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Abstract

Recently, Morgenstern et al. have proposed a new mathemat-
ical definition of sequence alignment (Morgenstern et al.,1996).
In this paper, we discuss this definition in more detail. We
demonstrate that it provides an appropriate conceptual frame-
work in which problems arising in the context of sequence align-
ment can be treated systematically.



1 Introduction

In the standard theory of sequence alignment, an alignment of N sequences
$1,...,8n 1s defined as a matrix, whose rows are so-called ‘padded sequences’
s},..., sy, which are obtained from the original sequences by insertion of ad-
ditional characters designated as ‘blanks’; ‘gap characters’ or ‘neutral elements’
(cf. Waterman, 1995; p. 186).

This formal definition corresponds to the way alignments are constructed
by standard alignment algorithms: Following a method developed in 1970 by
Needleman and Wunsch (Needleman & Wunsch, 1970), alignments are con-
structed by inserting gaps into sequences (and by penalizing them by so-called
gap penalties).

This point of view clearly is appropriate if the sequences in question are
closely related and only a few gaps have to be inserted to align them properly.
However, in general, related sequences may share only limited regions of similar-
ity, separated e.g. by introns in DNA sequences or by loop regions in proteins.
In such cases, the classical alignment definition has a certain drawback, at least
from the theoretical point of view: the way gaps may have to be inserted into
the sequences to highlight the related parts of the sequences properly, is by no
means unique.

Consider e.g. the sequences s; = abedddddfgh and sy = abceefgh. A mean-
ingful alignment of these sequences will certainly align their first three as well
as their last three letters — but it seems pointless to align the d’s and e’s in the
middle of the sequences, since these parts of the sequences share no similarity
at all.

If we want to describe such an alignment in standard terms, there are several
matrices all of them describing essentially the same alignment (see Figure 1,
alignments A; — As).

To avoid such ambiguities, we propose another definition of what should
be called an alignment. While the standard definition focuses on the gaps
introduced into the sequences — i.e. on the non-aligned residues —, we define an
alignment by specifying exclusively the aligned residues, and we simply ignore
the non-aligned residues in our definition.

In our exposition, we will freely use standard terminology from basic set the-
ory (including standard terminology referring to binary relations, in particular
equivalence relations and partial (quasi-)orders, defined on a set X) as recalled
in the Appendix of this note. In addition, the Appendix will also provide the
proof for a number of specific facts which we will require in our exposition and
which are not yet standard knowledge or folklore. This way, our exposition can
be kept concise while those facts can be established within a simultaneously
more natural and considerably more general environment.

Remark: While designing the concepts and establishing the proofs dis-
cussed in the Appendix, it became apparent that an even more general notion
of what really is an alignment should be studied which encompasses the two



concepts discussed here as its two extreme cases and allows for even more trans-
parent and straight forward proofs of all the basic facts needed to be established
in this context. This notion will be presented and discussed in a forthcoming
paper entitled "What really are alignments?’.



2 Alignments as Equivalence Relations

In this section, we give a formal mathematical definition of what we want to
call an alignment, and we draw some immediate conclusions from this definition.
We assume familiarity with the basic concepts of the mathematical theory of
sets and relations (see for instance Bourbaki, 1968).

Let us consider a finite set .4, called the alphabet. The disjoint union

[ee]
Jar =
n=0
is called the sequence space over A. Given an alphabet A, any map
s=s7:]—> A"

from a (finite) index set I into A* is called a sequence family (over A). For every
i € I, we denote by L; the length of the sequence s(i), i.e. the unique number
n € INg (:={0,1,...}) with s(é) € A". For simplicity, we write s; rather than
s(7) to designate the i-th sequence.

The site space of a sequence family sy is now defined to be the set

§=8(sr) = {[ili] i € ,1 < j < L)

If I’ is a subset of I, we denote the restriction sy|I’ by sp» and we denote S(sy)
by S(I'). In addition, for i € I, we write S(7) instead of S({i}), so S(i) is the

set of all sites belonging to the i-th sequence:
S() = {lilj] 1< < Li}.

To describe an alignment of a sequence family s; by pointing out which residues
are aligned with each other — rather than by focusing on where to introduce
gaps —, we now define an alignment of sy as a binary relation A defined on the
site space § and we’ll write ([i|4], [¢'|7']) € A if we want to express that the j-th
site of the i-th sequence is aligned with the j’-th site of the #/-th sequence.
Obviously, the relation A is symmetrical as well as transitive provided we
consider each site [i|j] € S as being aligned with itself, that is, we assume A also
to be reflexive. In other words, we assume an alignment A to be an equivalence

relation defined on the site space &, and we will also write mréy instead of
(z,y) € A for any pair z,y € S of aligned sites.

On the other hand, we do not want to regard every equivalence relation
defined on § as an alignment of the sequence family s;. We require an alignment
to be ‘consistent’ in a certain sense with the linear order of the sites in the
individual sequences. It is therefore convenient to define a certain partial order
‘<’ on the site space &, the so-called ‘direct sum’ of the linear orders given on
the single sequences, which is defined by

[ilj] = [17] & i=4iandj<j"



(The relation ‘<’ corresponds to the ‘implicit constraints’ introduced by Myers
et al., 1996.)

An alignment A extends the partial order ‘<’ to a quasi partial order ‘<4’ on
the set S which is given as the transitive closure of the union A U < (note that
=< as well as A are binary relations defined on the site space 8, that is, they are
subsets of the cartesian product S$?, so we may apply the usual set-theoretical
operations to them). In other words, for any two sites z, y € S, we write ‘¢ <4 ¥’
if and only if there exists a chain z = zg, 1, ...,z = y of sites in § with either
;1 =< x;orTi_q 2 z; for each i € {1,...,k} (see Figure 2). Now we can define
precisely what ‘consistent with the linear order of the sites in the individual
sequences’ means: For every ¢ € I, the restriction of the extended quasi order
= to the subset S(7) has to coincide with the ‘original’ or ‘natural’ linear order
relation defined on S(7). In other words, for every i € I and j,5' € {1,..., L;},
we must have [7|j] <4 [#|7'] if and only if j < j’ holds.

In formal terms, we propose

Definition 1  (a) For a binary relation R defined on a set X, we denote by
R; its transitive closure and by R, its equivalence closure, i.e. R;
and R, are the smallest transitive relation and the smallest equivalence
relation, respectively, which are defined on X and contain R.

(b) Let s; be a sequence family. On the site space S = S(sy), we define a
partial order ‘<’ by

[l S [i'] ©dep i=1i andj <.

(c) For every binary relation R defined on the site space S and for everyxz € S
and 1 € I, we define

<r = (R.U=);=(RUR'U=),
<r = =r\ (ZrN=3'),
b(i|x,R) = min(j€{l,...,L;+1}|j=Li + 1 or x < [i|j]),
and
b |z, R) = max(j €{0,...,Li} |j =0 or[ilj] 2r x).

(d) An equivalence relation A defined on the site space S is called an align-
ment of the sequence family sy if, for every ¢ € I, the restriction of the
relation < 4 to the subset S(i) coincides with the linear order given on S(i)
in which case A will be called (X —)consistent.

More generally, we’ll say that a binary relation R C 8% induces an align-
ment of sy if its equivalence closure R, is an alignment of sy in which case
we’ll also say that R is (X —)consistent.



Clearly, R is consistent if and only if bT (i | z, R) < b+(i | z, R) holds for all

z € S andi € I, and in this case we have I‘%[le] forsomeje {1,...,L;}
if and only if j = b7(i | z,R) = bt(i | z, R) holds. Consequently, we will
refer to these numbers as the consistency bounds (of i relative to x and

R).

(e) Finally, for any subset I' C I, an alignment A is defined to be an I'-maximal
alignment if S(I')? is contained in <4 U j;‘l.

Note that z,y € §,1 € I and z <g y implies
br(i |z, R) < b*(i |y, R)

and
b'(i |z, R) <b'(i | y, R).

The following fact is established in the Appendix:

Lemma 1 Let A be an equivalence relation defined on the site space S = S(sr)
of some sequence family s;. Then each of the following four properties implies
the other three:

(a) A is an alignment of sy.
(b) Both of the following two conditions hold:

A, (1)
Ds (2)

<an=3'

-
An=x C

(Recall that for any set X, Dx denotes the diagonal relation
{(=, )]z € X})

c¢) There exist a partially ordered set 3 < &) and a strictly monotonousl
p y 28 y y
mcreasz'ng mappz'ng

¢: (S, %) = (S, 25)

such that, for all z,y € S, ¢(z) = ¢(y) holds if and only z'f:bfé/y holds,

r.e. x 1s aligned with y.

(¢’) There exist a linearly ordered set (S,<g¢) and a strictly monotonously
mcreasing mapping ~

$:(S,2) = (S,25)

such that for all x,y € S, ¢(x) = ¢(y) holds if and only if x 2 y holds.



Since the ‘padded sequences’ s}, ..., s} used in the standard alignment defini-
tion may be regarded as strictly monotonously increasing maps S(1) = IV, .. .,
S(N) — IN, our definition is closely related to the standard definition (cf. Chan
et al., 1992); however, we avoid the above mentioned ambiguity.

More precisely: We may divide the entity of all standard, i.e. matrix-based
alignments of a given sequence family sy into equivalence classes such that two
‘matrix alignments’ A and B are equivalent if and only if the two corresponding
maps ¢4 : S(sy) = IN and ¢p : S(sy) = IN satisfy the condition pa(z) =
valy) <= ¢p(x) = ¢p(y) for all z,y € S(sr) or — equivalently — B may be
obtained from A by permuting successively pairs of two consecutive columns for
which each sequence has at least one gap among its entries in those two columns.
For instance, the first three ‘matrix alignments’ shown in Figure 1 belong to one
single equivalence class. Clearly (see also the Appendix), there is a one-to-one
correspondence between these equivalence classes and the alignments of s; as
defined in Definition 1 — the /-maximal alignments corresponding exactly to
those equivalence classes of standard alignments which consist of just one such
alignment only.



3 Alignments and Consistency

How can we decide algorithmically whether or not a given binary relation A
defined on the site space § = S(sy) of some sequence family sy induces an
alignment? Clearly, we might start with Ag := () and then proceed by succes-
sively enlarging the subset in question by pairs (z,y) from A, always checking
for consistency. More generally, we may assume that we are given some pairs
(z1,11), (T2, ¥2), - -, (zk, yx) € 8? of elements from S, and that we may want
to construct an alignment A of sy recursively in a greedy fashion by putting
Ag := 0 as above and then putting

A, = { (A1 U{(zk,yx) e, if Agm1 U{(zx,yx)} is consistent,

Ag_1, otherwise

(cf. Abdeddaim, 1997 a/b; Morgenstern et al., 1996.) In both cases, we need
to know whether or not the union of an alignment A C 8? and a single pair
(#,9) € 8? is consistent. This question is answered by Proposition 1 which is
also established in the Appendix:

Proposition 1 Let sy be a sequence family, let A be an alignment of sy, assume

2,98 =3S8(s1), and put A" := AU{(2,9)}. Then

xr =4y, or
<4y = (x 4 & and § <4 y), or
(x <4y and & =<4 y).

In particular, A’ is consistent if and only if neither & <4 y nor § <4 & holds.

Corollary 1 A s not properly contained in any other alignment if and only if
A 1s I-mazimal, 1. e. if we have

§*==Zau=y!
wn which case <4 ts a total quasi-order.

(Recall that a relation R on a set X is called total if any two elements of X are
“comparable” via R, i.e. if one has RUR™! = X?2))

Corollary 2 Given an alignment A, an element £ € S and an element y =
[i1]71] € S, the relation A" := AU{(&,9)} is a proper consistent extension of A
if and only if one has bt (iy | #,A) < j1 < bH(i | &, A); moreover, whether or
not A’ is consistent, its consistency bounds can be computed, for any x € S and
1 € I, by the simple formulae

min(b*(i | z, A),b+(i | g, A)) if z <a %,
br(i| 2, A') =< min(b(i |z, A),b4(i | 2, A)) if z <43, (3)
b4 (i | z, A) else



and

max(b (i | 2, A),b7(i | 9,4)) if & <42,
b(i| 2, A) =< max(b?(i |z, A),bT(i | 2,4)) if§=<a =, (4)
bT(i | z, A) else,

- note that this is well-defined as x <4 & and 2 <4 § (or & <4 z and § <4 y)
implies

min(b*(i | 2, A),b*(i | g, A)) = min(bH(i | 2, A), bH(i
(or
max(bT(i | :L‘,A),bT(i

2, A)) = bH(i | 2, A)

£, A) = b(i | 2, 4),

g, A)) = max(bT(i | z, A), b

respectively).

Clearly, these formulae allow us to formally set up the above mentioned
recursive procedure for constructing alignments greedily for any given sequence
(z1,¥1), ..., (zk, yx) of pairs of elements from S that we wish to align.

If the sequence family under consideration consists of NV sequences si,...,sn
of total length L := L+ ...+ Ly = #8, equations (3) and (4) allow us to
compute the new values of b* and bt in O(N L) time and space whenever a new
pair (z;, ¥;) is included into the growing alignment.

Remark: Note that, with z = [ig, jo], (3) is equivalent with

br(i | g, A) if bT(ig | [4, b (3, 9)] < jo < bT(ig | 2)
bix, ATy =S bHi | &, A) ifbT(io | [i,bY(i, 2)] < jo < bT(i0 | 9)
bHi |z, A) else

and that (4) can be rewritten in a similar way which allows for a rather fast
updating procedure, essentially of the order N2,

Based on a graph theoretical approach, Abdeddaim has proposed an algo-
rithm which — consistency provided — includes the pairs (z1,31), ..., (zk, ¥k)
successively into a growing alignment by computing the values of b* and bt ev-
ery time a new pair (z;, ¥;) is included into the alignment. This algorithm takes
O(kL+ L?) time and O(N L) space for processing all pairs (z1,y1), - .., (2, Yk)-
(Abdeddaim, 1997 b).

Next, we generalize formulae (3) and (4) to the case in which an alignment
A is extended by incorporating an arbitrary pairwise alignment P. To this end,
we define:

Definition 2 Let s; be a sequence family. An alignment P of s; is called a
pairwise alignment if there exist i,j € I so that P is the equivalence closure of
a consistent relation R = {(z1,11), ..., (zk,yx)} C S(i) xS(j) (or - equivalently
— if using the notation introduced in the Appendir, we have girth< (supp(P —
Ds)) <2).



So let A be an arbitrary alignment, assume (z1,41), ..., (zg, yx) € S(7) xS(j)
such that P := {(z1,%1),..., (Zk, yk) }e is a pairwise alignment and assume that
A’ := AU P is a consistent extension of A.

Then, applying Proposition 1 and Corollary 2 repeatedly, we get

Corollary 3 Forallz,y € S and i € I, one has
r =27y, or

r =<y = (x Sa zx and y, X4 y for some k € {1,...,k}), or
(x Sa yp and z,; Sa y for some k € {1,...,k})

as well as
b |z, A) = min({b*(i | 2, A)}U {min(b*(i | 2., A), ¥ (i | ye, A)) |
ke{l,...,k} and x <4 2, or . <4 Yx})
and
bT(i | z, A" = max({bT(i | z,A)}U {max(bT(i | xﬁ,A),bT(i | Ui, A)) |

ke€{l,....k} and z,, <4 x or y, <4 z})

10



4 Consistency of Pairwise Alignments

Recently, Stoye has shown the following fact concerning consistency of pairwise
standard alignments: Consider a set of N sequences and pairwise standard
alignments A; ; for all 1 < i< j < N. If any three of these pairwise alignments
are consistent, then all of them are simultaneously consistent (Stoye, 1997).

It is remarkable that this result depends crucially on the underlying align-
ment definition: Generally, triplewise consistency of a family of pairwise align-
ments in the sense of Definition 2 does not imply simultaneous consistency of
the family. Consider, for instance, the site space

S:=A{[i|j]:1€{1,...,4},j € {1,2}}
and the pairwise alignments

DsU{([{]1),[#|12])}e if ¢ =i+ 1 (mod 4),
Pyo= !
' Ds otherwise.

Here, any three of the pairwise alignments are consistent — but the family
(P;i)iire{1,... 4} is not consistent.

The point is that standard alignments contain more information than con-
sistent equivalence relations in the sense of Definition 1. We will discuss this
difference in the last section of this paper.

However, the following theorem states that triplewise consistency of pair-
wise alignments does imply simultaneous consistency if pairwise alignments are
mazimal in a certain sense.

Theorem 1 Let sy be a sequence family and suppose that for every pair (i, j) €
I? there is a pairwise alignment P; ; of the sequences s; and s; such that the
following two conditions hold:

(a) For every pair (i,j), the alignment P; ; is {1, j }-mazimal.
or all,j, k €l, the family (F; ;, B i, P; i) 15 consistent.
b) For alli,j,k €I, th ly (Pij, Pig, Pig) i '

Then the union P; ; 1s an alignment of S.

ijel
Proof: For any z,y € S with, say, x € s; and y € s;, we have by definition
either  <p, ; y or y <p, ; . In other words, we have
_ -1
S=J(=zr, U=l
ijel
Now our assertion follows from Corollary 7. a

Definition 3  (a) Let sy be a sequence family. For every alignment A of sy
and every i,j € I, we define

T; j(A) = (AN (S(i) x 8(j))). - (5)

11



(b) Consider a real-valued, monotonically increasing function w defined on the
set of all pairwise alignments of s; and s;,1,j € I. A pairwise alignment
P of s; and s; is called a (w-)optimal alignment of the sequences s;
and s;, if w(Q) < w(P) holds for all pairwise alignments Q of s; and s;.

(c) If the set I is finite, we call an alignment A of s; a (sum-of-pairs) (w-)
optimal alignment of sy, if

Y w(Tii(B) < ) w(Tij(A) (6)

i,j€l i,j€l
holds for all alignments B of sy.

Remark 1 T; ;(A) is the largest pairwise alignment of the sequences s; and s;
contained in A.

Theorem 2 Consider a finite set I, a sequence family sy, a real-valued, mono-
tonically increasing function w defined on the set of all pairwise alignments of
s; and s;,1,7 € I, and let P; ; be a pairwise alignment of the sequences s; and
s; for every i, j € I.

If for every i,j € I, P;; is a optimal alignment of the sequences s; and s;
and if the family (P; ;) is consistent, then

A= U Piyj
i,j€I .

is a (w-)optimal alignment of sy.

Proof: The inclusion P; ; C T; ;(A) implies w(P; ;) = w(T; ;(A)) forall 4, j € I.
Therefore, we have for every alignment B of the sequence family s;

ST w(Ti;(B) < D w(Piy) =Y w(Ti;(A)). (7)

i,j€l i,jel i,jel
O

Note that this last observation also holds for optimal ‘standard’ alignments
(Stoye, 1997; Lemma 2.15).

12



5 Discussion

Listing pairs of — presumably — homologue residues or sites is a natural way of
describing sequence alignments (see e.g. Smith and Waterman, 1981; Kruskal,
1983; Vingron and Argos, 1991; Miller, 1993; Miller et al., 1994). If two se-
quences are to be aligned, some authors call such a list of pairs of residues a
‘trace’ rather than an ‘alignment’ and use the term ‘alignment’ only for standard
‘matrix alignments’ (cf. Kruskal, 1983; Waterman, 1995). Kececioglu has used
the language of graph theory to generalize the definition of a ‘trace’ to multiple
sequence comparison (Kececioglu, 1993).

Kruskal remarks that ‘alignments are richer than traces’ since they contain
some information about the order of adjacent gaps which is not contained in
a mere listing of aligned pairs of residues (see Figure 1). However, it seems
doubtful if this information can be inferred from sequence comparison alone —
so 1f sequences are compared solely on the basis of their primary structure, it
seems to be adequate if we try to avoid or, at least, make no assertions about
the order of adjacent gaps and confine us to pointing out which residues of the
sequences can be expected to be homologous.

Mathematically spoken, a set of aligned pairs of residues or sites is a binary
relation. In the case of pairwise alignments, this relation can be regarded as
a relation between the set of sites of the first sequence and that of the second
one — i.e. as a subset of the cartesian product S(1) x §(2) (Miller et al., 1994).
However, since a direct generalization of this definition to multiple alignments
is somewhat complicated, we prefer to define an alignment as a binary relation,
defined on the set S(sr) of sites of all sequences.

Since the linear order relations on the single sequences can be described by
one single partial order < on 8(sr) as well, we have a natural and uniform set-
ting to treat questions arising in the context of sequence alignment — especially
questions concerning the consistency of alignments. The concepts of the theory
of sets and relations provide a convenient mathematical framework which allows
a simple and transparent treatment of these questions.

Taylor (1996) deplores the absence of a method to assess the quality of re-
motely related sequences that does not depend on the unreliable exact location
of gaps. By successively adding consistent gapfree pairs of segments of the se-
quences to an initially empty set, algorithms based on our alternative alignment
definition can be developed which help improving this situation.

13



A Some more Definitions, Results, and Proofs

In the following, we consider binary relations 7, R, A, B, ... defined on a set X.
For any such relations R, Ry, Rz C X2, we put (as usual)

R = {(y,z) € X? (z,y) € R}

and

RioRy = {(z,y) € X2 | there exists some z € X
with (z,z) € Ry and (z,y) € Ra}.

Recall that R is called reflexive (or symmetric or transitive), if Dx C R (or
R= R7!, or Ro R C R, respectively) holds.

Now, assume 7" C X2 to be a transitive binary relation, and A, B C X? to
be equivalence relations defined on X. We define A to be T-consistent if the
assertions

(A1) Tn T-1C A
and
(A2) Tan T-'CcT

hold true, where Ty denotes the smallest transitive relation defined on X which
simultaneously contains 7" and A. More generally, we define a binary relation
R C X? to be T-consistent if the equivalence relation

R(T) = (RU(TNT™ YY),

is T-consistent, and we define Tg := Tg(1).
Clearly, if TNT~! C A C B holds, then A is necessarily 7T-consistent
whenever B is T-consistent in view of

TyNT ' CTgNT ' CT.
More precisely, we have

Theorem 3 For X, T, A and B as above with A C B, the following three
assertions are equivalent:

(i) B is T-consistent and T N'T~! is contained in A,
(ii) Tp NT;" is contained in A and ANT~" is contained in T,
(iii) B is Ta-consistent and A is T-consistent.

Proof:

14



(i) = (ii): Clearly, T N T~! C T implies ANT~! C T. Now, assume
(z,y) € Tp and (y,z) € T4 for some z,y € X. Then there exist elements 2 :=

T, 21, Ty = Y, B, ., Ty o= & With (2;-1,2;) € BUT fori=1,...,nand
(zi—1,2i) € ANT for i = n+1,...,m. Clearly, this implies (z;_1,2;) € BUT
foralli=1,...,m and, hence, also (z;,z;_1) € Tp. So, foralli=n+1,...,m,
we have

(2i,2i21) €Tp N (AT UT™) = (Tp NA U (T NT™) CAU(TNTT) C A

which implies (y, ) € A as claimed.

(ii) = (iii): Clearly, the first assumption implies
TNT'CTunT,' CACB

as well as
T NTy' CACTa,

so 1t implies in particular that B is Tx-consistent. Similarly, the first and the
second assumption together imply

TAaNT ' CTpNTy'NT'CANT ' CT,

so A 1s also T-consistent.

(iii) = (i): Clearly, TNT~! C A and A C B implies
TNT!'C B,
while Tg N Tgl C Ty and T4 N T~ C T together imply
TeNT ' =TgNT'NT ' CTAaNTCT.
O

Corollary 4 Given X, T, and A as above, then A is T-consistent if and only
if TaN TXI is contained in A and ANT" is contained in T.

Proof: Put B := A in Theorem 3 and use that, in this case, Assertion (i) is
equivalent with the assertion that A = B is T-consistent, so this assertion is
equivalent with Assertion (ii) which is exactly what is claimed in Corollary 4.0

Clearly, putting X := & := S(sy) for some family of sequences s; and
T := =, the above corollary implies the equivalence of the assertions (a) and
(b) in Lemma 1, while the remaining implications “(b) < (c) < (¢’)” are simple
consequences of the wellknown facts that any reflexive and transitive relation T'
defined on a set X induces a partial order on the set X of equivalence classes

15



relative to the equivalence relation TN T~ !, and that any partial order can be
extended to a linear order.

Next, observe that, for any transitive and reflexive relation T C X? and any
pair (y1,y2) € X2, we have

(TU{(y1,92), (Y2, y1)})e =T UT12 UTy
with

Tij = {(u, U) € X’ | (u: yi): (yj’ v) €T}
for (4,7) € {(1,2),(2,1)}: Indeed, as TUT13UTs; contains TU{(y1,y2), (y2, 1)}
and is itself necessarily contained in (T°U {(y1,¥2), (¥2,%1)})t, it is enough to

observe that T U T U Th; is transitive which follows immediately from the
relations

ToT C T
Toly C© Ty,
TijoT C Ty,
TijoTiy; < Ty,

and
Tij o T CT

which are easily established (with (7, 7) € {(1,2), (2, 1)} of course, just as above).
It follows in particular that, in case (y1,y2), (y2, 1) ¢ T, we have

(TU{(y1,92) (2, 91)D)e 0 (T U {(y1,92), (w2, 90) 17
= (TUTlQUTQl)m(TUTlQUTQl)_l

(T NT™H) U{(,0), (v,u) | (u,), (00, 0), (v, ), (92,0) € T}
in view of
TNTL =TNTy =TnNT =Ty nNT =T nNTL =T nTy' =0
and
TioNT5" = {(u,v) | (u,31), (y1,u) € T and (v,y2), (y2,v) € T} = (T T35") 7"
We can now conclude

Corollary 5 Giwven X, T and A as above as well as two distinct equivalence
classes Y1,Ys C X with respect to A, then — assuming TNT~Y C A — the
enlarged equivalence relation

B Z:AUY1XY2UY2XY1

is T-consistent if and only if A is T-consistent and we have neither (y1,y2) € Ta
nor (ya,y1) € Ta for some/all y1 €Y1 and y; € Ya.
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Proof: Clearly, (u,v) € T4 implies (u',v') € Ty for all v/, v" € X with u' Ay

and v/ 2 . So, of course, assuming (y1, y2), (y2,41) ¢ Ta for some y; € Y7 and
Y2 € Y5 is equivalent to assuming that for all y1, € Y7 and y» € Y5. Moreover, the
above theorem implies that B is T-consistent if and only if A is T-consistent and
B is Tx-consistent which — in view of Corollary 4 — clearly implies BOTX1 CTy
and, hence,

BNTa=B 'NTa=(BNT;" ) 'NTa CTy' NTa C A,

so we cannot have (y1,y2) € Ta or (y2,y1) € Ta for any y; € Y7 and y, € Y3 in
view of (y1,¥2), (y2,11) € B — A.

Vice versa, if A is T-consistent and we have (y1,y2), (y2,¥1) & Ta for some
(and, hence, for all) y1 € Y1 and y; € Ya, then B is T4-consistent in view
of BNTy' = (B7'NT4)"' = (BNTa)™' = AC Ta and Tp = (Ta U
{(y1,92), (y2,91)}): and, hence,

TpNTg' = (TaNTyY) U
{5, ), (Wh, 1) | (W, ), (wa, ), (w2, 0h), (Wh, w2) € T}
= AUY1XY2UY2XY1:B.

O Other useful consequences of the above results are

Corollary 6 Given X, T and A as above, A is a mazimal T-consistent equiva-
lence relation if and only if A 1s T-consistent and we have Ty U Tgl = X2

Corollary 7 If Ay (k € K) is a family of T-consistent equivalence relations so

that T'a,, oTa,, C U (Ta, UTX:), then the following assertions are equivalent:
keK

(i) Ag, U Ag, U Ay, is T-consistent for all ki, ks, ks € K,

(i1) A:= | Ag is a T-consistent equivalence relation,
keK
(iii) @ := | Ta, is transitive and one has QN Q= = A.
keK
In particular, these three assertions are equivalent in case X% = |J (T4, U

keK
TX:), in which case A is a maximal T-consistent equivalence relation.
Proof: (i) = (iii): First, assume (u,w), (w,v) € @ and choose kq, ks, ks € K
so that (u,w) € Ta, ,(w,v) € Ta,, and (u,v) € T4, U T;kl according to our
3
general assumption. Then Theorem 3, applied with respect to B := (Ag, UAg, U
Ak,)e and A := Ag, implies

(u,v) € TAk3 U (TAkIUAk2UAk3 N T;kla) - TAk3 U Ag, = TAkai
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so |J Ta, is indeed transitive.

keK

Next, assume (u, v), (v, u) € @ and choose ki, ky € K with (u,v) € Ta,, and
(v,u) € Ta,,- Then, as above, we have (u,v) € Tay, uay, N TA_k12 C Tha,, and,
hence, (u,v) € Ag, C A.

So, we have indeed Q N Q' C A, while the opposite inclusion is trivial.

(iii) = (ii): Clearly, the assumption @ NQ~' = A implies in particular that
A is an equivalence relation, while the assumption that @ is transitive implies
that the transitive relation T4 generated by T'U A coincides with @. So, finally,
we have

TanTy'=Aand ANT ' = | J(A4nT™")CT,
keK

so A is indeed a T-consistent equivalence relation.

(i1) = (i): This is trivial. O

Next, consider as above a transitive and reflexive relation 7 C X? and an
arbitrary binary relation R C X?2. Define the support supp(R) of R by

supp(R) := {z € X | there exists y € X with (z,y) € RUR™'}
and, for any subset Y C X, define its girth relative to T' by
girthp(Y) := max(#Y’ | Y/ CY and (Y"*) N T C Dx).
We claim

Theorem 4 A relation R is T-consistent if and only if any relation R C R
with #R' < girthy (supp(R')) is T-consistent; in particular, R is T-consistent
if and only if R’ is T-consistent for all R' C R with #R' < girthy (supp(R)).

Proof: Clearly, if R is T-consistent, then so is R’ for every subset R’ C R.

Next, observe that R is T-consistent if and only if there is no pair (u,v) in
T':= (RURYUT); with (v,u) € T\ T~1, that is, if and only if for every
(cyclic) sequence zg, 21, ...,z := xg € X of elements from X with (z;_1,2;) €
RUR'UT foralli=1,... k, wehave (z;_1,2;) € T7' foralli € {1,... k}
with (z;-1,2;) € T. So, assuming that R is not T-consistent, we can find a
shortest such sequence g, 21, ..., 25 € X with (z;_1,2;) € RUR™IUT for all
i =1,...,k which is bad, that is, for which, say, (z9,z1) € T\ T~! holds. We
claim that the union R’ C R of

{miz1, z5) | ie{l,....k} and (z;_1,2;) € R\ T}

and

=i, xiz1) | ie{l,...,k}and (z;_1,2;) € R"'\(RUT)}

1s a subrelation of R with

#R' < girthr (supp(R'))

18



which will surely establish Theorem 4.
This is evident in case & = 2 as this implies #R’ = 1. So, the minimality
of k together with (zg,21) € T\ T~! implies in particular (z1,22) ¢ T and

(®r—1,25) = (2p—1,20) ¢ T.
Next, put

Ji={ie{l,. . k}|(zicr,2:) ¢ T C{2,... Kk}
and
Y = {xz; |i€ J}.

Clearly, we have #R' < #J and Y C supp(R'). So, it remains to show that we
have

girthp (V) = #J,
that is
(xi’ xj) ¢r
foralli,j € J with i # j. So, we assume the opposite and derive a contradiction:
Indeed, if (z;,2;) € T and i < j, we necessarily would have i < j—1 (in view of

(zj_1,z;) ¢ T by definition of J), so the sequence zg, z1, ..., 2, 25, ..., 2 = Zg
would be a shorter bad sequence. Next, if (z;, ;) € T and j < ¢ and, in addition,
(zi,zj) ¢ T~ then yo := zj,y1 := Tj41, ..., Yimj := T, Yi—j41 := xj would be

a shorter bad sequence in view of 2 < j and, hence, i1 —j+1 < k—2+1=F%k—1.
And finally, if (z;,2;) € T,j < i and (z;, z;) € T~!, then we have (z;/,z;/) €

T for ¢ := j and j' := i from J with ¢/ < j’, so we can argue as in the first case.
Clearly, this establishes Theorem 4. a
A simple consequence is

Corollary 8 Given a sequence family s; and an equivalence relation A defined
on 8§ = S(I). Then A is an alignment if and only if every subset A’ of A of
cardinality at most #1 induces an alignment.

Finally, assume as above that X is a set, that 77 C X? is a reflexive and
transitive relation defined on X, that A C X? is a T-consistent equivalence
relation defined on X and that B C X? is an arbitrary binary relation defined
on X so that B is T-consistent.

Then we have:

Theorem 5 The equivalence relation AUB is T-consistent if and only if AUB’
is T-consistent for all subsets B' of B with girthyp(B') > #B' + 1.
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Proof: As above, it is sufficient to show that in case A U B is not T-consistent
there exists a subset B’ C B with girthp(B') > #B’' + 1 so that AU B’ is not
T-consistent.

And also as above, we proceed — assuming that AU B is not T-consistent — by
choosing some shortest bad sequence, that is, a sequence zg, z1,...,25 = 29 € X
with

(l‘i_l,l‘i) cAUB UuB'uT
forall i =1,...,k and (z;_1,2;) € T\ T~! for at least one i € {1,...,k}. As
we have assumed B to be T-consistent, it is clear that there must exist some
ie{l,..., k} with

(zi—1,2;) € A\(TUBUB™)

and, without loss of generality, we may now assume that this holds for 7 := 1.
As above, we consider the set

Jo={ie{l,.. kY| (@io1,2:) ¢ AUT}Y C{2,... k),

we put
Jo = min(J),
B = {(zi-1, ) | i€ Jand (zi_1,2;) € BY U{(®;,z;-1) | i€ Jand (x;-1,%;) ¢ B},

we note that jo > 2 and B’ C B must hold, we put
V= {z; |ie J}U{zjo_1}

and we claim that, for ¢,j € J U {jo — 1}, we have (z;,z;) € T if and only if
1 = j holds which surely implies our Theorem as it implies

#B' < #J = girthy(Y) — 1 < girthr(supp(B')) — 1.

So, assume ¢,j € JU {jo —1},i # j and (z;,z;) € T. We have to derive
a contradiction. If 7 < j, we must have 7 < j — 1, so either the sequence
To, %1, ..., %, %;,..., &, = xo would be a shorter bad sequence, or we have
(zi,2;) € Tt and 2;, 241, .. .,xj,z; would be a shorter bad sequence as both
are shorter and at least one of them must contain a pair of consecutive elements
in T\ T~1. If j < i, then we can’t have j := 1 and i := n in view of (z,,21) =

(zo,21) € A\ T, so either the sequence z;,&;41,...,;, z; would be a shorter
bad sequence or we would have (z;,z;) € TNT~!, hence j < i—1 and, therefore,
To, %1, ..., L5, Ti, Tigl, - .., £ would be a shorter bad sequence. a
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Figure 1: Ambiguity of standard alignments. The standard alignment
definition is ambiguous: Several matrices can express essentially one single way
to align two sequences (A; — As; cf. Kruskal, 1983). In contrast, A4 shows one
of many further possible alignments. Clearly, all these alignments will have to
be taken into account when searching for the best standard alignment.
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Figure 2: Quasi partial ordering induced by an alignment. An
alignment A (indicated by vertical lines) extends the partial order ‘<X’ given
on the set & of all sites of a given sequence family to a quasi partial order
‘<4’ which 1s the ‘transitive closure’ of the union A U <: We have z < z1,

A A
Xi~Tg, Ty X o3, T3~ T4, s <y and therefore z <4 .
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