliefs finds a belief independent of another belief iff

‣ Equivalent definition:

State of belief finds    conditionally independent of    given event    iff

Allows to simplify the factorization of joint distribution (with chain rule):

→ For example:
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Pr(�|⇥) = Pr(�) or Pr(⇥) = 0

Pr(� � ⇥) = Pr(�) · Pr(⇥)

�↵ �

Pr(�|⇥ � ⇤) = Pr(�|⇤) or Pr(⇥ � ⇤) = 0

Pr(�1 � �2 � ... � �n) = Pr(�1|�2 � ... � �n)Pr(�2|�3 � ... � �n)...P r(�n)
Pr(↵1 ^ . . . ^ ↵n) = Pr(↵1|↵3 ^ ↵8)Pr(↵2| . . .) . . .



Bayesian (belief) networks

Basic idea:
‣ rely on insight that independence forms a significant aspect of beliefs

‣ helps to form a compact representation of full belief state

‣ describe in terms of graphical probabilistic model
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Definition:   A Bayesian network for variables    is a pair (   ,   ) with
‣ Structure     : a directed acyclic graph with

- a set of nodes, one per random variable
- a set of edges representing direct causal influence between variables

‣ Parametrization    : a conditional probability table (CPT) for each variable 
- probability distribution: Pr(Xi | Parents(Xi)), or Pr(Xi) if no parents
- parameterizes the independence structure

GZ ⇥
G

⇥

‣ Weather is (unconditionally) independent of all other variables
‣ Cavity causally influences Toothache and Catch

‣ Toothache and Catch are conditionally independent given Cavity

4

Bayesian (belief) networks

Example: 

Pr(Catch|Cavity)Pr(Toothache|Cavity)

Pr(Cavity)Pr(Weather)



Bayesian (belief) networks

Formally:  A Bayesian network defines a set of cond. indep. statements:

‣ Each variable is conditionally independent of its non-descendants,
given its parents
- Markovian assumption:

‣                    are direct causes,                            are effects of  

‣ Given the direct causes (parents) of V, the belief in V is no longer 
influenced by any other variable, except possibly by the effects (direct and 
indirect children) if V
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I(V, Parents(V ), NonDescendants(V ))

Markov(G)

Parents(V ) Descendants(V ) V

Bayesian (belief) networks

Notation:

‣          denotes the CPT for variable X and parents U
‣          denotes the cond. prob.               (network parameter)

- must hold: 
- compatible with a network instantiation z if they agree on all values assigned 

to common variable:  

As mathematical model of joint distribution:

‣ the network structure and parametrization of a network 
instantiation are satisfied by one and only one prob. distribution 
given by the chain rule for Bayesian networks:
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⇥X|U

✓
x|u Pr(x|u)

X

x

✓
x|u = 1

✓
x|u s z

Pr(z) =

Y

�
x|usz

�x|u =

Y

Pr(x|u)sz

Pr(x|u), with u parents of x
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A B C

Pr(a, b, c) = Pr(c|b, a)Pr(b|a)Pr(a) = Pr(c|b)Pr(b|a)Pr(a)

requires 8 rows
(exponential)

requires 2 rows
(+ normalization)

a b c Pr(.)
T T T ...
T T F ...
T F T ...
T F F ...
F T T ...
F T F ...
F F T ...
F F F ...

a b c Pr(a) Pr(b|a) Pr(c|b)
T T T ... ... ...

F F T ... ... ...

Example:
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Pr(a, b, c, d, e) = �a�b|a�c|a�d|b,c�e|c

= (.6)(.2)(.2)(.9)(1)
= .0216

Pr(a, b, c, d, e)
= �a�b|a�c|a�d|b,c�e|c

= (.4)(.25)(.9)(1)(1)
= .09

Example:



„I'm at work, neighbor John calls to say my burglar alarm is ringing. Sometimes 
it's set off by minor earthquakes. John sometimes confuses the alarm with a 
phone ringing. Real earthquakes usually are reported on radio. This would 
increase my belief in the alarm triggering and in receiving John‘s call. “

Variables:  Burglary, Earthquake, Alarm, Call, Radio

Network topology reflects believed causal structure of the domain:
‣ burglar and earthquake can set the alarm off
‣ alarm can cause John to call
‣ earthquake can cause a radio report

‣ + independence assumptions?
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Example:
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‣ given Alarm, Call is cond. indep. of Earthquake, Burglary, Radio
‣ given Earthquake, Radio is cond. indep. of Alarm, Burglary, Call

‣ given Earthquake and Burglary, Alarm is cond. indep. of Radio

‣ given no descendant, Earthquake and Burglary are indep.

I(C, A, {B, E,R})
I(R,E, {A, B,C})

I(A, {B,E}, R)
I(B, {}, {E,R})

I(E, {}, B)

Example:



11

(chain rule of prob. calculus / repeated Bayesian cond.) Pr(c, a, r, b, e)
= Pr(c|a, r, b, e)Pr(a|r, b, e)Pr(r|b, e)Pr(b|e)Pr(e)

= Pr(c|a)Pr(a|b, e)Pr(r|e)Pr(b)Pr(e)
(decomposition / independence assumptions encoded in the graph)

= ✓c|a✓a|b,e✓r|e✓b✓e

Example:
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Pr(e|a) =?

=
Pr(e, a)

Pr(a)
=

Pr(a|e)Pr(e)

Pr(a)
=

Pr(a, e, b) + Pr(a, e, b̄)

Pr(a)

=
Pr(a, e, b) + Pr(a, e, b̄)

Pr(a|e, b) + Pr(a|e, b̄) + Pr(a|ē, b) + Pr(a|b̄, ē)

=
0.072

0.2442
= 0.307

(Bayesian conditioning 
& case analysis)

Example:



Bayesian networks

Besides the mathematical meaning of the network (cf. chain rule), 
independence relations can be derived from the graph topology

Recall: Each Bayesian network defines a set of cond. indep. statements:

‣                    are direct causes,                            are effects of  
‣ Each node is conditionally indep. of its non-descendants given its parents

- given full info about the direct causes of V, degree of belief in V is no 
longer influenced by information about any other variable, except from 
its effects
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I(V, Parents(V ), NonDescendants(V ))
Parents(V ) Descendants(V ) V

Bayesian networks

Two equivalent topological specifications:
‣ X cond. indep. of all non-descendants given all parents
‣ X cond. indep. of all other nodes given its Markov blanket 

(= parents + children + children‘s parents)
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HMM as special case of Bayesian networks

Example: Hidden Markov Models ➔ Dynamic BNs

‣ Si represent state of a 
dynamic system at times i

‣ Oi represent sensor 
readings at times i

I(St, St�1, {S1, ..., St�2, O1, ..., Ot�1})

‣ given last state of the system, our belief in present system 
state is indep. of any other information from the past

Probabilistic independence

Distribution Pr specified by a Bayesian network satisfies the 
independence assumptions

Plus some more that follow implicitly from the above ones!

This is due to some properties known as graphoid axioms:
‣ symmetry

‣ decomposition

‣ weak union
‣ contraction
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I(V, Parents(V ), NonDescendants(V ))

Markov(G)



‣ symmetry
- if learning y doesn‘t change belief in x, 

then learning x doesn‘t change belief in y 

- Example:
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Graphoid axioms I

IPr(X,Z, Y ) iff IPr(Y,Z, X)

IPr(A, {B, E}, R)
� IPr(R, {B, E}, A)

‣ decomposition

- every variable X is indep. of any subset of its non-descendants given its parents
- any part of irrelevant information is irrelevant, too

- Example:
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Graphoid axioms II

IPr(X,Z, Y [W ) only if IPr(X,Z, Y ) and IPr(X, Z,W )

I(B, S, {A, C, P, T, X})
� I(B, S,C)

once knowing smoker, belief in 
bronchitis no longer influenced 
by info about cancer

IPr(X,Parents(X), W ) for every W ✓ NonDescendants(X)



‣ weak union

- if info yw is not relevant to our belief in x given z, then the 
partial info y will not make the rest of the info w relevant

- Example:
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Graphoid axioms III

IPr(X,Z, Y [W ) onlfy if IPr(X,Z [ Y,W )

I(C, A, {B, E,R})
� I(C, {A, E, B}, R)

‣ contraction

- if after learning irrelevant info y, the info w is found to be irrelevant too, 
then combined info yw must have been irrelevant from the beginning

‣ [ intersection ]

- if info w is irrelevant given y and info y is irrelevant given w, then the 
combined info yw is irrelevant to start with

- holds only for strictly positive prob. distributions that assign non-zero 
prob. to every consistent event
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Graphoid axioms IV

IPr(X,Z, Y ) and IPr(X,Z [ Y,W ) only if IPr(X,Z, Y [W )

IPr(X,Z [W,Y ) and IPr(X, Z [ Y,W ) only if IPr(X,Z, Y [W )



D-seperation

All independencies in Pr (implied by Graphoid axioms) can be derived 
from the graph structure, using a graphical test called d-separation

Idea:  there are three types of causal structures („valves“) in a graph
‣ a causal structure or valve can be either open or closed

‣ closed valves block a path in the graph, implying independence
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W intermediary betw.
cause and effect

Sequential, chain Divergent, fork

W common cause
of two effects

Convergent, collider,
inverted fork

W common effect
of two causes

Given a set of variables Z, a valve for variable W is closed iff
‣ sequential:  W appears in Z

- Example: E → A → C closed if A given, E and C become cond. indep.

‣ divergent:  W appears in Z
- Example: R ← E → A closed if E given, R and A become cond. indep.

‣ convergent:  neither W nor any of its descendants appears in Z
- Example: E → A ← B closed if neither A nor C given
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D-seperation



Definition:
Variable sets X and Y are d-separated by Z iff every path between a 
node in X and a node in Y is blocked by Z (at least one valve on each 
path is closed given Z).

Theorem:
For every network graph    there is a parametrization    such that

It holds (see proofs in Darwiche) that
‣ dsep is correct (sound) 

‣ dsep is complete for a suitable parametrization (but not for every!)
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dsepG(X,Z,Y)

IPr(X,Z,Y)$ dsepG(X,Z,Y)

⇥G

D-seperation

D-separation

Examples:
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Two valves between R and B, first
valve (divergent) is closed given E
➔ R and B are d-separated by E
➔ R and B are cond. indep. given E

Two valves between R and C, both 
are open
➔ R and C are not d-separated 
➔ learning about C changes degree 
of belief in R (and vice versa)



Examples:
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D-separation

Are B and C d-separeted by S?
Two paths:
- 1st one closed valve (C<-S->B) 

because S given
- 2nd one closed valve (B->D<-P) 

because D not given

➔ B and C are d-separated by S
➔ B and C are cond. indep. given S

Reasoning with Bayesian networks

Classical reasoning in (extensional) logics-based representations

‣ Modus Ponens:  (a→b), a  ➠  b
- probabilistic:  assuming a causal link between a and b, and given some 

evidence P(a) ➠ how does P(b) change to P(b|a)? (causal inference)

‣ Modus Tollens:  (a→b), ¬b  ➠  ¬a 
- probabilistic:  assuming a causal link between a and b, and given some 

evidence P(¬b) ➠ how does P(a) change to P(a|¬b)? (causal)

‣ Abductive Reasoning:  (a→b), b  ➠  a
- probabilistic:  assuming a causal link between a and b, and given some 

evidence P(b) ➠ how does P(a) change to P(a|b)?  (diagnostic)

‣ Inductive Reasoning:  A(x1), A(x2), A(x3), A(x4),...  ➠   ∀xA(x)
- probabilistic: given some evidence P(A(xi))=1 for i=1..k ➠ what is P(A)? 
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Reasoning with Bayesian networks

Four general types of queries one can solve with Bayesian networks:

‣ probability of evidence: 
how likely is a complete variable instantiation e  ➔ Pr(e)=?

‣ prior and posterior marginals: how probable is an instantiation of 
a limited set of variables ➔ Pr(x1,...,xm)=? or Pr(x1,...,xm|e)=?

‣ most probable explanation (MPE): what is the most probable 
instantiation of all n network var‘s given some evidence e ➔ x with 
Pr(x1,...,xn|e)=max?

‣ maximum a posteriori hypothesis (MAP): what is the most 
probable instantiation of a subset of m (m<n) var‘s given some evidence e 
➔ x with Pr(x1,...,xm|e)=max?
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➜ Let‘s try out with SamIam

Probability of evidence

Query:  How likely is some variable instantiation e  ➔ Pr(e)=?

Example: Pr(X=yes, D=no)=?

Example: Pr(X=yes ∨ D=yes)=?

can be computed indirectly with
the auxiliary-node technique:

‣ add node E with X,D as parents and 
Pr(e|x,d)=1 iff e=1 and (d=1 or x=1)

‣ possible when not too many evidence var‘s
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E= X ∨ D



Prior and posterior marginals

Query:  How probable is an instantiation of a limited set of variables
➔ Pr(x1,...,xm)=? or Pr(x1,...,xm|e)=?

Definition: Given a joint distribution Pr(x1,...xn) and a limited number m of 
variables,
‣ prior marginal :
‣ posterior marginal given e :
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Pr(x1, ..., xm

) =
X

x

m+1,...x

n

Pr(x1, ..., xn

)

Pr(x1, ..., xm

|e) =
X

x

m+1,...x

n

Pr(x1, ..., xn

|e)

Most probable explanation (MPE)

Query: What is the most probable instantiation of all network var‘s 
given some evidence e ➔ x with Pr(x1,...,xn|e)=max?

Example: MPE for positive x-ray and
not dyspnoea?

Cannot be computed directly 
from the maximal posterior marginals
‣ choosing xi such that Pr(xi|e)=max

yields expl. p with smoker=true and
Pr(p|e)=20.03% whereas 
Pr(mpe|e)=38.57%
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Maximum a posteriori hypothesis (MAP)

Query:  What is the most probable instantiation of a subset of var‘s 
M=X1,...,Xm given some evidence e ➔ m with Pr(m|e)=max?
‣ MPE is a special case of MAP, easier to compute algorithmically

Example: Given X=yes, D=no, what is the
most probable instantiation of M={A,S}?

Approximative method to find MAP:

‣ compute MPE and return values
for MAP variables (projecting MPE on
MAP var‘s)

‣ but, leads to A=no, S=yes here with
prob ~48%, while A=no, S=no is MAP with prob ~50%
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