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Suffix Tree: Definition

• A suffix of a string S of length n
is a substring of S that ends at position n. 1 n

• The suffix tree of S, T (S), is a rooted tree whose edges are labeled with strings
such that

– all edges leaving a node begin with different characters and
– the paths from the root to the leaves represent all the suffixes of S.
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Computational aspects

• T (S) requires O(n) space.
Trick: Edge labels are represented by pairs of pointers into the text.
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• Actual implementations: below 12n bytes in worst case, 8.5n bytes on average

• T (S) can be constructed in O(n) time: Weiner 1973, McCreight 1976,
Ukkonen 1993.

• In practice, simpler algorithms can be much faster on average:
Top-down construction with iterative sorting of the suffixes.
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Suffix tree properties

• T (S) represents exactly the substrings of S.

• T (S) allows to enumerate these substrings and their locations in S
in a convenient way.

• This is very useful for many pattern recognition problems, for example:

– exact string matching as part of other applications, e.g. detecting DNA
contamination

– all-pairs suffix-prefix matching, important in fragment assembly
– finding repeats and palindromes, tandem repeats, degenerate repeats
– DNA primer design
– DNA chip design
– ...

See also:

– A. Apostolico: The myriad virtues of subword trees, 1985.
– D. Gusfield: Algorithms on strings, trees, and sequences, 1997.
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Repeats in biosequence analysis

• DNA of eukaryotes is highly repetitive.

– 30–50% in human genome
– 10% introduced by retroviruses?

• Repeat regions are rapidly changing hot spots in evolution.

• Vast literature on repetitive structures and their hypothesized functional and
evolutionary roles: ALUs, SINEs, LINEs, microsatellites, minisatellites, ...

• Repeats are involved in several biological mechanisms, including genetically
inherited diseases.

– e.g. Huntington’s disease

• Repeats tend to confuse sequence analysis programs and hence should be
masked in a preprocessing step.

⇒ Repeats are very important when studying genomic DNA.
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Basic definitions

A pair of substrings R = (S[i1, j1], S[i2, j2]) is called a repeat.

→ exact repeat if S[i1, j1] = S[i2, j2]

S
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Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

• It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

• consider string S and its suffix tree T (S).

• repeated substrings of S correspond to
internal locations in T (S).

• leaf numbers tell us positions where
substrings occur.
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A larger example
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Finding maximal exact repeats
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Finding maximal exact repeats
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Finding maximal exact repeats

YXA B
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Finding maximal exact repeats

YXA B

Idea: (see e.g. Gusfield, 1997)

• For right-maximality (X 6= Y)

– consider only internal nodes of T (S)
– report only pairs of leaves from different subtrees

4 3 213 14 5 971511
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Tandem repeats: Definitions

• tandem repeat (square)

αw = α ∈ Σ+α
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• a string w is primitive if and only if w = uk implies k = 1
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Tandem repeats: Definitions

• tandem repeat (square)

αw = α ∈ Σ+α

• occurrence of a tandem repeat

S α α

i

(i, |α|, 2)

• a string w is primitive if and only if w = uk implies k = 1

• a tandem repeat αα is primitive if and only if α is primitive
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Finding tandem repeats: Overview

A. Find all occurrences of tandem repeats in a string.

• Main & Lorentz 1979/1984: O(n log n + |output|) time
• Landau & Schmidt 1993: O(n log n + |output|) time

B. Find all occurrences of primitive tandem repeats in a string.

• Crochemore 1980/1981: O(n log n) time
• Apostolico & Preparata 1983: O(n log n) time
• Kolpakov & Kucherov 1998/1999: O(n + |output|) time

C. Find all occurrences of primitive tandem arrays in a string.

• Stoye & Gusfield 1998/2002: O(n log n + |output|) time

Here:
Finding and representing all tandem repeats in a string in linear time.
(joint work with Dan Gusfield, to appear in JCSS)
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Runs of tandem repeats

There can be

• O(n2) occurrences of tandem repeats;

• O(n log n) occurrences of primitive tandem repeats.

⇒ Any efficient algorithm to enumerate all occurrences of tandem repeats in a
string will depend on the output size.

Definition: A series of tandem repeats of the same length, occurring in S at
contiguous positions, is called a run of tandem repeats.

A B A A B A A B B A A A B A A B A $

Theorem (Kolpakov & Kucherov 1999):
The number of runs of primitive tandem repeats is bounded by O(n).

Algorithm: Find runs in O(n) time, then list all tandem repeats in
O(n + |output|) time.
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The vocabulary of tandem repeats

Definitions:

• Two occurrences of tandem repeats (i, l) and (i′, l) are of the same type

if and only if S[i..i + l − 1] = S[i′..i′ + l − 1].

• The vocabulary of tandem repeats V (S) is the set of tandem repeat types

contained in S.

A B A A B A A B B A A A B A A B A $

V (S) = {ABAABA,BAABAA,AABAAB,AA,BB}

Theorem (Fraenkel & Simpson 1998): |V (S)| ≤ 2n

Challenge: Can we find the vocabulary of tandem repeats in O(n) time?
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Result: Annotation of the suffix tree

Mark in T (S) the endpoints of all tandem repeats in O(n) time and space.

S = B AA A B A A B B A A A B A A B A $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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Extensions:

• Find all occurrences of tandem repeats in O(n + |output|) time.

• Find the number, shortest, longest, ... tandem repeat in O(n) time.

• Find the vocabulary of primitive tandem repeats in O(n + |output|) time.

• Find (primitive) tandem arrays in optimal time.
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Outline of the algorithm

Phase I

Using the Lempel-Ziv decomposition of S in combination with longest common
extension queries, find a subset of the occurrences of tandem repeats,
a leftmost covering set.

Phase II

Find the endpoints in the suffix tree of S for some of the tandem repeats in the
leftmost covering set.

Phase III

Traverse parts of the suffix tree from the endpoints found in Phase II, to obtain
the complete vocabulary of tandem repeats.
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The Lempel-Ziv decomposition

Definitions:

• For each position i of S, let `i denote the
length of the longest prefix of S[i..n] that
also occurs as a substring of S starting at
some position j < i.

ij

ij

`i

• The Lempel-Ziv (LZ) decomposition of S is the list of indices i1, i2, . . . , ik,
defined inductively by i1 = 1 and iB+1 = iB + max(1, `iB) for iB ≤ n.

A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7

B A A B A A B B A A A B A A B A $

→ can be computed in O(n) time, e.g. using the suffix tree of S
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LZ decomposition and tandem repeats
(Crochemore 1981, Main 1989)

Lemma 1:
The right half of any tandem repeat
occurrence must touch at most two blocks
of the LZ decomposition.

αα

Not possible:

. . . . . . . . . . . .

Lemma 2:
The leftmost occurrence of any tandem repeat
must touch at least two blocks.

αα

Not possible:

Theorem:
If the leftmost occurrence of a tandem repeat αα has its center in some block B,
then either

(1) αα has its left end in block B and its
right end in block B + 1;

αα

B B + 1

or

(2) the left end of αα extends into block B−1
and possibly further left.

αα α

B B

α

B + 1 B + 1

or . . .. . .
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Phase I

Process every block B of the LZ decomposition by the following two algorithms.

Algorithm 1a

For k = 1..|B| do:
h h1q︸ ︷︷ ︸

k

αα
k1

k2

 = l.c.e. from q and h1 in the


forward

backward

 direction

longest common extension

k1 k1

B

k2

B + 1

k2

If k1 + k2 ≥ k, then output (q − k2, 2k).

Algorithm 1b

For k = 1..|B|+ |B + 1| do: k2k1 k1
k2

h h1

︸ ︷︷ ︸
k q

αα

B B + 1

k1

k2

 = l.c.e. from h and q in the


forward

backward

 direction

If k1 + k2 ≥ k, then output (h− k2, 2k).

Analysis:
Algorithm 1 outputs a leftmost covering set in O(n) time and space.
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Leftmost covering sets

Idea:

Find a subset of tandem repeats, such that by successive right-rotations all the
tandem repeat types can be obtained.

Definitions:

• A tandem repeat occurrence (i, `) covers another
occurrence (j, `) if and only if there is a run of
tandem repeats that starts at i and contains j.

i

j

αα

• A set of tandem repeat occurrences Q is a leftmost covering set if the leftmost
occurrence of each tandem repeat in V (S) is covered by some occurrence in Q.

A B A A B A A B B A A A B A A B A $
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Picture after Phase I
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Phase II

Algorithm

1. Attach the list P (i) to the edge ending at leaf i.

2. Traverse T (S) bottom-up.

• When traversing an edge e,

� test the head of e’s list for tandem repeats ending in e;

� record these in e, and remove the entries from the list.

(Note: ≤ 2 tandem repeats per edge!)

• At a node, attach the list originating from the leaf with the smallest index

to the edge leading upwards.

Analysis: O(n) time an space.
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Picture after Phase II
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Phase III

Definition:

A suffix-link walk from the endpoint of aγ moves
to the location in T (S) labeled with the string γ.

If there is a continuation a, then the walk is called
successful, otherwise unsuccessful.

β

aγ γ

β

a?

waw

Algorithm:

1. From each location of tandem repeats found in Phase II, start a chain of
suffix-link walks.

2. This chain ends the first time an unsuccessful walk ends, or the first time that a
successful walk ends at the endpoint of a tandem repeat that has already been
recorded in T (S).

Analysis: O(n) time and space.
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Phase III

Definition:

A suffix-link walk from the endpoint of aγ moves
to the location in T (S) labeled with the string γ.

If there is a continuation a, then the walk is called
successful, otherwise unsuccessful.

β

aγ γ

β

a?

waw

Algorithm:

1. From each location of tandem repeats found in Phase II, start a chain of
suffix-link walks.

2. This chain ends the first time an unsuccessful walk ends, or the first time that a
successful walk ends at the endpoint of a tandem repeat that has already been
recorded in T (S).

Analysis: O(n) time and space.
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Overview: Finding repetitive structures in large sequences

• Introduction

– Suffix trees
– Repeats

• Repeat finding with suffix trees

– Exact repeats
– Tandem repeats (squares)
– More general repeats

• Bioinformatics tools and applications

– REPuter
– Multiple genome aligner (MGA)

• Conclusion
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Repeats with bounded gap
(joint work with G. S. Brodal, R. B. Lyngø, C. N. S. Pedersen)

Sometimes one wishes to allow between the copies of a repeat a gap of (upper
and/or lower) bounded size.

α α
gap

Idea:

• Traverse the suffix tree bottom-up.

• At each vertex v collect the leaf-list LL′(v).

• Output only pairs that have the required distance.

Analysis: O(n log n + |output|) resp. O(n + |output|) time, O(n) space.

Jens Stoye: Finding repetitive structures in large sequences 32



Finding degenerate repeats
(joint work with R. Giegerich, S. Kurtz, E. Ohlebusch, C. Schleiermacher)

Often, repats in genomic DNA are degenerate (k-mismatch repeats, k-differences
repeats).

Idea: Minimal length `, up to k errors → filter method (“seed and extend”)

≥
⌊

`
k+1

⌋
︷ ︸︸ ︷≥ ` ︷ ︸︸ ︷≥ `

s
︸ ︷︷ ︸ ︸ ︷︷ ︸

s s

C –A G

Algorithm:

1. Search for local exact repeats (seeds).

2. Extend the seeds while allowing up to k errors.

3. If extension is long enough, output repeat.

Analysis: O(n + ζk3) time with E(ζ) = O
(
n2/4s

)
, s minimal seed length.
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Extension for maximal k-mismatch repeats

Simple extension and length test (minimal length `, up to k errors):

××××
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Extension for maximal k-mismatch repeats

Simple extension and length test (minimal length `, up to k errors):

××××× × × ×× × × ×

≥ ` ?

≥ ` ?
︸ ︷︷ ︸≥ ` ?

︸ ︷︷ ︸ ︸ ︷︷ ︸
≥ ` ?︸ ︷︷ ︸

≥ ` ?︸ ︷︷ ︸
≥ ` ?

︸ ︷︷ ︸
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Extension for maximal k-mismatch repeats

Simple extension and length test (minimal length `, up to k errors):

××××× × × ×× × × ×

≥ ` ?

≥ ` ?
︸ ︷︷ ︸≥ ` ?

︸ ︷︷ ︸ ︸ ︷︷ ︸
≥ ` ?︸ ︷︷ ︸

≥ ` ?︸ ︷︷ ︸
≥ ` ?

︸ ︷︷ ︸

Analysis: O(n + ζk) time with E(ζ) = O
(
n2/4s

)
, s minimal seed length.
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Extension for maximal k-differences repeats

Banded sequence alignment by dynamic programming:

× ×
i1 j1

××
j2i2
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+
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Extension for maximal k-differences repeats

Banded sequence alignment by dynamic programming:

× ×
i1 j1

××
j2i2

×
i1

j1×

× ×
i2 j2

+

++

+

Analysis: O(n + ζk3) time with E(ζ) = O
(
n2/4s

)
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Overview: Finding repetitive structures in large sequences

• Introduction

– Suffix trees
– Repeats

• Repeat finding with suffix trees

– Exact repeats
– Tandem repeats (squares)
– More general repeats

• Bioinformatics tools and applications

– REPuter
– Multiple genome aligner (MGA)

• Conclusion
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The REPuter suite of repeat finding programs
(joint work with S. Kurtz, E. Ohlebusch, R. Giegerich, C. Schleiermacher, J. Choudhuri)

www.genomes.de

• REPfind: implements several of the described algorithms.

• REPselect: selects interesting repeats from the output of REPfind
(user-defined second filter phase).

• REPvis: interactive visualization tool to display large amounts of repeat data.
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REPuter: An example
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REPuter – Application 1: (Approximate) tandem array
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REPuter – Application 1: (Approximate) tandem array
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REPuter – Application 2: Low copy repeats
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REPuter – Application 2: Low copy repeats

(22q11.2 region of human chromosome 22, associated to DiGeorge/Velo-cardio-facial syndrome.)

Jens Stoye: Finding repetitive structures in large sequences 41



REPuter – Application 3: Unique sequences

Jens Stoye: Finding repetitive structures in large sequences 42



REPuter – Application 3: Unique sequences
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REPuter – Application 3: Unique sequences
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REPuter: Computation times

genome size
[Mbases]

l
[bases]

suffix tree
[sec]

virtual tree
[sec]

E. coli 4.42 150 5.4 1.7

S. cerevisiae 11.50 180 14.8 4.7

D. melanogaster 114.44 700 310.7 44.4

virtual (suffix) tree = suffix array, enhanced by functions to simulate suffix
tree functionality → GENalyzer.
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Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Höhl et al., ISMB 2002).
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Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Höhl et al., ISMB 2002).

Algorithm:

1. Find all maximal multiple exact matches (multiMEMs) in the given genomes
(similar to repeats, using the generalized suffix tree).

G3

G2

G1
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Algorithm:

1. Find all maximal multiple exact matches (multiMEMs) in the given genomes
(similar to repeats, using the generalized suffix tree).

2. Select from all multiMEMs an optimal set,
i.e. a chain of non-overlapping multiMEMs of maximal weight
where the weight of a chain is the sum of the lengths of its members.

3. Close the gaps recursively, and finally by a standard alignment procedure.

G3

G2

G1

Jens Stoye: Finding repetitive structures in large sequences 45



Overview: Finding repetitive structures in large sequences

• Introduction

– Suffix trees
– Repeats

• Repeat finding with suffix trees

– Exact repeats
– Tandem repeats (squares)
– More general repeats

• Bioinformatics tools and applications

– REPuter
– Multiple genome aligner (MGA)

• Conclusion

Jens Stoye: Finding repetitive structures in large sequences 46



Summary: Repeats and suffix trees

Some results:

• Find all maximal repeats in O(n + |output|) time.

• Find all maximal palindromic repeats in O(n + |output|) time.

• Find all tandem repeats in O(n log n + |output|) time or O(n + |output|) time.

• Find all maximal repeats with bounded gap in O(n log n + |output|) time.

• Find all maximal repeats with lower-bounded gap in O(n + |output|) time.

• Find all degenerate repeats with ≤ k errors in O(n + ζk3) time
(E(ζ) = O

(
n2/4s

)
).
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Conclusion

The analysis of biological sequence data produces several interesting
computational questions.

Various CS disciplines are involved:

• Algorithms and data structures

• Algorithm engineering

• Software engineering

• Visualization

Not only does Biology profit from Computer Science, but also vice versa!
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