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7. Session: 
Inference Algorithms for Bayesian Networks

Reasoning and Decision-Making 
under Uncertainty

Recap‘: drawing inferences

Drawing common inferences through applying four basic queries:
‣ probability of evidence: Pr(e)=?

‣ prior/posterior marginals: Pr(x1,...,xm|e)=?

‣ most probable explanation (MPE): x=? with Pr(x1,...,xn|e)=max

‣ maximum a posteriori hypothesis (MAP): x=? with Pr(x1,...,xm|e)=max

What algorithms are needed?
‣ optimize some or all node values (variable) so as to maximize 

probabilities in the network

‣ calculate probabilities of some or all nodes in the network given values 
of certain nodes (evidence)
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Recap‘: drawing inferences
Variable elimination
‣ combination of summing out variables & multiplying factors (~chain rule)

‣ order can be arbitrary, but differences regarding costs (~number of 
variables in biggest factor created during elimination)

Factor elimination
‣ eliminate all factors except one that contains the query variable(s)

‣ elimination orders become elimination trees (why?)

‣ any elimination trees is valid, but differences regarding costs
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Using elimination trees for computing prior marginal over Q:
‣ pick one node r with Q ⊆ vars(r) as root node

‣ eliminate a factor     if all its neighbors, except the one closer to the 
root, have been eliminated

‣ when a node i is about to be eliminated, it will have a single neighbor j 
and i‘s factor is projected and multiplied into factor of 
- viewed as „passing a message from i to j“

‣ push messages toward the root
‣ when all messages are available in root,

multiply with factor r and project to Q
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Factor elimination as message passing

⇥i



Jointree algorithm

Definition:  A jointree           for a DAG     is a tree     in which each 
node has a label      (called cluster), satisfying the properties:
‣ each cluster is a set of nodes from 

‣ each family* in     appears in some cluster (*node along with its parents)

‣ if a node appears in two clusters           , it must appear in every cluster 
on the path connecting nodes i and j („jointree property“)

Further notes and definitions:
‣ the separator of edge i-j is defined as 

‣ the width of a jointree is the size of its largest cluster minus one

‣ also known as junction trees, clique trees, Markov trees, hypertrees

‣ evidence indicator is a factor over variable X that captures the value of 
X in evidence e:  
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�X(x) = 1 if x consistent with e, 0 otherwise

Sij := Ci \ Cj

Jointree algorithm

Algorithm:
1. construct jointree for a given Bayesian network
2. assign each CPT            to a cluster that contains 

X and U
3. assign each evidence indicator

to a cluster that contains X
4. select a root node that contains the query Q 
5. start eliminating factors (using projecting and 

multiplying) inwards/outwards*
6. finally project cluster in the root node onto Q

*different propagation strategies with different space and 
time complexities

‣ Shenoy-Shafer architecture (Shenoy & Shafer 1990)

‣ Hugin architecture (Jensen et al. 1990)
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Some remarks on elimination algorithms

Performance is strongly influenced by the network structure (e.g. 
number of parents per node, loops, paths between nodes)
‣ thus also called structure-based algorithms

But, the network structure may be simplified
‣ goal: compute Pr(Q,e) for query variables Q, evidence e 
‣ complexity of inference affected by number and location of query and 

evidence var‘s in the network � query structure

‣ network pruning by removing nodes and edges not relevant for (Q,e)
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Recursive conditioning

Idea: simplify a problem by solving a number of cases and combining the 
results to a solution to the original problem (case analysis)

Approach: reduce query on a network into a queries on simpler networks
‣ if var E given as evidence, the network can be pruned

‣ in general, any query Pr(q,e) leads to decomposition into networks Ne
r and Ne

l 
such that
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Recursive conditioning

Recursive conditioning algorithm:
‣ decompose network in a divide-and-conquer fashion, following an 

appropriate cutset

‣ when at leaf node, look up the conditioned CPT

‣ propagate value back according to 

Question (again): what is an appropriate cutset order?
Answer (again): all are valid, some lead to less work
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‣ need to minimize total number of 
considered cases

‣ use decomposition trees: full binary trees, 
leaves are CPTs in the network

‣ useful to employ caching techniques 
(Darwiche, chapt. 8)

Belief propagation

‣ Proposed as exact inference in polytree* networks, later generalized to 
approximative solution for arbitrary networks

‣ trade-off quality with computational costs

Belief propagation algorithm for computing joint marginals Pr(X,e):
‣ identical to (exact) jointree algorithm for jointrees that coincide with 

the polytree network structure

‣ Example:
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*polytree = network with only one 
path between any two nodes



Computing joint marginals Pr(X,e):
‣ node i in jointree has „cluster“ Ci =XU 

(with U parents of X)

‣ edge i-j in jointree corresp. to edge X-Y in network 
has „separator“ Sij=X

‣ „messages“ to eliminate factors:
- from U to X: causal support
- from Y to parent X: diagnostic support 

‣ messages are sent by a node, when it has received
messages from all other nodes
- start with those that do not depend on others

Example: 
‣ Belief propagation toward node D, evidence E=true
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Belief propagation

�X(U)
�Y (X)

Pr(BCD, e) = �D|BC⇥D(B)⇥D(C)�E(D)�F (D)

problem: can lead to „deadlocks“ in non-polytree networks when 
messages are dependent on each other 

solution: iterative belief propagation
‣ assume initial values to each message in the network
‣ propagate beliefs and re-iterate
‣ converge to a „fixed point“ solution

- may generally have multiple fixed points on a given network
- may oscillate on some networks, loop forever
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Belief propagation



Idea: simulate an event according to some probability of occurrence, 
estimate the prob. of this event from its frequency in these simulations

Simulating a Bayesian network:
A Bayesian network induces a distribution Pr(X)
Basic algorithm:
‣ visit each node in topological order
‣ generate value for each node according to Pr(x|u)

‣ end with a sample {x1,....,xn} of n events

‣ estimate probability ^Pr(x) of value x from its frequency in this sample

‣ show that ^Pr(x) converges against Pr(x) with increasing n
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Stochastic sampling

Example
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returned event:
xi = <T,F,T,T>



Sampling relies on taking probability as expectation about a function
‣ expectation value of a function f(X):

‣ variance of a function f(X):  

Direct sampling function: 
‣ let  
‣ then: 

That is, approximating Pr boils down to estimating the expectation
How?
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Stochastic sampling

Ex(f) :=
X

x

f(x) · Pr(x)

V ar(f) :=
X

x

(f(x)� Ex(f))2 · Pr(x)
�2

�̂(x) := 1 if � true at x, 0 otherwise

Ex(�̂) = Pr(�)

V ar(�̂) = Pr(�)Pr(¬�) = Pr(�)� Pr(�)2

µ

Monte Carlo simulation

Principle:
‣ simulate random sample x1, ..., xn from sampling distribution Pr(X)

‣ evaluate function at each instantiation f(x1), ..., f(xn)

‣ compute arithmetic average of attained values: sample mean

Works because of law of large numbers: for function f with expectation    and 
every   >0: 

Monte Carlo simulation using         gives direct sampling:
‣ simulate sample x1,.., xn from Bayesian network
‣ compute values

‣ estimate            using sample mean 
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Avn(f) :=
1
n

nX

i=1

f(xi)

µ
✏

lim
n!inf

P (|Avn(f)� µ| ⇥ �) = 1

�̂(x1), ..., �̂(xn)
Avn(�̂)Pr(�)

�̂(x)



Rejection sampling

Calculate conditional prob. Pr(a|b) with Pr(.) induced by network
Idea:

‣ calculate estimate for Pr(a∧b) and Pr(b):  

‣ take ratio as estimate for Pr(a|b): 
- c1=#samples with a∧b=true, c2=#samples with b=true ➔ (c1/n)/(c2/n)=c1/c2

‣ reject all samples in which b is false: rejection sampling

Example:
estimate P(Rain|Sprinkler=true) from 100 samples; 27 have 
Sprinkler=true, of these 8 have Rain=true, 19 have Rain=false
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Avn(⇤̂), Avn(⇥̂) with ⇤ = � ^ ⇥

Avn(⇥̂)/Avn(�̂)

Rejection sampling

P̂(X|e) estimated from samples agreeing with e

function Rejection-Sampling(X,e, bn,N) returns an estimate of P (X |e)
local variables: N, a vector of counts over X, initially zero

for j = 1 to N do
x←Prior-Sample(bn)
if x is consistent with e then

N[x]←N[x]+1 where x is the value of X in x
return Normalize(N[X])

E.g., estimate P(Rain|Sprinkler = true) using 100 samples
27 samples have Sprinkler = true

Of these, 8 have Rain = true and 19 have Rain = false.

P̂(Rain|Sprinkler = true) = Normalize(〈8, 19〉) = 〈0.296, 0.704〉

Similar to a basic real-world empirical estimation procedure

Chapter 14.4–5 23

True answer: <0.3,0.7>

Importance sampling

Idea: reduce variance due to rare events by sampling from an importance 
distribution Pr‘ emphasizing instantiations consistent with rare event

Monte Carlo simulation using the importance sampling function:

Improves on direct sampling only when Pr‘ emphasizes important events 
no less than Pr

Problem: Finding ideal distribution generally not feasible, but some other 
weaker conditions can be ensured easier and still improve on variance
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�̃(x) = Pr(x)/Pr0
(x) if � true at instantiation x, 0 otherwise



Likelihood weighting
Given evidence e, what is Pr(x|e)?
Idea: generate only samples consistent with e by sampling non-evidence 
var‘s and weighting samples by likelihood they accord with e
‣ consistent estimate, but performance drops with growing evidence
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Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function Likelihood-Weighting(X,e, bn,N) returns an estimate of P (X |e)
local variables: W, a vector of weighted counts over X, initially zero

for j = 1 to N do
x,w←Weighted-Sample(bn)
W[x ]←W[x ] + w where x is the value of X in x

return Normalize(W[X ])

function Weighted-Sample(bn,e) returns an event and a weight

x← an event with n elements; w← 1
for i = 1 to n do

if Xi has a value xi in e
then w←w × P (Xi = xi | parents(Xi))
else xi ← a random sample from P(Xi | parents(Xi))

return x, w

Chapter 14.4–5 25

Example
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Likelihood weighting example
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Query: P(Rain!Sprinkler=true, WetGrass=true) = ??
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Likelihood weighting example
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= weight for event <t,t,t,t>



Markov Chain Monte Carlo (MCMC)

Network is in a state = current assignment to variables

Next state: sample non-evidence variable X given its Markov blanket 
= variables that, when known, make other variables irrelevant to X
‣ Markov blanket of Cloudy is Sprinkler and Rain

‣ Markov blanket of Rain is Sprinkler, Cloudy, WetGrass 
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Markov blanket sampling

Markov blanket of Cloudy is
Cloudy

RainSprinkler

 Wet

Grass

Sprinkler and Rain
Markov blanket of Rain is

Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:
P (x′

i|mb(Xi)) = P (x′
i|parents(Xi))ΠZj∈Children(Xi)P (zj|parents(Zj))

Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

P (Xi|mb(Xi)) won’t change much (law of large numbers)

Chapter 14.4–5 37

Approximate inference using MCMC

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-Ask(X,e, bn,N) returns an estimate of P (X |e)
local variables: N[X ], a vector of counts over X, initially zero

Z, the nonevidence variables in bn
x, the current state of the network, initially copied from e

initialize x with random values for the variables in Y
for j = 1 to N do

for each Zi in Z do
sample the value of Zi in x from P(Zi |mb(Zi))

given the values of MB(Zi) in x
N[x ]←N[x ] + 1 where x is the value of X in x

return Normalize(N[X ])

Can also choose a variable to sample at random each time

Chapter 14.4–5 34

„transition prob.“ of 
moving into new state
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The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

Cloudy

RainSprinkler

 Wet

Grass

Cloudy

RainSprinkler

 Wet

Grass

Cloudy

RainSprinkler

 Wet

Grass

Cloudy

RainSprinkler

 Wet

Grass

Wander about for a while, average what you see

Chapter 14.4–5 35

Initial state 
(random)

MCMC example contd.

Estimate P(Rain|Sprinkler = true,WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain = true, 69 have Rain = false

P̂(Rain|Sprinkler = true,WetGrass = true)
= Normalize(〈31, 69〉) = 〈0.31, 0.69〉

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability

Chapter 14.4–5 36
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MCMC example contd.
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E.g.: visit 100 states:



MCMC - Markov blanket sampling

Because of the transition probabilities, sampling runs into an 
equilibrium in which the time spent in each state is proportional to 
its posterior probability

Transition probability (given the Markov blanket) is:

‣ easily implemented in parallel systems

Main difficulties:
‣ difficult to tell if and when convergence has been achieved

‣ can be wasteful if Markov blanket large, prob‘ doesn‘t change much
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Markov blanket sampling

Markov blanket of Cloudy is
Cloudy

RainSprinkler

 Wet
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Sprinkler and Rain
Markov blanket of Rain is

Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:
P (x′

i|mb(Xi)) = P (x′
i|parents(Xi))ΠZj∈Children(Xi)P (zj|parents(Zj))

Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

P (Xi|mb(Xi)) won’t change much (law of large numbers)
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Markov process

36

Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption: Xt depends on bounded subset of X0:t−1

First-order Markov process: P(Xt|X0:t−1) = P(Xt|Xt−1)
Second-order Markov process: P(Xt|X0:t−1) = P(Xt|Xt−2,Xt−1)

X t −1
X tX t −2

X t +1
X t +2

X t −1
X tX t −2

X t +1
X t +2First−order

Second−order

Sensor Markov assumption: P(Et|X0:t,E0:t−1) = P(Et|Xt)

Stationary process: transition model P(Xt|Xt−1) and
sensor model P(Et|Xt) fixed for all t

Chapter 15, Sections 1–5 4

1856-1922

(changes follow 
fixed law)

transition model

sensor model



Markov process

Need prior probability P(X0) over states at time 0

Then we have:   P(X0,X1,...,Xt,E1,...,Et)=P(X0) ∏i=1..t P(Xi⎮Xi-1)P(Ei⎮Xi)

Example:
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Example

tRain

tUmbrella

Raint −1

Umbrella t −1

Raint +1

Umbrella t +1

Rt −1 tP(R  )

0.3f
0.7t

tR tP(U  )

0.9t

0.2f

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Tempt, Pressuret

Example: robot motion.
Augment position and velocity with Batteryt

Chapter 15, Sections 1–5 5

Inference tasks
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Inference tasks

Filtering: P(Xt|e1:t)
belief state—input to the decision process of a rational agent

Prediction: P(Xt+k|e1:t) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(Xk|e1:t) for 0 ≤ k < t
better estimate of past states, essential for learning

Most likely explanation: arg maxx1:t P (x1:t|e1:t)
speech recognition, decoding with a noisy channel

Chapter 15, Sections 1–5 6

given observations, find sequence of states most 
likely to have generated them (e.g. Viterbi 
algorithm)

(see Russell & Norvig, 
Sect. 15.2 for algorithms)



Dynamic Bayesian networks
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Dynamic Bayesian networks

Xt, Et contain arbitrarily many variables in a replicated Bayes net

0.3f
0.7t

0.9t

0.2f

Rain
0

Rain
1

Umbrella
1

P(U  )1R1

P(R  )1R
0

0.7

P(R  )0

Z1

X
1

X
1tXX 0

X
0

1
BatteryBattery

0

1
BMeter

Chapter 15, Sections 1–5 31

Hidden Markov Model = DBN with a single discrete state variable

Need to give transition and 
senor model (stationary) 
only for first slice Sensor variables Zt, BMetert; 

state variables Xt, Xdott, Batteryt

Exact inference in DBNs

DBNs are Bayesian networks, i.e., we can use our known algorithms

Exact inference: Unroll network to accommodate all observations and run 
exact inference algorithm (e.g. variable elimination)

Costs (factor size) almost always exponential in number of state variables
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Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm
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Problem: inference cost for each update grows with t

Rollup filtering: add slice t + 1, “sum out” slice t using variable elimination

Largest factor is O(dn+1), update cost O(dn+2)
(cf. HMM update cost O(d2n))
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Approximative inference in DBNs
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Particle filtering: ensure a population of samples (“particles”) that
tracks the high-likelihood regions of the state-space 

Algorihm:  create N samples from prior distribution P(X0), then cycle...

1.  Propagate by sampling next state xt+1, given xt and using P(Xt+1|xt)

2.  Weight samples by likelihood it assigns to new evidence P(et+1|xt+1)
3. Resample new N samples from the current population, probability
   that sample is replicated proportional to its „weight“ (no. samples)

Particle filtering

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for et

true

false

(a) Propagate (b) Weight (c) Resample

Rain t Rain t+1Rain t+1Rain t+1

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
105-dimensional state space
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new evidence:
¬ umbrella 

Particle filtering

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for et

true

false

(a) Propagate (b) Weight (c) Resample

Rain t Rain t+1Rain t+1Rain t+1

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
105-dimensional state space
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‣ consistent (proof see 
R&N, Sect. 15.5)

‣ approximation error 
remains bounded over 
time, at least empirically

‣ in practice efficient, yet 
no theoretical 
guarantees (so far)
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Particle filtering performance

Approximation error of particle filtering remains bounded over time,
at least empirically—theoretical analysis is difficult
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Importance sampling with 
likelihood weighting

Particle filtering

widely used for tracking nonlinear systems, especially in vision, self-
localization, or mapping in mobile robots

Particle filtering



Bayes nets inference algorithms - summary

Exact algorithms
‣ Variable Elimination and Factor Elimination
‣ Jointree algorithm
‣ Recursive conditioning

Approximative algorithms
‣ Belief propagation
‣ Stochastic sampling (Monte Carlo simulation)

- direct sampling
- importance sampling, likelihood weighting

‣ Monte Carlo Markov Chain
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