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Making decisions
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Classical A.I. approach (Newell 1982):
Principle of rationality:

"If an agent has knowledge that one of its actions will lead to one of 
its goals, then the rational agent will select that action."



Making Decisions

Question:  When to leave to the airport to catch a flight?
‣ Goal G = catch flight, don‘t be too late
‣ Action At = leave for airport t minutes before flight

Requires to check if an At gets me there on time
‣ purely logical reasoning won‘t work

- A90 will get me there on time if there's no accident on the bridge 
and it doesn't rain and my tires remain intact and .....

- plan success not inferable (qualification problem)

‣ probabilistic reasoning to deal with inherent uncertainty of 
assumptions about actions and events:
- degree of belief:  Pr(A25 | no reported accidents) = 0.06
- can be updated as new (soft or hard) evidence comes in
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But: Degree of belief cannot account for decision-making alone
‣ suppose the agent believes the following:

- Pr(A25 gets me there on time | …) ! = 0.04 
- Pr(A90 gets me there on time | …) ! = 0.70 
- Pr(A120 gets me there on time | …) ! = 0.95 
- Pr(A1440 gets me there on time | …) ! = 0.999

Rational decision-making must depend on two things: 
1. likelihood that a goal can be achieved to a necessary degree
2. subjective and relative assessment of the goals

- can be modeled as preferences for outcomes (risks, costs, rewards, etc.),

decision theory = probability theory + utility theory
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Decision-making



Basics of utility theory - preferences
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Preferences

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations
with uncertain prizes

Lottery L = [p,A; (1 − p), B]

L

p

1!p

A

B

Notation:
A " B A preferred to B
A ∼ B indifference between A and B
A "∼ B B not preferred to A

Chapter 16 3

L=[pi,Ci]  ↔ outcome Ci can occur with probability pi

Key question: how to use such coarse and discrete preferences 
when making decisions?
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Rational preferences

Idea: preferences of a rational agent must obey constraints.
Rational preferences ⇒

behavior describable as maximization of expected utility

Constraints:
Orderability

(A " B) ∨ (B " A) ∨ (A ∼ B)
Transitivity

(A " B) ∧ (B " C) ⇒ (A " C)
Continuity

A " B " C ⇒ ∃ p [p,A; 1 − p, C] ∼ B
Substitutability

A ∼ B ⇒ [p,A; 1 − p, C] ∼ [p, B; 1 − p, C]
Monotonicity

A " B ⇒ (p ≥ q ⇔ [p,A; 1 − p,B] "∼ [q,A; 1 − q,B])

Chapter 16 4

Agent cannot avoid deciding

Indifferent between lottery A 
vs. C, and getting B for sure

Lotteries with comparable 
prizes are comparable

From preferences to utility functions



From preferences to utility functions
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Maximizing expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given preferences satisfying the constraints
there exists a real-valued function U such that

U (A) ≥ U (B) ⇔ A #∼ B
U ([p1, S1; . . . ; pn, Sn]) = Σi piU (Si)

MEU principle:
Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe

Chapter 16 6

Rationally constrained preferences are a basic property of rational agents. 
Then, the existence of a utility function follows from two principles:

Rational Utility 

Expected Utility

That is, a continuous utility function can be formulated in accord with the 
preferences. This allows for modeling decision-making as utility maximization.
➔ Acting rationally when trying to maximize the expected utility

Problem often:  The preferences/utilities need to be defined carefully

Example
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Expected Utility

You are asked if you wish to take a bet on the outcome of tossing a fair coin. If
you bet and win, you gain £100. If you bet and lose, you lose £200. If you don’t
bet, the cost to you is zero.

U(win, bet) = 100 U(lose, bet) = �200

U(win, no bet) = 0 U(lose, no bet) = 0

Our expected winnings/losses are:

U(bet) = p(win)⇥ U(win, bet) + p(lose)⇥ U(lose, bet)

= 0.5⇥ 100� 0.5⇥ 200 = �50

U(no bet) = 0

Based on taking the decision which maximises expected utility, we would therefore
be advised not to bet.

www.cs.ucl.ac.uk/staff/D.Barber/brml
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Example
Utility of Money

You have £1, 000, 000 in your bank account. You are asked if you would like to
participate in a fair coin tossing bet in which, if you win, your bank account will
become £1, 000, 000, 000. However, if you lose, your bank account will contain
only £1000. Should you take the bet?

U(bet) = 0.5⇥ 1, 000, 000, 000 + 0.5⇥ 1000 = 500, 000, 500.00

U(no bet) = 1, 000, 000

Based on expected utility, we are therefore advised to take the bet.
Utility of Money

In reality few people who are millionaires are likely to be willing to risk losing
almost everything in order to become a billionaire.

This means that the subjective utility of money is not simply the quantity of
money.

Being ‘better o↵’ (not in time, but in relation!)
My personal belief is that the ‘subjective utility of money’ is the probability that
your income exceeds someone else’s

p(x > y) =

Z

y<x

p(y) = cumpdf(x)

where p(y) is the distribution of incomes in your comparison population.

www.cs.ucl.ac.uk/staff/D.Barber/brml

Probabilistic decision-making
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Note: a non-deterministic action can have several outcomes Resulti(A)

Prior to executing A, the agent needs to...
1.   determine the probabilities P(Resulti(A)|Do(A),E)
2.   calculate the expected utility of A, given evidence E:
      EU(A|E)=∑i P(Resulti(A)|Do(A),E) U(Resulti(A))
      with U(S) utility function of state S
3.   pick action A that maximizes the EU

Principle of maximum expected utility (MEU)
An agent is rational iff it chooses the action that yields the highest 
expected utility, averaged over all possible outcomes of the action



s0

s3s2s1

A1

0.2 0.7 0.1
100 50 70

U(S0) = 100 x 0.2 + 50 x 0.7 + 70 x 0.1
          = 20 + 35 + 7
          = 62

One State/One Action Example

s0

s3s2s1

A1

0.2 0.7 0.1
100 50 70

A2

s4
0.2 0.8

80

• U1(S0) = 62
• U2(S0) = 74
• U(S0) = max{U1(S0),U2(S0)} 
             = 74

One State/Two Actions Example



s0

s3s2s1

A1

0.2 0.7 0.1
100 50 70

A2

s4
0.2 0.8

80

• U1(S0) = 62 – 5 = 57
• U2(S0) = 74 – 25 = 49
• U(S0) = max{U1(S0),U2(S0)} 
             = 57

-5 -25

Introducing Action Costs

Using causal models for decision-making

Possible consequences of actions (when executed under given 
information about the world) and their probabilities can be inferred 
using causal models.
‣ specify how observations change degrees of belief about causally linked 

state variables: P(xj | xi)

‣ thus represent evidential causal structure

Caution: Be careful when using causal models for decision-making!
‣ need to infer belief states that result from (possible) actions

‣ but actions are interventions, i.e. external changes to the world, not 
brought about by causal links

‣ knowledge about world state due to actions differs from knowledge due 
to some sort of evidence
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Interventions

Decision-making includes assuming to take actions. This changes the 
causal model of the world -- it doesn‘t behave as normally observed!

➔ Interventions: formalized using the do(x) operator
‣ simplest („atomic“) intervention: variable forced to take a value

- do(Xi = xi)  or simply do(xi)
- sets variable Xi, leaving all other mechanisms untouched,
- PLUS new network structure with all links from Pa(Xi) to Xi pruned

‣ new model yields causal effect of Xi on Xj when solved for 
distribution of Xj
- we write:  P(xj | ^xi) or P(xj | do(xi))
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Decision theory

Can no longer use „evidential decision theory“ 
‣ treats actions as ordinary events and encourages decision-making 

based on evidence an action would provide
‣ maximizes EU based on

Instead, we need to use a „causal decision theory“
‣ instructs agents to choose x that maximizes EU based on

 

‣ action-specific conditionalization for any further evidence
‣ derive degrees of beliefs from new causal model
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U(x) =
X

y

P (y|Xi = x,E)U(y)

U(x) =
X

y

P (y|do(Xi = x), E)U(y)



How to determine causal effects?

Assume: Causal diagram G, wish to estimate effect of do(X=x) on a set 
of variables Y, where X and Y are both subsets of a variable set V
‣ P(y|^x)=?  from a sample estimate of P(v)

Back-door criterion (BDC):  Variables Z are „back-doors“ for the 
causal influence of Xi on Xj, if

(I) not descendants of Xi in Z
(II) Z blocks (d-seperates) every path between Xi, Xj that contains 

arrow into Xi

That is, Z captures the spurious (back-door) paths. If Z satisfies BDC 
relative to (X,Y) then
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P (y|x̂) =
X

z

P (y|x, z)P (z)

Example: Back-Door Criterion
‣ Z1={X3,X4}, Z2={X4,X5} meet the BDC
‣ Z3={X4} not, because the path (Xi,X3,X1,X4,X2,X5,Xj) is not 

blocked, i.e. even if X6 and X4 given, Xi and Xj are still dependent.
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Causal effects



Front-Door Criterion

‣ Z does not satisfy BDC

‣ measuring Z can enable consistent estimate of P(y|^x)
- P(x,y,z,u)=P(u)P(x|u)P(z|x)P(y|z,u)   ➔ intervention do(x)
- P(y,z,u|^x)=P(y|z,u)P(z|x)P(u)     ➔ summing over z and u

-  

‣ Can eliminate all unobserved variables from r.h.s using

‣ So, can estimate effect of X on Y via mediating („front-door“) variable Z
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Causal effects

P (y|x̂) =
X

z

P (z|x)
X

u

P (y|z, u)P (u)

X

u

P (y|z, u)P (u) =
X

x

X

u

P (y|z, u)P (u|x)P (x)

=
X

x

X

u

P (y|x, z, u)P (u|x, z)P (x) =
X

x

P (y|x, z)P (x)

P (y|x̂) =
X

z

P (z|x)
X

x

0

P (y|x0
, z)P (x0)

U

X Z Y

Front-door criterion (FDC):  Variables Z are „front-doors“ for the 
causal influence of X on Y, if

(I) Z intercepts all direct paths from X to Y
(II) all back-door paths from X to Z are blocked
(III) all back-door paths from Z to Y are blocked by X

‣ captures the direct (front-door) paths via two-step application of 
back-door paths between X and Z, and between Z and Y

If Z satisfies FDC relative to (X,Y) and P(x,z)>0, then causal effect of X 
on Y is given by

20

Causal effects

P (y|x̂) =
X

z

P (z|x)
X

x

0

P (y|x0
, z)P (x0)



Example: smoking & genotype theory

What about smoking (X) and lung cancer (Y)?
‣ smoking industry: „cancer solely due to some genotype (U)“
‣ does amount of tar in lung (Z) satisfy the FDC ?

- condition (i): assume that smoking has no effect on lung cancer except 
through tar deposit

- condition (ii)+(iii): assume that genotype has no effect on tar deposit 
(except indirectly through smoking), and no other factor affecting tar 
deposit has influence on smoking

- condition P(x,z)>0: high levels of tar are not only the result of smoking, 
but also of other possible factors, and tar maybe absent in some 
smokers

➔ How to assess whether smoking increases risk of cancer?
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Example

22

Hypothetical
& unrealistic
data set 

Probability that a 
random person will 
get cancer when non-/
smoking?
➔ may use FDC along 
with „do-calculus“



Probabilistic decision-making

Problem: How to determine the optimally achievable expected utility 
together with the corresponding action (action sequence)?

Complex Problem -- even if you had a complete model of actions, 
states & utilities, quickly becomes computationally intractable. Truly 
rational agents take into account the utility/costs of reasoning as well.
‣ Bounded rationality (Simon, 1957)

Nevertheless, great progress has been made and we are able to solve 
much more complex decision-theoretic problems than ever before
‣ Decision Trees -- ordered action sequences

‣ Bayesian Decision Networks -- partially ordered action sequences

‣ Markov Decision Processes -- general orderless action policies

Decision Trees
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Decision Trees

Consider the decision problem as to whether or not to go ahead with a fund-raising
garden party. If we go ahead with the party and it subsequently rains, then we will
lose money (since very few people will show up). If we don’t go ahead with the
party and it doesn’t rain we’re free to go and do something else fun.

p(Rain = rain) = 0.6, p(Rain = no rain) = 0.4

U (party, rain) = �100, U (party, no rain) = 500

U (no party, rain) = 0, U (no party, no rain) = 50

Should we go ahead with the party? Since we don’t know what will actually
happen to the weather, we compute the expected utility of each decision:

U (party) =
X

Rain

U(party, Rain)p(Rain) = �100⇥ 0.6 + 500⇥ 0.4 = 140

U (no party) =
X

Rain

U(no party, Rain)p(Rain) = 0⇥ 0.6 + 50⇥ 0.4 = 20

Based on expected utility, we are therefore advised to go ahead with the party.

www.cs.ucl.ac.uk/staff/D.Barber/brml



Decision Trees

Build a tree containing
‣ chance nodes
‣ decision nodes
‣ utility nodes

Explicit enumeration of possible 
choices and their order (action 
sequences):
‣ begin with leftmost choice
‣ probabilities on links out of 

chance nodes
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Decision Trees
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A decision tree containing chance nodes (denoted with ovals), decision nodes
(denoted with squares) and utility nodes (denoted with diamonds). A DT is not a
belief network. A DT is an explicit enumeration of the possible choices that can be
made, beginning with the leftmost decision node, with probabilities on the links
out of ‘chance’ nodes. www.cs.ucl.ac.uk/staff/D.Barber/brml

Solving a Decision Tree

Work backwards from leaves: 
‣ chance parent is expectation of its children
‣ decision parent is max of its children
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Solving a Decision Tree
Working backwards from the leaves: A chance parent is the expectation of its
children. A decision parent is the max of its children:
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�100⇥ 0.6 + 500⇥ 0.4 = 140

0⇥ 0.6 + 50⇥ 0.4 = 20

max(140, 20) = 140

Solving a Decision Tree
Working backwards from the leaves: A chance parent is the expectation of its
children. A decision parent is the max of its children:
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www.cs.ucl.ac.uk/staff/D.Barber/brml



Party-Friend Problem
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The Party-Friend problem

If we decide not to go ahead with the party, we will consider going to visit a friend.
In making the decision not to go ahead with the party we have utilities

U

party

(no party, rain) = 0, U

party

(no party, no rain) = 50

U

party

(party, rain) = �100, U

party

(party, no rain) = 500

p(Rain = rain) = 0.6, p(Rain = no rain) = 0.4

The probability that the friend is in depends on the weather according to

p(Friend = in|rain) = 0.8, p(Friend = in|no rain) = 0.1,

The other probabilities are determined by normalisation. We additionally have

U

visit

(friend in, visit) = 200, U

visit

(friend out, visit) = �100

with the remaining utilities zero. The two sets of utilities add up so that the
overall utility of any decision sequence is U

party

+ U

visit

.

Decision Trees can get unwieldily even for simple problems.

Need a more compact graphical representation...
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Party-Friend Problem
A bigger DT
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DTs can get very unwieldily even for simple problems. Need a more compact
graphical description.


