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Independence

A given state of beliefs finds a belief independent of another belief iff
Pr(a|B) = Pr(a) or Pr(8) =0

» Equivalent definition: Pr(a A 3) = Pr(a) - Pr(f)

State of belief finds a conditionally independent of 3 given event vy iff

Pr(a|8 Av) = Pr(aly) or Pr(BA~) =0

Allows to simplify the factorization of joint distribution (with chain rule):
Pr(ag Nag A ... Nay) = Pr(ag|ag Ao Aay)Pr(as|as A ... A ay)...Pr(ay)
— For example: Pr(aq A...Aay) = Pr(ai|as Aag)Pr(as|...)...
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Bayesian (belief) networks

Basic idea:
» rely on insight that independence forms a significant aspect of beliefs
» helps to form a compact representation of full belief state
» describe in terms of graphical probabilistic model

Definition: A Bayesian network for variables Z is a pair (G,0) with
» Structure G :a directed acyclic graph with
- aset of nodes, one per random variable
- aset of edges representing direct causal influence between variables
» Parametrization © :a conditional probability table (CPT) for each variable
- probability distribution: Pr(Xi | Parents(Xj)), or Pr(X)) if no parents
- parameterizes the independence structure

Bayesian (belief) networks
Example:

Pr(Cavity)

Pr(Weather) @

Pr(Toothache|Cavity) Pr(Catch|Cavity)

» Weather is (unconditionally) independent of all other variables
» Cavity causally influences Toothache and Catch
» Toothache and Catch are conditionally independent given Cavity




Bayesian (belief) networks

Formally: A Bayesian network defines a set of cond. indep. statements:
I(V, Parents(V'), NonDescendants(V))

» Each variable is conditionally independent of its non-descendants,
given its parents

- Markovian assumption: Markov(G)
» Parents(V) are direct causes, Descendants(V) are effects of V

» Given the direct causes (parents) of V, the belief in V is no longer
influenced by any other variable, except possibly by the effects (direct and
indirect children) if V

Bayesian (belief) networks

Notation:
» Oxu denotes the CPT for variable X and parents U

» 0.u denotes the cond. prob. Pr(zju) (network parameter)
- musthold: ) fuu=1

- compatible with a network instantiation z if they agree on all values assigned
to common variable: (,,, ~ z

As mathematical model of joint distribution:

» the network structure and parametrization of a network
instantiation are satisfied by one and only one prob. distribution
given by the chain rule for Bayesian networks:

Pr(z) = H Opju = H Pr(z|u), with u parents of x

Ozju~z Pr(z|u)~z




Example:

Pr(a,b,c) = Pr(c|b,a)Pr(bla)Pr(a) = Pr(c|b)Pr(bla)Pr(a)

requires 8 rows

requires 2 rows
(exponential)

(+ normalization)

a |b |c Pr() a |b |c Pr(a) Pr(bla) [Pr(clb)
T T T T T T
T T F
T F T
T F F
F T T
F T F
F F T F F T
F F F
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Example:
Winter? P'f’(a, b, 6, d, é) =
(A)
Sprinkler? R“’if'?
(B) / ()
Wet Grass? — PT’(E, b) C, d, e
(D) Slippery Road?

A B | Opua A C | Oca 3
A (G true  true 2 true  true 8
true .6 true false | .8 true false | .2
false | .4 false true 75 false true .1
false false | .25 false false | .9 JI—

B C D Opip.c

true  true true 95

true true false | .05 C E | Opc
true false true true  true | .7
true false false true false | .3
false true true false true 0
false true false false false 1
false false true
false false false

— o x =




Example:

,,I'm at work, neighbor John calls to say my burglar alarm is ringing. Sometimes
it's set off by minor earthquakes. John sometimes confuses the alarm with a
phone ringing. Real earthquakes usually are reported on radio. This would
increase my belief in the alarm triggering and in receiving John’‘s call.

Variables: Burglary, Earthquake, Alarm, Call, Radio

Network topology reflects believed causal structure of the domain:

» burglar and earthquake can set the alarm off
» alarm can cause John to call
» earthquake can cause a radio report

» + independence assumptions?

Example:

-l ol n';

— N “!I
/" Earthquake? (
(ot T8 ) (B

I(C,A,{B,E,R}) / RS /
I(R, E, {4, B,C}) T —
I(A.{B, B}, R) (Bol) il )
1B, {},{E, R}) S S
1(B,{}, B) Sl

~ ca? )
(O x

given Alarm, Call is cond. indep. of Earthquake, Burglary, Radio
given Earthquake, Radio is cond. indep. of Alarm, Burglary, Call
given Earthquake and Burglary, Alarm is cond. indep. of Radio

v Vv v Vv

given no descendant, Earthquake and Burglary are indep.
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Example: (rl.“m:- |;|ll°| |r)

® __/ i (B

Lo /

< Radio? < Alarm? >
. A

(chain rule of prob. calculus / repeated Bayesian cond.) PT(C, a,r,b, 6)
= Pr(c|a,r,b,e)Pr(a|r,b,e)Pr(r|b,e)Pr(ble) Pr(e)

(decomposition / independence assumptions encoded in the graph)

= Pr(c|la)Pr(a|b,e)Pr(r|e)Pr(b)Pr(e)
= 90|a0a|b,69r|60b06

11

Example: (r;,m:" gy’

p ” B

Pr(ela) =7
(Bayesian conditioning = Pre,a) = Pr{ale) Pr(e) = Pr(a,e,b) + Pr(a,e,b)
& case analysis) Pr(a) Pr(a) Pr(a)

0.072
- 0.2442 0.307
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Bayesian networks /\ /
) )

i

&P,

Besides the mathematical meaning of the network (cf. chain rule),
independence relations can be derived from the graph topology

Recall: Each Bayesian network defines a set of cond. indep. statements:

I(V, Parents(V'), NonDescendants(V'))
» Parents(V) are direct causes, Descendants(V') are effects of V'
» Each node is conditionally indep. of its non-descendants given its parents

- given full info about the direct causes of V, degree of belief in V is no
longer influenced by information about any other variable, except from

its effects
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Bayesian networks

Two equivalent topological specifications:
» X cond. indep. of all non-descendants given all parents

» X cond. indep. of all other nodes given its Markov blanket
(= parents + children + children‘s parents)

(@) (b)
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HMM as special case of Bayesian networks

Example: Hidden Markov Models =» Dynamic BNs

@ @ @ » Sirepresent state of a

dynamic system at times i
» Oirepresent sensor

readings at times i

I(St, St—1,{51,-+sSt—2,01, ..., O¢_1})

» given last state of the system, our belief in present system
state is indep. of any other information from the past
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Probabilistic independence

Distribution Pr specified by a Bayesian network satisfies the
independence assumptions
I(V, Parents(V'), NonDescendants(V))
Markov(Q)

Plus some more that follow implicitly from the above ones!

This is due to some properties known as graphoid axioms:
» symmetry

decomposition

weak union

v v

contraction

v
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Graphoid axioms |

» symmetry

- if learning y doesn‘t change belief in x,
then learning x doesn‘t change belief in y

-  Exambple;

‘.lill‘lglill';':.’-\
— B _)

("[“:‘-‘l_l“ll(lll:lli:"}“\\
Sl e

/ S / Ip (A, {B,E},R)

i R
" Radio? ™ © Alarm? >

—w ‘---31-’—--" - IPT’(R7 {B7 E}? A)

(C) )
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IPT(X7ZaY) fo IPr(Y7Z7X)

Graphoid axioms |l

» decomposition

Ipe (X, Z,Y UW) only if Ip,(X, Z,Y) and Ip, (X, Z, W)
Ip,. (X, Parents(X), W) for every W C NonDescendants(X)

- every variable X is indep. of any subset of its non-descendants given its parents

- any part of irrelevant information is irrelevant, too

/ “x\/::u .ln ;\\i;" )
- Example: o () s
I(B,S,{A,C,P,T,X}) 1 e
— I(B7 S7 C) ( 'l:ulk.l(u;-‘:li]\"# \) o 8 l/(_] e L3t
once knowing smoker, belief in “/ ¢

/7 Tuberculosis or Cancer? )

bronchitis no longer influenced ( i
. \¢ ] )
by info about cancer e

A

("‘..VIA'n.\lli\'u X-Ray 'A'Ar. hY
18 NG Xy e

Qs

ol

)

G:

Smoker?
)

)

B

S

()]

Bronchitis?

Dyspnoca?

=

®)




Graphoid axioms |
» weak union Ip (X, Z, Y UW) onlfy if Ip,(X,ZUY, W)

- if info yw is not relevant to our belief in x given z, then the
partial info y will not make the rest of the info w relevant

) _p_Exam le: /"’-i'::'lﬂhqll:lk\-."_.’\\\ "‘:';ET"";'\
\\' ) _"'/ 5N _U‘_). —
1(C, A.{B.E.R)) /
— I(C,{A,E,B},R) _‘_/ N
““Radio? ™ ’--;\Ix\rm‘?“’
<_,__R_<‘t!e)~ -_,,/' <\_-> @ ->
:
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Graphoid axioms IV

» contraction
Ip.(X,Z,Y) and Ip.(X,ZUY,W) only if Ip.(X,Z, Y UW)

- if after learning irrelevant info y, the info w is found to be irrelevant too,
then combined info yw must have been irrelevant from the beginning

» [intersection ]
Ip (X, ZUW,Y) and Ip,.(X,ZUY,W) only if Ip,.(X,Z, Y UW)

- if info w is irrelevant given y and info y is irrelevant given w, then the
combined info yw is irrelevant to start with

- holds only for strictly positive prob. distributions that assign non-zero
prob. to every consistent event
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D-seperation

All independencies in Pr (implied by Graphoid axioms) can be derived
from the graph structure, using a graphical test called d-separation

Idea: there are three types of causal structures (,,valves®) in a graph
» a causal structure or valve can be either open or closed

» closed valves block a path in the graph, implying independence

Convergent, collider,
Sequential, chain Divergent, fork inverted fork

o0 B QP

W intermediary betw. W common cause W common effect
cause and effect of two effects of two causes
21
D-seperation

Given a set of variables Z, a valve for variable W is closed iff
» sequential: W appears in Z
- Example:E = A = C closed if A given, E and C become cond. indep.
» divergent: W appears in Z
- Example:R < E — A closed if E given, R and A become cond. indep.

» convergent: neither W nor any of its descendants appears in Z
- Example:E = A < B closed if neither A nor C given
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D-seperation

Definition:

Variable sets X and Y are d-separated by Z iff every path between a
node in X and a node in Y is blocked by Z (at least one valve on each

path is closed given Z).

dsepa(X,Z,Y)

Theorem:

For every network graph G there is a parametrization © such that

Ip(X,Z,Y) < dsepg(X,Z,Y)

It holds (see proofs in Darwiche) that

» dsep is correct (sound)

» dsep is complete for a suitable parametrization (but not for every!)
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D-separation

Examples:

~ Barthquake? ™
L@

Radio?
R)

Burglary?
®

Two valves between R and B, first
valve (divergent) is closed given E

=> R and B are d-separated by E
=> R and B are cond. indep. given E
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Earthquake? Burglary?
(E) (B)
open

Radio?
®) \
open ]

Two valves between R and C, both
are open

)

=> R and C are not d-separated

=> learning about C changes degree
of belief in R (and vice versa)




D-separation
Examples:

@ Are B and C d-separeted by S?

Bronchitis? - Ist one closed valve (C<-S->B)
& because S given

open
Q - 2nd one closed valve (B->D<-P)
because D not given
closed
Dyspnoea?
D)

%H‘e

=> B and C are d-separated by S
=> B and C are cond. indep. given S

Positive X-Ray?
(X)
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Reasoning with Bayesian networks

Classical reasoning in (extensional) logics-based representations

» Modus Ponens: (a—b),a ™ b
- probabilistic: assuming a causal link between a and b, and given some
evidence P(a) "™ how does P(b) change to P(b|a)? (causal inference)

» ModusTollens: (a—*b),b ™ -a
- probabilistic: assuming a causal link between a and b, and given some
evidence P(-b) " how does P(a) change to P(a|nb)? (causal)

» Abductive Reasoning: (a—b),b ™ a
- probabilistic: assuming a causal link between a and b, and given some
evidence P(b) "™ how does P(a) change to P(a|b)? (diagnostic)

» Inductive Reasoning: A(x1),A(x2),A(x3),A(x4),... ™ VvxA(x)
- probabilistic: given some evidence P(A(xi))=1 for i=1..k " what is P(A)?

26




Reasoning with Bayesian networks

Four general types of queries one can solve with Bayesian networks:

» probability of evidence:
how likely is a complete variable instantiation e => Pr(e)=?

» prior and posterior marginals: how probable is an instantiation of
a limited set of variables = Pr(xi,....xm)=? or Pr(xi,...Xm|€)=?

» most probable explanation (MPE): what is the most probable
instantiation of all n network var‘s given some evidence e => X with
Pr(x,...,xn|€)=max?

» maximum a posteriori hypothesis (MAP): what is the most
probable instantiation of a subset of m (m<n) var‘s given some evidence e
=> X with Pr(x,...xm|€)=max?

=» Let's try out with Samlam

27

Probability of evidence

Query: How likely is some variable instantiation e => Pr(e)=?

AVisit to Asia? S:Smoker?

T:Has tuberculosis C:Has lung cancer B:Has bronchitis

X:Positive X-ray? D:Dyspnoea?

the auxiliary-node technique: "

» add node E with X,D as parents and
Pr(e|x,d)=1 iff e=1 and (d=1 or x=1)

Example: Pr(X=yes v D=yes)=?

can be computed indirectly with

» possible when not too many evidence vars
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Prior and posterior marginals

Query: How probable is an instantiation of a limited set of variables
=> Pr(xl,..,.xm)=? or Pr(xl,...xm|e)=?

Definition: Given a joint distribution Pr(x,...xs) and a limited number m of

variables,
Pr(xy,...,zm) = Z Pr(xy,...,zy)

» prior marginal :

b posterior marginal given@:  p. ey = S Pr(ey,aale)

Tm+1,...an

A:Visit to Asia? S:Smoker? AVisit to Asia? S:Smoker?
AT 1.00% - vesp ] 50.00% - yes AT L17% - yespd ] 51.32% - yes
] 99.00% - no ] 50.00% - no ] 98.83% - no ] 48,68% - no
| T:Has tuberculosis C:Has lung cancer ~ B:Has bronchitis _-| T:Has tuberculosis C:Has lung cancer | B:Has bronchitis
[ ] 1,04% -vyes [ ] 5.50% -vyes 1] 45,00% - yes ] 5.40% - yes ] 25.23% - yes ] 19.32% - yes
] 98.96% - no ] 94,50% - no ] 55.00% - no ] 74.77% - no ] 80.68% - no

P:TB or cancer
] 30.37% - yes
] 69,63% - no

P:TB or cancer
1 648% - yes|o
] 93.52% - no

D:Dyspnoea? D:Dyspnoea?
1 o%-veshho
I 100% - no

43,60% - yes|,
] b
] 56.40% - no

| X:Positive X-ray?

I XPositive X-ray?
[ 11,03% - yes
] 88,97% - no
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Most probable explanation (MPE)

Query: What is the most probable instantiation of all network var's
given some evidence e => x with Pr(xj,....x,|€)=max?

Example: MPE for positive x-ray and B o

|
) 22 Network File Edit Tools Sensitivity
not dyspnoea. | P(mpe,e)=0,01528220925
) P(mpe|e)=0,3857201941034!
Variable Value
A:Visit to Asia? no
B:Has bronchitis no
. ~ &) C:Has lung cancer no
Cannot be Computed dlrectl)’ f:Has lung cancel p.Tg or cancer no
no S:Smoker? no
T:Has tuberculosis no

from the maximal posterior marginals

P:TB or cancer =

"Positive X-ray? =
VoS

» choosing x; such that Pr(xi|e)=max
yields expl. p with smoker=true and
Pr(p|e)=20.03% whereas
Pr(mpele)=38.57%

F e | |
1 find valuesll

' >
( Close
~—/
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Maximum a posteriori hypothesis (MAP)

Query: What is the most probable instantiation of a subset of var‘s
M=X,,...Xn given some evidence e = m with Pr(m|e)=max!
» MPE is a special case of MAP, easier to compute algorithmically

. — — . 8 00 " MAP Computation
Example: Given X=yes, D=no, what is the O Approximate @&, PMAP.-00201027421
. . . - . P(MAP|e)=0,507389567
most probable instantiation of M={A,S}? R O esutisexact.
[_! Sloppy? : Slop: Variable . Value
Width barrier (O=none): 0 ;;.;/r;s(l)(k(eor?l\sm. :?s

. 2MAP Variable... Variable Selection Tool”
A:Visit to Asia?
S:Smoker?

Approximative method to find MAP:

C find ) [
find values ~ |

( Update ) [y +e

» compute MPE and return values
for MAP variables (projecting MPE on
MAP var's)

» but, leads to A=no, S=yes here with
prob ~48%, while A=no, S=no is MAP with prob ~50%

[[3 Text || 2= Code Bandit ( Close )

D:Dyspnoea?
] 0%-yes

I 100% - no
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