

Independence

A given state of beliefs finds a belief independent of another belief iff $Pr(\alpha|\beta) = Pr(\alpha) \text{ or } Pr(\beta) = 0$

• Equivalent definition: $Pr(\alpha \land \beta) = Pr(\alpha) \cdot Pr(\beta)$

State of belief finds α conditionally independent of β given event γ iff

$$Pr(\alpha|\beta \wedge \gamma) = Pr(\alpha|\gamma) \text{ or } Pr(\beta \wedge \gamma) = 0$$

Allows to simplify the factorization of joint distribution (with chain rule): $Pr(\alpha_1 \land \alpha_2 \land ... \land \alpha_n) = Pr(\alpha_1 | \alpha_2 \land ... \land \alpha_n) Pr(\alpha_2 | \alpha_3 \land ... \land \alpha_n) ... Pr(\alpha_n)$ \rightarrow For example: $Pr(\alpha_1 \land ... \land \alpha_n) = Pr(\alpha_1 | \alpha_3 \land \alpha_8) Pr(\alpha_2 | ...) ...$

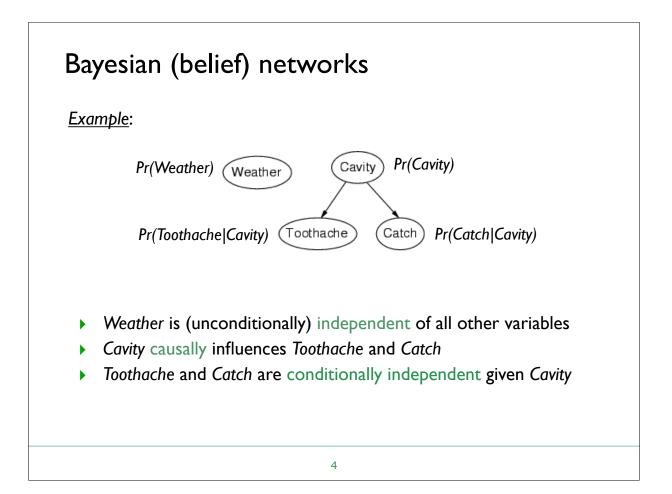
Bayesian (belief) networks

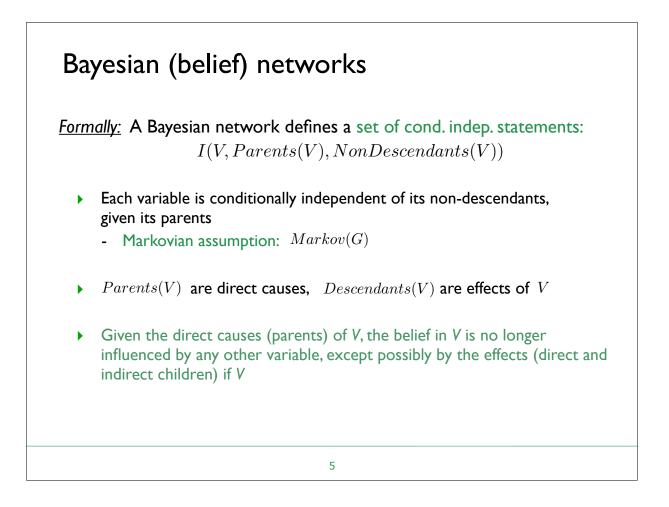
Basic idea:

- > rely on insight that independence forms a significant aspect of beliefs
- helps to form a compact representation of full belief state
- describe in terms of graphical probabilistic model

<u>Definition</u>: A Bayesian network for variables Z is a pair (G, Θ) with

- Structure *G* : a directed acyclic graph with
 - a set of nodes, one per random variable
 - a set of edges representing direct causal influence between variables
- Parametrization Θ : a conditional probability table (CPT) for each variable
 - probability distribution: $Pr(X_i | Parents(X_i))$, or $Pr(X_i)$ if no parents
 - parameterizes the independence structure





Bayesian (belief) networks

Notation:

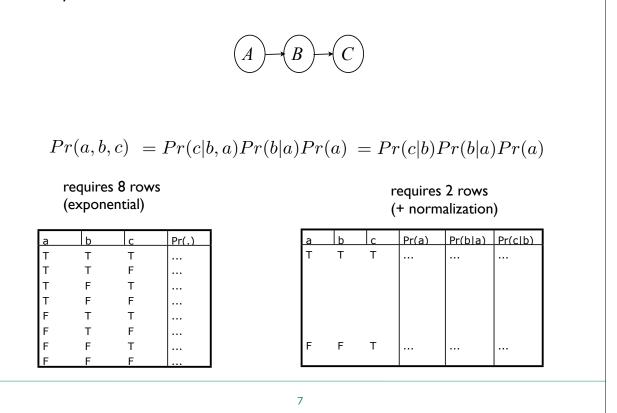
- $\Theta_{X|U}$ denotes the CPT for variable X and parents U
- $\theta_{x|\mathbf{u}}$ denotes the cond. prob. $Pr(x|\mathbf{u})$ (network parameter)
 - must hold: $\sum \theta_{x|\mathbf{u}} = 1$
 - compatible with a network instantiation **z** if they agree on all values assigned to common variable: $\theta_{x|u} \sim z$

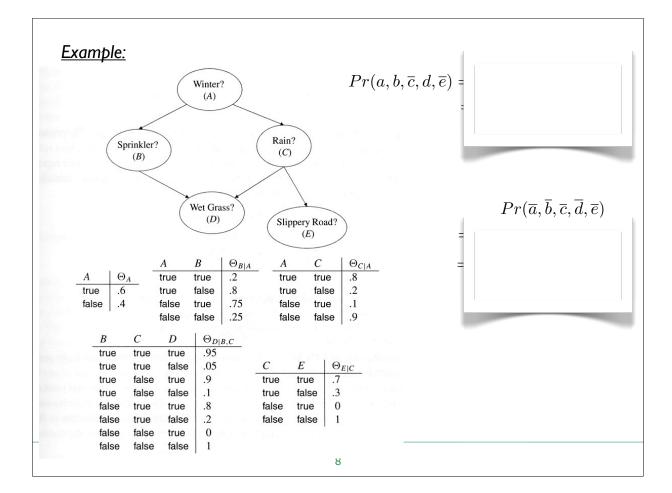
As mathematical model of joint distribution:

the network structure and parametrization of a network instantiation are satisfied by one and only one prob. distribution given by the chain rule for Bayesian networks:

$$Pr(\mathbf{z}) = \prod_{\theta_{x|\mathbf{u}}\sim\mathbf{z}} \theta_{x|\mathbf{u}} = \prod_{Pr(x|\mathbf{u})\sim\mathbf{z}} Pr(x|\mathbf{u}), \text{ with } \mathbf{u} \text{ parents of } x$$

Example:





Example:

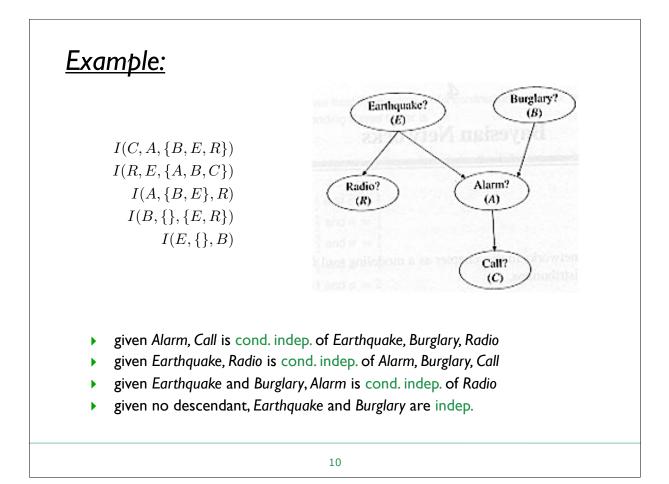
"I'm at work, neighbor John calls to say my burglar alarm is ringing. Sometimes it's set off by minor earthquakes. John sometimes confuses the alarm with a phone ringing. Real earthquakes usually are reported on radio. This would increase my belief in the alarm triggering and in receiving John's call."

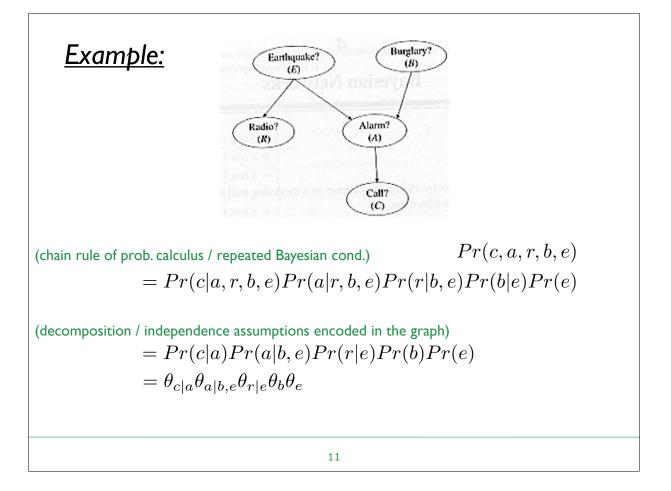
Variables: Burglary, Earthquake, Alarm, Call, Radio

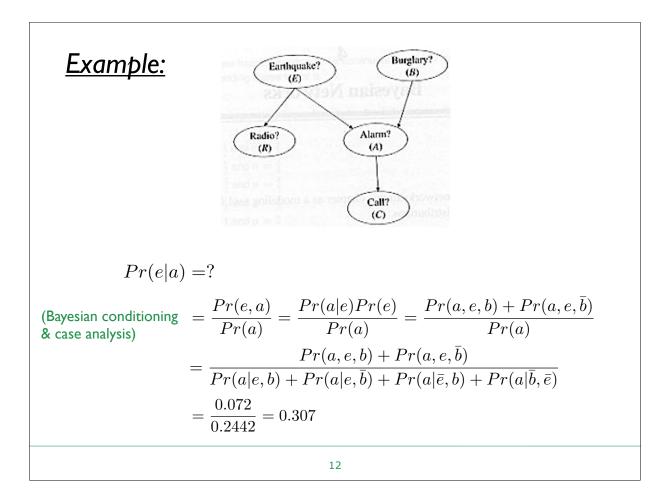
Network topology reflects believed causal structure of the domain:

- burglar and earthquake can set the alarm off
- alarm can cause John to call
- earthquake can cause a radio report
- + independence assumptions?

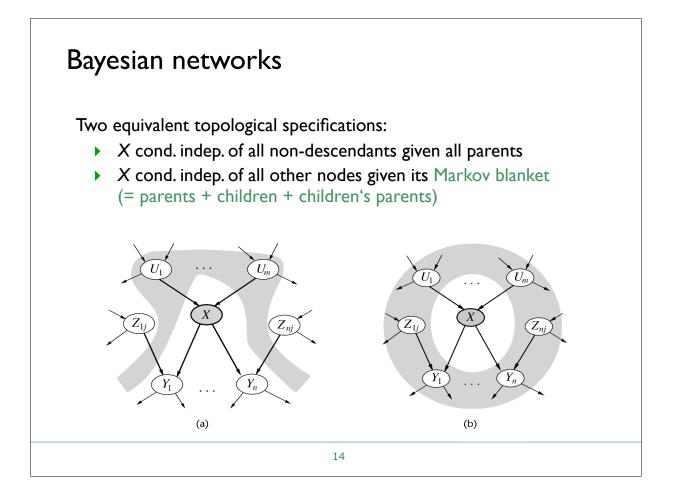
9

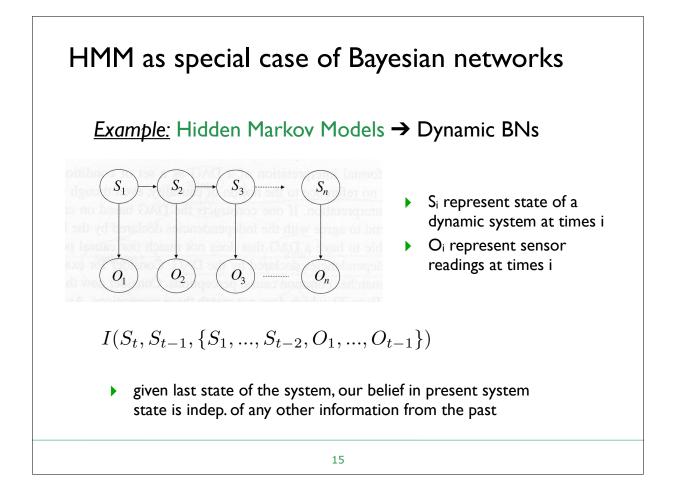


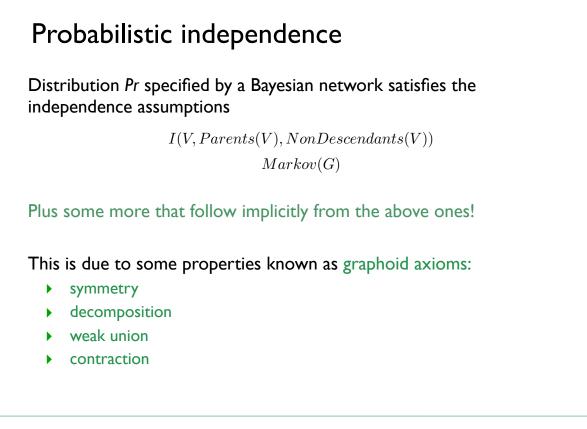


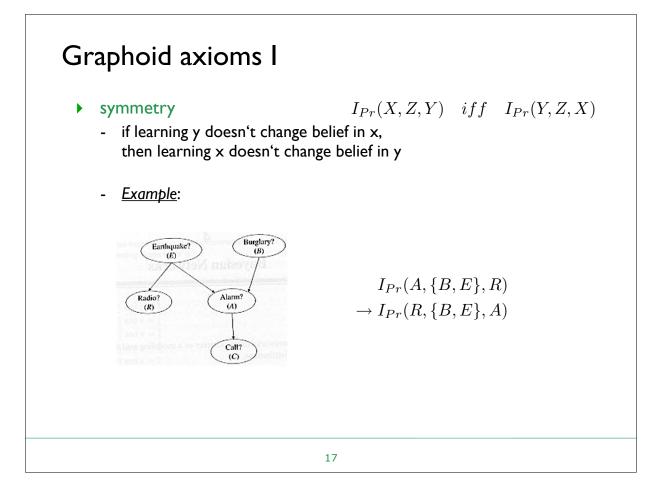


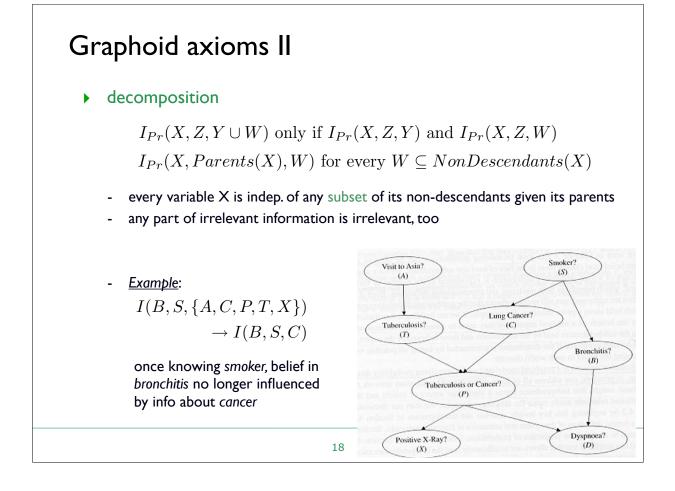
Bayesian networks Besides the mathematical meaning of the networ	Earthquake? Burglary? (b) (c) (b) (c) (c) (c) k (cf. chain rule).
independence relations can be derived from the graph topology	
 <u>Recall</u>: Each Bayesian network defines a set of cond. indep. statements: I(V, Parents(V), NonDescendants(V)) Parents(V) are direct causes, Descendants(V) are effects of V Each node is conditionally indep. of its non-descendants given its parents given full info about the direct causes of V, degree of belief in V is no longer influenced by information about any other variable, except from its effects 	
13	

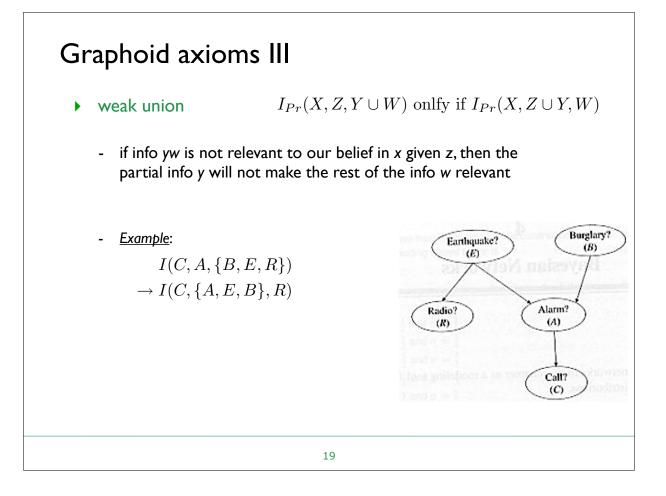


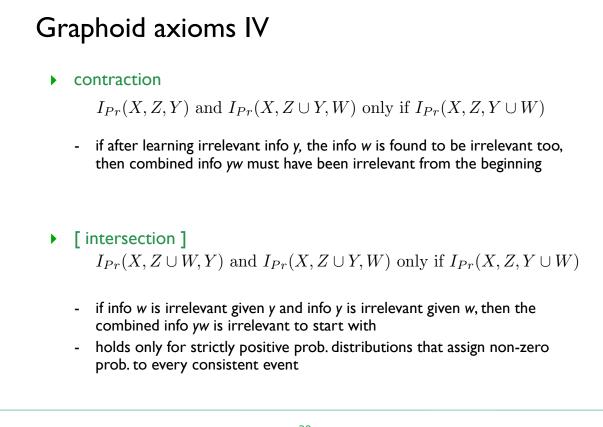










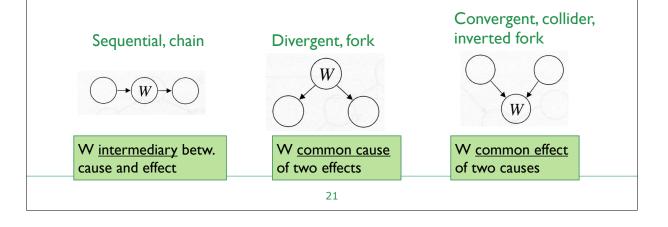


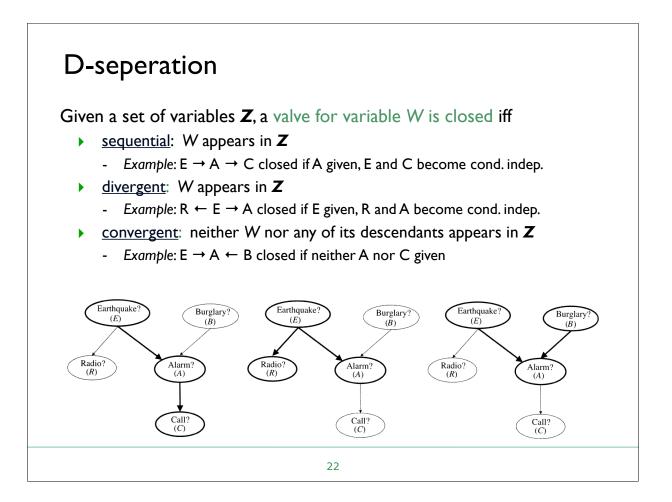
D-seperation

<u>All</u> independencies in *Pr* (implied by Graphoid axioms) can be derived from the graph structure, using a graphical test called d-separation

<u>Idea:</u> there are three types of causal structures ("valves") in a graph

- a causal structure or valve can be either open or closed
- closed valves block a path in the graph, implying independence





D-seperation

Definition:

Variable sets X and Y are d-separated by Z iff every path between a node in X and a node in Y is blocked by Z (at least one value on each path is closed given Z).

 $dsep_G(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$

Theorem:

For every network graph G there is a parametrization Θ such that

 $I_{Pr}(\mathbf{X}, \mathbf{Z}, \mathbf{Y}) \leftrightarrow dsep_G(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$

It holds (see proofs in Darwiche) that

- dsep is correct (sound)
- dsep is complete for a suitable parametrization (but not for every!)

23

