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Suffix Tree: Definition

e A suffix of a string S of length n ——

is a substring of S that ends at position n. 1 n
e The suffix tree of .S, T'(S), is a rooted tree whose edges are labeled with strings
such that

— all edges leaving a node begin with different characters and
— the paths from the root to the leaves represent all the suffixes of S.

S=TATATS

1 2 3 45 6
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Computational aspects

e T'(S) requires O(n) space.
Trick: Edge labels are represented by pairs of pointers into the text.

S= Mis
12 3
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Computational aspects

e T'(S) requires O(n) space.
Trick: Edge labels are represented by pairs of pointers into the text.

S= Mis
12 3

e Actual implementations: below 12n bytes in worst case, 8.5n bytes on average

e 7'(S) can be constructed in O(n) time: Weiner 1973, McCreight 1976,
Ukkonen 1993.

e |n practice, simpler algorithms can be much faster on average:
Top-down construction with iterative sorting of the suffixes.
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Suffix tree properties

e 1'(S) represents exactly the substrings of S.

e 7'(S) allows to enumerate these substrings and their locations in S
In a convenient way.

e This is very useful for many pattern recognition problems, for example:

— exact string matching as part of other applications, e.g. detecting DNA
contamination

— all-pairs suffix-prefix matching, important in fragment assembly

— finding repeats and palindromes, tandem repeats, degenerate repeats

— DNA primer design

— DNA chip design

See also:

— A. Apostolico: The myriad virtues of subword trees, 1985.
— D. Gusfield: Algorithms on strings, trees, and sequences, 1997.
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Repeats in biosequence analysis

e DNA of eukaryotes is highly repetitive.

— 30-50% in human genome
— 10% introduced by retroviruses?

e Repeat regions are rapidly changing hot spots in evolution.

e Vast literature on repetitive structures and their hypothesized functional and
evolutionary roles: ALUs, SINEs, LINEs, microsatellites, minisatellites, ...

e Repeats are involved in several biological mechanisms, including genetically
inherited diseases.

— e.g. Huntington's disease

e Repeats tend to confuse sequence analysis programs and hence should be
masked in a preprocessing step.

— Repeats are very important when studying genomic DNA.
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Basic definitions

A pair of substrings R = (S|i1, 71|, S|i2, j2]) is called a repeat.

— exact repeat if S[i1, j1] = S[iz, j2]

- |
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Basic definitions

A pair of substrings R = (S|i1, 71|, S|i2, j2]) is called a repeat.

— exact repeat if S[i1, j1] = S[iz, j2]

S |

i J1 12 J2
— k-mismatch repeat if there are k mismatches between S[i1, j1] and S|is, ja

o Jv j¢ @3 ) |

a1 J1 2 J2

— k-differences repeat if there are k differences (mismatches, insertions,
deletions) between S|iq, j1| and Slis, jo)

o oy | | i3 B |

11 J1 12 J2
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Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

e |t is possible to find all pairs of repeated substrings (repeats) in S in linear time.

|dea:
e consider string S and its suffix tree T'(5).

e repeated substrings of S correspond to
internal locations in T'(.5).

e leaf numbers tell us positions where
substrings occur.
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Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

e |t is possible to find all pairs of repeated substrings (repeats) in S in linear time.

|dea:
e consider string S and its suffix tree T'(5).

e repeated substrings of S correspond to
internal locations in T'(.5).

e leaf numbers tell us positions where
substrings occur.

Analysis: O(n + |output|) time, O(n) space
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A larger example

S=Mississippi}
1 23 45 6 7 8 9 101112
" $
| S
;] s 3 i p Q 12
i S %) ® 2
i P ; p D s(] | O
$ i . D\ $ | p D) Q
1 ! 11 s P 5
8 S Al $ Pl\s 5 i
b S . 10 | ; ; p
5 0 s\ 5
p 7 p.
5 i i 6

$ $

2 4
i (8,5) is: (5,2) p: (10,9) s: (7,4) si: (7,4)

(5.2) (7.6)
(8,11) iss: (5,2) (7,3) ss: (6,3)

(5.2) (4.0)
(5,11) issi: (5,2) (4,3) ssi: (6,3)

(2,11) (6,3)
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Finding maximal exact repeats
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Finding maximal exact repeats

B
Idea: (see e.g. Gusfield, 1997)

e For right-maximality (X # Y)

— consider only internal nodes of T'(.S)
— report only pairs of leaves from different subtrees

13 14 4 3 2

5 11 15 7 9
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Finding maximal exact repeats

B]

Idea: (see e.g. Gusfield, 1997)

e For right-maximality (X # Y)

— consider only internal nodes of T'(.S)
— report only pairs of leaves from different subtrees
(or from different leaf-lists)

[2,3,4,13,14]

13 14 4 3 2

[5,7,9,11,15]

5 11 15 7 9
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Finding maximal exact repeats

B]

Idea: (see e.g. Gusfield, 1997)

[5,7,9,11,15]

e For right-maximality (X # YY) [2.3.4.13,14]

— consider only internal nodes of T'(.S)
— report only pairs of leaves from different subtrees
(or from different leaf-lists)

13 14 4 3 2 5 11 15 7 9

e For left-maximality (A # B)

A: [5,15]
B: [7,9,11]

A: [3,4,14]

— keep lists for the different left-characters B: [2.13]

— report only pairs from different lists
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Tandem repeats: Definitions

e tandem repeat (square)

w = | Q

| e Xt
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w = | Q

| e Xt

e occurrence of a tandem repeat

SHEN -

1

(4, la], 2)
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Tandem repeats: Definitions

e tandem repeat (square)

w = | o |

e occurrence of a tandem repeat

SHEN - ]|

1

e a string w is primitive if and only if w = u

k

Q | ce Xt
a | |
implies k£ =1

(4, la], 2)
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Tandem repeats: Definitions

e tandem repeat (square)

w= | o I o |l aex™

e occurrence of a tandem repeat

M 09 S0

1

k

e a string w is primitive if and only if w = u” implies £ =1

e a tandem repeat a« is primitive if and only if o is primitive

(4, la], 2)
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Finding tandem repeats: Overview

A. Find all occurrences of tandem repeats in a string.

e Main & Lorentz 1979/1984: O(nlogn + |output|) time
e Landau & Schmidt 1993: O(nlogn + |output|) time

B. Find all occurrences of primitive tandem repeats in a string.

e Crochemore 1980/1981: O(nlogn) time
e Apostolico & Preparata 1983: O(nlogn) time
e Kolpakov & Kucherov 1998/1999: O(n + |output|) time

C. Find all occurrences of primitive tandem arrays in a string.

e Stoye & Gusfield 1998/2002: O(n logn + |output|) time

Here:
Finding and representing all tandem repeats in a string in linear time.
(joint work with Dan Gusfield, to appear in JCSS)

B Jens Stoye: Finding repetitive structures in large sequences
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Runs of tandem repeats

There can be

e O(n?) occurrences of tandem repeats;
e O(nlogn) occurrences of primitive tandem repeats.

= Any efficient algorithm to enumerate all occurrences of tandem repeats in a
string will depend on the output size.

Definition: A series of tandem repeats of the same length, occurring in S at
contiguous positions, is called a run of tandem repeats.

ABAABAABBAAABAABAY

Theorem (Kolpakov & Kucherov 1999):
The number of runs of primitive tandem repeats is bounded by O(n).

Algorithm: Find runs in O(n) time, then list all tandem repeats in
O(n + |output|) time.

B Jens Stoye: Finding repetitive structures in large sequences
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The vocabulary of tandem repeats

Definitions:

e Two occurrences of tandem repeats (i,1) and (¢’,1) are of the same type
if and only if S[i..i +1—1] = S[i'..i' +1—1].

e The vocabulary of tandem repeats V' (.S) is the set of tandem repeat types
contained in S.

ABAABAABBAAABAABAY

V(S) = {ABAABA, BAABAA, AABAAB, AA, BB}

Theorem (Fraenkel & Simpson 1998): |V (S)| < 2n

Challenge: Can we find the vocabulary of tandem repeats in O(n) time?

B Jens Stoye: Finding repetitive structures in large sequences
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Result: Annotation of the suffix tree

Mark in T'(S) the endpoints of all tandem repeats in O(n) time and space.

S= ABAABAABBAAABAABAY c B
123456 7 8 9101112131415 1617 18 A ANE s
v B S
B A 17 A
A . 8%,
A B| 15 A
B
(2 14 A A
13
8
10 1 l . o
6 7 5
4
3 1 :
) 1
Extensions:

e Find all occurrences of tandem repeats in O(n + |output|) time.

e Find the number, shortest, longest, ... tandem repeat in O(n) time.

e Find the vocabulary of primitive tandem repeats in O(n + |output|) time.

e Find (primitive) tandem arrays in optimal time.

B Jens Stoye: Finding repetitive structures in large sequences
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Outline of the algorithm

Phase |

Using the Lempel-Ziv decomposition of S in combination with longest common
extension queries, find a subset of the occurrences of tandem repeats,
a leftmost covering set.

Phase |l

Find the endpoints in the suffix tree of S for some of the tandem repeats in the
leftmost covering set.

Phase |l

Traverse parts of the suffix tree from the endpoints found in Phase |l, to obtain
the complete vocabulary of tandem repeats.

B Jens Stoye: Finding repetitive structures in large sequences
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The Lempel-Ziv decomposition

Definitions:
—
e For each position 7 of S, let /; denote the ; -
length of the longest prefix of S[i..n] that
also occurs as a substring of S starting at R S
some position 7 < 1. 7o
e The Lempel-Ziv (LZ) decomposition of S is the list of indices i1, 9, ..., k,

defined inductively by 7; =1 and ipy; = ip + max(1,4;,) for ip < n.

9 10 11 12 13 14 15 16 17

‘A‘B‘A‘ABAAB‘BAA‘ABAABA‘
4 5 6 7 8
4 5

— can be computed in O(n) time, e.g. using the suffix tree of S

B Jens Stoye: Finding repetitive structures in large sequences 22



LZ decomposition and tandem repeats
(Crochemore 1981, Main 1989)

Lemma 1: Not possible:

The right half of any tandem repeat T
occurrence must touch at most two blocks [ o [ | e
of the LZ decomposition.

Lemma 2: Not possible:

The leftmost occurrence of any tandem repeat T

must touch at least two blocks.

Theorem:
If the leftmost occurrence of a tandem repeat aar has its center in some block B,

then either

(1) v has its left end in block B and its

right end in block B + 1; B B+1
or
(2) the left end of cvcr extends into block B—1 faTlal ===
and possibly further left. B B+l B B+1
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Phase |

Process every block B of the LZ decomposition by the following two algorithms.

Algorithm 1a o T o | iy A
" 1 ! } = l.c.e. from q and h; in the { orwer } direction
For k = 1..|B| do: L - k2] T backward
q—ﬁl longest common extension
B B+1
If k1 + ko > k, then output (q — ko, 2]€)
Algorithm 1b | | |
(87 (87
For k= 1.. ‘B| —+ |B —+ 1| do: N T I :; = l.c.e. from h and q in the {Lzrz\@;:rd } direction
h q hq
B B+1

If k1 + ko > k, then output (h — ko, 2k).

Analysis:
Algorithm 1 outputs a leftmost covering set in O(n) time and space.
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Leftmost covering sets

ldea:

Find a subset of tandem repeats, such that by successive right-rotations all the
tandem repeat types can be obtained.

Definitions:

e A tandem repeat occurrence (i, /) covers another o o
occurrence (j,/) if and only if there is a run of i :
tandem repeats that starts at ¢ and contains j. J

e A set of tandem repeat occurrences () is a leftmost covering set if the leftmost
occurrence of each tandem repeat in V' (S) is covered by some occurrence in Q.

ABAABAABBAAABAABAY
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Picture after Phase |

ABAAB B A BAAB .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(3,2) me—f— (8,2) mmfmmmm  mmfe— (1] D)
(1,6) m—— (11,6) m———

A B A ABAAB BAA ABAABA %

P(1)  P(3) P(8) P(11)
Voo Voo
6 2 2 6

}
2

B Jens Stoye: Finding repetitive structures in large sequences



Phase |l

Algorithm

1. Attach the list P(%) to the edge ending at leaf .

2. Traverse T'(S) bottom-up.

e When traversing an edge e,
¢ test the head of e's list for tandem repeats ending in e¢;
o record these in e, and remove the entries from the list.
(Note: < 2 tandem repeats per edge!)

e At a node, attach the list originating from the leaf with the smallest index

to the edge leading upwards.

Analysis: O(n) time an space.

B Jens Stoye: Finding repetitive structures in large sequences
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Picture after Phase ||

S= ABAABAABBAAABAABAY
123456 7 8 9101112131415161718

32—+ (82—

(1,6) } (1,6)
A
. B
A
G B
B A 17 A
A
A
A Bl 15
B
14 Ak
12
- 11 |
l 6 U
6 l 4
3 J
l 1
v
2 2  /
6

o
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Phase |1l

Definition:
A suffix-link walk from the endpoint of ay moves ary
to the location in T'(S) labeled with the string ~.

If there is a continuation a, then the walk is called
successful, otherwise unsuccessful. V

Algorithm:

1. From each location of tandem repeats found in Phase |l, start a chain of
suffix-link walks.

2. This chain ends the first time an unsuccessful walk ends, or the first time that a
successful walk ends at the endpoint of a tandem repeat that has already been

recorded in T'(.5).

Analysis: O(n) time and space.
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Final picture (after Phase Ill)
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Overview: Finding repetitive structures in large sequences

e Introduction

— Suffix trees
— Repeats

e Repeat finding with suffix trees

— Exact repeats
— Tandem repeats (squares)
— More general repeats

e Bioinformatics tools and applications

— REPuter
— Multiple genome aligner (MGA)

e Conclusion
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Repeats with bounded gap
(joint work with G. S. Brodal, R. B. Lyngg, C. N. S. Pedersen)

Sometimes one wishes to allow between the copies of a repeat a gap of (upper
and/or lower) bounded size.

gap

— e

|dea:

e Traverse the suffix tree bottom-up.
e At each vertex v collect the leaf-list LL'(v).

e Output only pairs that have the required distance.

Analysis: O(nlogn + |output|) resp. O(n + |output|) time, O(n) space.
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Finding degenerate repeats
(joint work with R. Giegerich, S. Kurtz, E. Ohlebusch, C. Schleiermacher)

Often, repats in genomic DNA are degenerate (k-mismatch repeats, k-differences
repeats).

ldea: Minimal length ¢, up to k errors — filter method (“seed and extend")

> ¢ >
NN kH I B
Y Y 14
i ’ s> |

Algorithm:

1. Search for local exact repeats (seeds).
2. Extend the seeds while allowing up to £ errors.

3. If extension is long enough, output repeat.

Analysis: O(n + Ck?) time with E({) = O (n*/4%), s minimal seed length.
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Extension for maximal k-mismatch repeats

Simple extension and length test (minimal length ¢, up to k errors):

- B B i
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Extension for maximal k-mismatch repeats

Simple extension and length test (minimal length ¢, up to k errors):

I < s < I < 5 < N < s < I < 8 < I
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Extension for maximal k-mismatch repeats

Simple extension and length test (minimal length ¢, up to k errors):

I < B < [ < I < I < < I < ] < s < I < [ < I < I
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Extension for maximal k-mismatch repeats

Simple extension and length test (minimal length ¢, up to k errors):

I - B < < - BN < s < I - B < s < I < < s < I
> 47 > 07

2 > 07

> L7 > L7
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Extension for maximal k-mismatch repeats

Simple extension and length test (minimal length ¢, up to k errors):

I < B < [ < I < I < < I < ] < s < I < [ < I < I

> 7

> 7

> L7

> 07

> 07

> L7

Analysis: O(n + (k) time with E(¢) = O (n*/4%), s minimal seed length.
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Extension for maximal k-differences repeats

Banded sequence alignment by dynamic programming:

I < I < I < I < I

11 Wi 2 J2
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Extension for maximal k-differences repeats

Banded sequence alignment by dynamic programming:

2 J2
I < N < B
X
I - I - R < I < —_— i
S ir  J I
Jli
35
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Extension for maximal k-differences repeats

Banded sequence alignment by dynamic programming:

I < I < I < I < I —> i1

g1 2 J2 )
J1

I > I -

i J2
I < I < I
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Extension for maximal k-differences repeats

Banded sequence alignment by dynamic programming:

2 J2
k4 kN
! +
I < I D < I < . —> i1
S ir  J I
Jli +
35
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Extension for maximal k-differences repeats

Banded sequence alignment by dynamic programming:

i J2
I < I < I

S
A
|

I < I < I < I < I —>
i g B2 J2

_|_

N
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Extension for maximal k-differences repeats

Banded sequence alignment by dynamic programming:

i J2
I < I < I

S
A
|

I < I < I < I < I —>

11 J1 2 )2

N

Analysis: O(n + Ck?) time with E({) = O (n*/4%), s minimal seed length.

B Jens Stoye: Finding repetitive structures in large sequences 35



Overview: Finding repetitive structures in large sequences
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The REPuter suite of repeat finding programs
(joint work with S. Kurtz, E. Ohlebusch, R. Giegerich, C. Schleiermacher, J. Choudhuri)

WWW.genomes.de

e REPfind: implements several of the described algorithms.

e REPselect: selects interesting repeats from the output of REPfind
(user-defined second filter phase).

e REPvis: interactive visualization tool to display large amounts of repeat data.
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REPuter: An example
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REPuter: An example

REF¥Is - Repeats Visualization

File Edit Wiew Help
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REPuter: An example
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REPuter: An example
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REPuter — Application 1: (Approximate) tandem array
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REPuter — Application 1: (Approximate) tandem array
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REPuter — Application 1: (Approximate) tandem array
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REPuter — Application 1: (Approximate) tandem array
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REPuter — Application 2: Low copy repeats
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REPuter — Application 2: Low copy repeats
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REPuter — Application 3: Unique sequences
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REPuter — Application 3: Unique sequences
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REPuter — Application 3: Unique sequences
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REPuter: Computation times

size l suffix tree | virtual tree
genome [Mbases] | [bases] [sec] [sec]
E. coli 4.42 150 5.4 1.7
S. cerevisiae 11.50 180 14.8 4.7
D. melanogaster 114.44 700 310.7 A4 4

virtual (suffix) tree = suffix array, enhanced by functions to simulate suffix
tree functionality — GENalyzer.
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Overview: Finding repetitive structures in large sequences
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Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., ISMB 2002).
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Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., ISMB 2002).

Algorithm:

1. Find all maximal multiple exact matches (multiMEMs) in the given genomes
(similar to repeats, using the generalized suffix tree).
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Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., ISMB 2002).

Algorithm:

1. Find all maximal multiple exact matches (multiMEMs) in the given genomes
(similar to repeats, using the generalized suffix tree).

2. Select from all multiMEMs an optimal set,
I.e. a chain of non-overlapping multiMEMSs of maximal weight
where the weight of a chain is the sum of the lengths of its members.
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Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., ISMB 2002).

Algorithm:

1. Find all maximal multiple exact matches (multiMEMs) in the given genomes
(similar to repeats, using the generalized suffix tree).

2. Select from all multiMEMs an optimal set,
I.e. a chain of non-overlapping multiMEMSs of maximal weight
where the weight of a chain is the sum of the lengths of its members.

3. Close the gaps recursively, and finally by a standard alignment procedure.
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Summary: Repeats and suffix trees

Some results:

e Find all maximal repeats in O(n + |output|) time.

e Find all maximal palindromic repeats in O(n + |output|) time.

e Find all tandem repeats in O(nlogn + |output|) time or O(n + |output|) time.
e Find all maximal repeats with bounded gap in O(nlogn + |output|) time.

e Find all maximal repeats with lower-bounded gap in O(n + |output|) time.

e Find all degenerate repeats with < k errors in O(n + Ck?) time

(E(¢) = O (n?/47)).
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Conclusion

The analysis of biological sequence data produces several interesting
computational questions.

Various CS disciplines are involved:

e Algorithms and data structures
e Algorithm engineering
e Software engineering

e Visualization

Not only does Biology profit from Computer Science, but also vice versa!
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