
New models and algorithms for genome
comparison

Jens Stoye

Genome Informatics, Faculty of Technology

and

Institute of Bioinformatics, Center of Biotechnology

Bielefeld University, Germany

Overview: New models and algorithms for genome comparison

• Introduction

– Comparative genomics
– Gene clusters

• Finding gene clusters

– Gene clusters of permutations
– Gene clusters of sequences
– Experimental results

• Conserved intervals

– Finding conserved intervals
– Application to mitochondrial genomes

• Summary and Conclusion

Jens Stoye: New models and algorithms for genome comparison 1

Overview: New models and algorithms for genome comparison

• Introduction

– Comparative genomics
– Gene clusters

• Finding gene clusters

– Gene clusters of permutations
– Gene clusters of sequences
– Experimental results

• Conserved intervals

– Finding conserved intervals
– Application to mitochondrial genomes

• Summary and Conclusion

Jens Stoye: New models and algorithms for genome comparison 2

Overview: New models and algorithms for genome comparison

• Introduction

– Comparative genomics
– Gene clusters

• Finding gene clusters

– Gene clusters of permutations
– Gene clusters of sequences
– Experimental results

• Conserved intervals

– Finding conserved intervals
– Application to mitochondrial genomes

• Summary and Conclusion

Jens Stoye: New models and algorithms for genome comparison 3

Overview: Completely sequenced genomes
(from GOLD database: http://wit.integratedgenomics.com/GOLD/)

182 published complete genomes (including 4 chromosomes):

• 141 bacterial genomes (first: H. influenzae, 1995)

– size: ≈ 500 ... 10,000 kilobases (KB)
– genes: ≈ 450 ... 10,000 open reading frames (ORFs)

• 18 archaeal genomes (first: M. janaschii, 1996)

– size: ≈ 1,500 ... 6,000 KB
– genes: ≈ 1,500 ... 4,500 ORFs

• 23 eukaryal genomes (first: S. cerevisiae, 1997)

– size: ≈ 12,000 ... 2,800,000 KB
– genes: ≈ 6,000 ... 50,000 ORFs

Jens Stoye: New models and algorithms for genome comparison 4

http://wit.integratedgenomics.com/GOLD/

Overview: Completely sequenced genomes
(from GOLD database: http://wit.integratedgenomics.com/GOLD/)

182 published complete genomes (including 4 chromosomes):

• 141 bacterial genomes (first: H. influenzae, 1995)

– size: ≈ 500 ... 10,000 kilobases (KB)
– genes: ≈ 450 ... 10,000 open reading frames (ORFs)

• 18 archaeal genomes (first: M. janaschii, 1996)

– size: ≈ 1,500 ... 6,000 KB
– genes: ≈ 1,500 ... 4,500 ORFs

• 23 eukaryal genomes (first: S. cerevisiae, 1997)

– size: ≈ 12,000 ... 2,800,000 KB
– genes: ≈ 6,000 ... 50,000 ORFs

Next steps:
functional genomics (transcriptomics, proteomics, metabolomics, ...)
comparative genomics

Jens Stoye: New models and algorithms for genome comparison 4

http://wit.integratedgenomics.com/GOLD/

Comparative genomics “at a higher level”

Concentrate on large scale layout of the genomes:

• Study genomes based on their gene order.

• Represent genomes by their sequence of genes.

genome 1

genome 2

Jens Stoye: New models and algorithms for genome comparison 5

Comparative genomics “at a higher level”

Concentrate on large scale layout of the genomes:

• Study genomes based on their gene order.

• Represent genomes by their sequence of genes.

genome 1

genome 2

Jens Stoye: New models and algorithms for genome comparison 5

Comparative genomics “at a higher level”

Concentrate on large scale layout of the genomes:

• Study genomes based on their gene order.

• Represent genomes by their sequence of genes.

genome 1

genome 2

+0 −1 +2 +3 −4 −5 −6

−1+2+4+5+6−3 +0

More formally:

• Genes = (signed) elements from the set N = {0, . . . , n}.

• Assign the same number to corresponding (orthologous) genes.

• Genomes = permutations of N .

Jens Stoye: New models and algorithms for genome comparison 5

Genome rearrangement operations and distances

→ rearrangement operations: (signed) reversal +0 +1 +2 +3 +4 +5 → +0 −4 −3 −2 −1 +5

transposition 0 1 2 3 4 5 → 0 3 4 1 2 5
6

Resulting distances and problems:

• (signed) reversal distance → sorting (signed) permutations by reversals

• transposition distance → sorting permutations by transpositions

Generalization: multiple chromosomes

→ additional operations: fission →

fusion →

translocation →

If gene order is unknown: syntenic distance (chromosomes as bags of genes)

Jens Stoye: New models and algorithms for genome comparison 6

Sorting by reversals

Problem: Given two (signed) permutations (genomes) π1 and π2 of the elements
(genes) of the set N = {0, 1, . . . , n}, find the minimal number of reversals that
are necessary to transform π1 into π2.

π2

π1

+5+4+3+2+1+0

−3 −2 −1 −0 +4 +5

+1+0−4−5−2−3

+4 +5 +2 +3 +0 +1+1+0+3

+0 +1 +2 +3 +4 +5

+4 +5 +2

Similar: transposition distance, translocation distance, . . .

Jens Stoye: New models and algorithms for genome comparison 7

Overview: New models and algorithms for genome comparison

• Introduction

– Comparative genomics
– Gene clusters

• Finding gene clusters

– Gene clusters of permutations
– Gene clusters of sequences
– Experimental results

• Conserved intervals

– Finding conserved intervals
– Application to mitochondrial genomes

• Summary and Conclusion

Jens Stoye: New models and algorithms for genome comparison 8

Protein function prediction

About 30% of the ORFs in the MIPS Yeast Genome Database still have no
function annotation.

Functional annotation is time consuming and expensive
(≈ 1 – 2 years, ≈ 1 – 2 million US$ per gene).

Jens Stoye: New models and algorithms for genome comparison 9

Protein function prediction

About 30% of the ORFs in the MIPS Yeast Genome Database still have no
function annotation.

Functional annotation is time consuming and expensive
(≈ 1 – 2 years, ≈ 1 – 2 million US$ per gene).

• In the lab:

– Genetical and biochemical analysis

– Correlated expression

Jens Stoye: New models and algorithms for genome comparison 9

Protein function prediction

About 30% of the ORFs in the MIPS Yeast Genome Database still have no
function annotation.

Functional annotation is time consuming and expensive
(≈ 1 – 2 years, ≈ 1 – 2 million US$ per gene).

• In the lab:

– Genetical and biochemical analysis

– Correlated expression

• Homology based:

– Protein families

– Functional domains

Jens Stoye: New models and algorithms for genome comparison 9

Protein function prediction

About 30% of the ORFs in the MIPS Yeast Genome Database still have no
function annotation.

Functional annotation is time consuming and expensive
(≈ 1 – 2 years, ≈ 1 – 2 million US$ per gene).

• In the lab:

– Genetical and biochemical analysis

– Correlated expression

• Homology based:

– Protein families

– Functional domains

• Genome based:

– Rosetta stone method (gene fusion, domain fusion)

– Phylogenetic profiles (correlated evolution)

– Gene order (co-occurrence of genes in genomes)

Jens Stoye: New models and algorithms for genome comparison 9

Protein function prediction

About 30% of the ORFs in the MIPS Yeast Genome Database still have no
function annotation.

Functional annotation is time consuming and expensive
(≈ 1 – 2 years, ≈ 1 – 2 million US$ per gene).

• In the lab:

– Genetical and biochemical analysis

– Correlated expression

• Homology based:

– Protein families

– Functional domains

• Genome based:

– Rosetta stone method (gene fusion, domain fusion)

– Phylogenetic profiles (correlated evolution)

– Gene order (co-occurrence of genes in genomes)

• Literature based:

– Natural language processing

Jens Stoye: New models and algorithms for genome comparison 9

Genome-based gene function prediction

Functional genomics meets comparative genomics.

Idea: Genes that repeatedly cluster together in phylogenetically remotely related
genomes are functionally associated:

– interacting proteins

– proteins of the same protein complex

– enzymes of the same metabolic pathway

Jens Stoye: New models and algorithms for genome comparison 10

Genome-based gene function prediction

Functional genomics meets comparative genomics.

Idea: Genes that repeatedly cluster together in phylogenetically remotely related
genomes are functionally associated:

– interacting proteins

– proteins of the same protein complex

– enzymes of the same metabolic pathway

genome 3

genome 5

genome 4

genome 2

genome 1

Jens Stoye: New models and algorithms for genome comparison 10

Genome-based gene function prediction

Functional genomics meets comparative genomics.

Idea: Genes that repeatedly cluster together in phylogenetically remotely related
genomes are functionally associated:

– interacting proteins

– proteins of the same protein complex

– enzymes of the same metabolic pathway

?

genome 3

genome 5

genome 4

genome 2

genome 1

Jens Stoye: New models and algorithms for genome comparison 10

Genome-based gene function prediction

Functional genomics meets comparative genomics.

Idea: Genes that repeatedly cluster together in phylogenetically remotely related
genomes are functionally associated:

– interacting proteins

– proteins of the same protein complex

– enzymes of the same metabolic pathway

?

genome 3

genome 5

genome 4

genome 2

genome 1

Jens Stoye: New models and algorithms for genome comparison 10

Genome-based gene function prediction

Functional genomics meets comparative genomics.

Idea: Genes that repeatedly cluster together in phylogenetically remotely related
genomes are functionally associated:

– interacting proteins

– proteins of the same protein complex

– enzymes of the same metabolic pathway

genome 3

genome 5

genome 4

genome 2

genome 1

Jens Stoye: New models and algorithms for genome comparison 10

Genome-based gene function prediction

Functional genomics meets comparative genomics.

Idea: Genes that repeatedly cluster together in phylogenetically remotely related
genomes are functionally associated:

– interacting proteins

– proteins of the same protein complex

– enzymes of the same metabolic pathway

genome 3

genome 5

genome 4

genome 2

genome 1

Jens Stoye: New models and algorithms for genome comparison 10

Genome-based gene function prediction

Functional genomics meets comparative genomics.

Idea: Genes that repeatedly cluster together in phylogenetically remotely related
genomes are functionally associated:

– interacting proteins

– proteins of the same protein complex

– enzymes of the same metabolic pathway

Jens Stoye: New models and algorithms for genome comparison 10

Genome-based gene function prediction

Functional genomics meets comparative genomics.

Idea: Genes that repeatedly cluster together in phylogenetically remotely related
genomes are functionally associated:

– interacting proteins

– proteins of the same protein complex

– enzymes of the same metabolic pathway

Marcotte et al.: Detecting protein function and protein-protein interactions from genome

sequences. Science, 1999.

Overbeek et al.: The use of gene clusters to infer functional coupling. PNAS, 1999.

Snel et al.: STRING: A web-server to retrieve and display the repeatedly occurring neighbourhood

of a gene, NAR, 2000.

Jens Stoye: New models and algorithms for genome comparison 10

STRING Web server (Snel et al., 2000)
http://string.embl.de/

Jens Stoye: New models and algorithms for genome comparison 11

http://string.embl.de/

STRING Web server (Snel et al., 2000)
http://string.embl.de/

Jens Stoye: New models and algorithms for genome comparison 11

http://string.embl.de/

Genome Windows: DCW cluster (division and cell wall)

Jens Stoye: New models and algorithms for genome comparison 12

Genome Windows: Ribosomal Super Operon

Jens Stoye: New models and algorithms for genome comparison 13

Genome Windows: Ribose-ABC-Transporter

Jens Stoye: New models and algorithms for genome comparison 14

Overview: New models and algorithms for genome comparison

• Introduction

– Comparative genomics
– Gene clusters

• Finding gene clusters

– Gene clusters of permutations
– Gene clusters of sequences
– Experimental results

• Conserved intervals

– Finding conserved intervals
– Application to mitochondrial genomes

• Summary and Conclusion

Jens Stoye: New models and algorithms for genome comparison 15

Overview: New models and algorithms for genome comparison

• Introduction

– Comparative genomics
– Gene clusters

• Finding gene clusters

– Gene clusters of permutations
– Gene clusters of sequences
– Experimental results

• Conserved intervals

– Finding conserved intervals
– Application to mitochondrial genomes

• Summary and Conclusion

Jens Stoye: New models and algorithms for genome comparison 16

Formalization of gene cluster: common interval

Given permutations (genomes) π1, π2, . . . , πk of the numbers (genes) 0, 1, . . . , n,
find subsets of numbers that occur contiguously in all permutations.

π3

π2

π1 1 2 3 4 5 6 70

5 1 4 3 2 076

20 4 3 5 67 1

Jens Stoye: New models and algorithms for genome comparison 17

Formalization of gene cluster: common interval

Given permutations (genomes) π1, π2, . . . , πk of the numbers (genes) 0, 1, . . . , n,
find subsets of numbers that occur contiguously in all permutations.

π3

π2

π1 1 2 3 4 5 6 70

5 1 4 3 2 076

20 4 3 5 67 1

1 2 5 6 70 3 4

5 1 2 076 4 3

20 5 67 1 4 3

[3,4]Common intervals:

Jens Stoye: New models and algorithms for genome comparison 17

Formalization of gene cluster: common interval

Given permutations (genomes) π1, π2, . . . , πk of the numbers (genes) 0, 1, . . . , n,
find subsets of numbers that occur contiguously in all permutations.

π3

π2

π1 1 2 3 4 5 6 70

5 1 4 3 2 076

20 4 3 5 67 1

1 2 5 6 70 3 4

5 1 2 076 4 3

20 5 67 1 4 3

[3,4]Common intervals:

1 5 6 70 2 3 4

5 1 076 234

0 5 67 1 2 4 3

[2,4]

Jens Stoye: New models and algorithms for genome comparison 17

Formalization of gene cluster: common interval

Given permutations (genomes) π1, π2, . . . , πk of the numbers (genes) 0, 1, . . . , n,
find subsets of numbers that occur contiguously in all permutations.

π3

π2

π1 1 2 3 4 5 6 70

5 1 4 3 2 076

20 4 3 5 67 1

1 2 5 6 70 3 4

5 1 2 076 4 3

20 5 67 1 4 3

[3,4]Common intervals:

1 5 6 70 2 3 4

5 1 076 234

0 5 67 1 2 4 3

[2,4]

5 6 70 1 2 3 4

5 076 1 234

0 5 67 1 2 4 3

[1,4]

Jens Stoye: New models and algorithms for genome comparison 17

Formalization of gene cluster: common interval

Given permutations (genomes) π1, π2, . . . , πk of the numbers (genes) 0, 1, . . . , n,
find subsets of numbers that occur contiguously in all permutations.

π3

π2

π1 1 2 3 4 5 6 70

5 1 4 3 2 076

20 4 3 5 67 1

1 2 5 6 70 3 4

5 1 2 076 4 3

20 5 67 1 4 3

[3,4]Common intervals:

1 5 6 70 2 3 4

5 1 076 234

0 5 67 1 2 4 3

[2,4]

5 6 70 1 2 3 4

5 076 1 234

0 5 67 1 2 4 3

[1,4]

5 6 70 1 2 3 4

576 02341

5 67 0 1 2 4 3

[0,4]

Jens Stoye: New models and algorithms for genome comparison 17

Formalization of gene cluster: common interval

Given permutations (genomes) π1, π2, . . . , πk of the numbers (genes) 0, 1, . . . , n,
find subsets of numbers that occur contiguously in all permutations.

π3

π2

π1 1 2 3 4 5 6 70

5 1 4 3 2 076

20 4 3 5 67 1

1 2 5 6 70 3 4

5 1 2 076 4 3

20 5 67 1 4 3

[3,4]Common intervals:

1 5 6 70 2 3 4

5 1 076 234

0 5 67 1 2 4 3

[2,4]

5 6 70 1 2 3 4

5 076 1 234

0 5 67 1 2 4 3

[1,4]

5 6 70 1 2 3 4

576 02341

5 67 0 1 2 4 3

[0,4]

6 70 1 2 3 4 5

076

0 67

5 1 4 2

1 2 4 3 5

3

[1,5]

Jens Stoye: New models and algorithms for genome comparison 17

Formalization of gene cluster: common interval

Given permutations (genomes) π1, π2, . . . , πk of the numbers (genes) 0, 1, . . . , n,
find subsets of numbers that occur contiguously in all permutations.

π3

π2

π1 1 2 3 4 5 6 70

5 1 4 3 2 076

20 4 3 5 67 1

1 2 5 6 70 3 4

5 1 2 076 4 3

20 5 67 1 4 3

[3,4]Common intervals:

1 5 6 70 2 3 4

5 1 076 234

0 5 67 1 2 4 3

[2,4]

5 6 70 1 2 3 4

5 076 1 234

0 5 67 1 2 4 3

[1,4]

5 6 70 1 2 3 4

576 02341

5 67 0 1 2 4 3

[0,4]

6 70 1 2 3 4 5

076

0 67

5 1 4 2

1 2 4 3 5

3

[1,5]

6 7

76

67

0 1 2 3 4 5

5 1 4 3 2 0

0 1 2 4 3 5

[0,5]

Jens Stoye: New models and algorithms for genome comparison 17

Formalization of gene cluster: common interval

Given permutations (genomes) π1, π2, . . . , πk of the numbers (genes) 0, 1, . . . , n,
find subsets of numbers that occur contiguously in all permutations.

π3

π2

π1 1 2 3 4 5 6 70

5 1 4 3 2 076

20 4 3 5 67 1

1 2 5 6 70 3 4

5 1 2 076 4 3

20 5 67 1 4 3

[3,4]Common intervals:

1 5 6 70 2 3 4

5 1 076 234

0 5 67 1 2 4 3

[2,4]

5 6 70 1 2 3 4

5 076 1 234

0 5 67 1 2 4 3

[1,4]

5 6 70 1 2 3 4

576 02341

5 67 0 1 2 4 3

[0,4]

6 70 1 2 3 4 5

076

0 67

5 1 4 2

1 2 4 3 5

3

[1,5]

6 7

76

67

0 1 2 3 4 5

5 1 4 3 2 0

0 1 2 4 3 5

[0,5]

0 1 2 3 7654

4157

7 0 1 2 4 3 5 6

0236

[0,7]

Jens Stoye: New models and algorithms for genome comparison 17

Formalization of gene cluster: common interval

Given permutations (genomes) π1, π2, . . . , πk of the numbers (genes) 0, 1, . . . , n,
find subsets of numbers that occur contiguously in all permutations.

π3

π2

π1 1 2 3 4 5 6 70

5 1 4 3 2 076

20 4 3 5 67 1

1 2 5 6 70 3 4

5 1 2 076 4 3

20 5 67 1 4 3

[3,4]Common intervals:

1 5 6 70 2 3 4

5 1 076 234

0 5 67 1 2 4 3

[2,4]

5 6 70 1 2 3 4

5 076 1 234

0 5 67 1 2 4 3

[1,4]

5 6 70 1 2 3 4

576 02341

5 67 0 1 2 4 3

[0,4]

6 70 1 2 3 4 5

076

0 67

5 1 4 2

1 2 4 3 5

3

[1,5]

6 7

76

67

0 1 2 3 4 5

5 1 4 3 2 0

0 1 2 4 3 5

[0,5]

0 1 2 3 7654

4157

7 0 1 2 4 3 5 6

0236

[0,7]

1 2 3 4 5 6 70

5 1 4 3 2 076

20 4 3 5 67 1

Algorithms:

• Uno & Yagiura, Algorithmica 2000:
Find all common intervals of 2 permutations in O(n + |output|) time.

• Heber & Stoye, CPM 2001:
Find all common intervals of k ≥ 2 permutations in O(kn + |output|) time.

Jens Stoye: New models and algorithms for genome comparison 17

Finding all commmon intervals of 2 permutations π1 and π2

Let 1 ≤ x ≤ y ≤ n.

Notation: π([x, y]) := {π(x), π(x + 1), . . . , π(y)}

Definitions: l(x, y) := minπ2([x, y])
u(x, y):= maxπ2([x, y])
f(x, y):= u(x, y)− l(x, y)− (y − x)

Example:

π2

π1
0 1 2 3 4 5 6 7

76543210

0 1 6 7

0

2 3 4 5

6 7 5 1 4 3 2

Jens Stoye: New models and algorithms for genome comparison 18

Finding all commmon intervals of 2 permutations π1 and π2

Let 1 ≤ x ≤ y ≤ n.

Notation: π([x, y]) := {π(x), π(x + 1), . . . , π(y)}

Definitions: l(x, y) := minπ2([x, y])
u(x, y):= maxπ2([x, y])
f(x, y):= u(x, y)− l(x, y)− (y − x)

Example:

π2

π1
0 1 2 3 4 5 6 7

76543210

0 1 6 7

0

2 3 4 5

6 7 5 1 4 3 2

0 5 6 7

0576

1 2 3 4

1 4 3 2

f (1, 4) = 4− 1− (6− 3) = 0

Jens Stoye: New models and algorithms for genome comparison 18

Finding all commmon intervals of 2 permutations π1 and π2

Let 1 ≤ x ≤ y ≤ n.

Notation: π([x, y]) := {π(x), π(x + 1), . . . , π(y)}

Definitions: l(x, y) := minπ2([x, y])
u(x, y):= maxπ2([x, y])
f(x, y):= u(x, y)− l(x, y)− (y − x)

Example:

π2

π1
0 1 2 3 4 5 6 7

76543210

0 1 6 7

0

2 3 4 5

6 7 5 1 4 3 2

0 5 6 7

0576

1 2 3 4

1 4 3 2

f (1, 4) = 4− 1− (6− 3) = 00 1 2 3 4 5 6 7

02341576 f (1, 4) = 7− 1− (4− 1) = 3 > 0

Jens Stoye: New models and algorithms for genome comparison 18

Finding all commmon intervals of 2 permutations π1 and π2

Let 1 ≤ x ≤ y ≤ n.

Notation: π([x, y]) := {π(x), π(x + 1), . . . , π(y)}

Definitions: l(x, y) := minπ2([x, y])
u(x, y):= maxπ2([x, y])
f(x, y):= u(x, y)− l(x, y)− (y − x)

Example:

π2

π1
0 1 2 3 4 5 6 7

76543210

0 1 6 7

0

2 3 4 5

6 7 5 1 4 3 2

0 5 6 7

0576

1 2 3 4

1 4 3 2

f (1, 4) = 4− 1− (6− 3) = 00 1 2 3 4 5 6 7

02341576 f (1, 4) = 7− 1− (4− 1) = 3 > 0

Simple algorithm: For all 1 ≤ x ≤ y ≤ n test if f(x, y) = 0.

Analysis: O(n2) time.

Jens Stoye: New models and algorithms for genome comparison 18

Finding all common intervals of two permutations π1 and π2

Uno & Yagiura, 2000:
Perform the test f(x, y) = 0 not for all pairs (x, y).

Definition:
For given x, call a value of y > x wasteful, if and only if for all x′ ≤ x:

f(x′, y) > 0.

Lemma:
For fixed x, f(x, y) increases monotonically for the non-wasteful indices y (> x).

Algorithm (Idea):

• x runs in right-to-left direction through a doubly linked list ylist that initially
contains the entries of π2.

• In each step, the entries of wasteful indices y (> x) are removed.

• Test for the remaining y > x in ylist from left to right if f(x, y) = 0.

Jens Stoye: New models and algorithms for genome comparison 19

Algorithm RC (Uno & Yagiura)

• Removal of wasteful indices from ylist is done by means of two additional lists
llist and ulist that implement the functions l and u.

• The elements of llist and ulist are maximal intervals of ylist with the same
smallest resp. largest element.

ylist

ulist

llist

6 7 5 2341

6 5 0

0

1

6 7

Jens Stoye: New models and algorithms for genome comparison 20

Algorithm RC (Uno & Yagiura)

• Removal of wasteful indices from ylist is done by means of two additional lists
llist and ulist that implement the functions l and u.

• The elements of llist and ulist are maximal intervals of ylist with the same
smallest resp. largest element.

ylist

ulist

llist

6 7 5 2341

6 5 0

0

1

6 7

Analysis:
O(n + |output|) time, O(n) space.

Jens Stoye: New models and algorithms for genome comparison 20

Finding all common intervals of k ≥ 2 permutations

Obvious generalization:
Given k permutations π1, π2, . . . , πk.
For j = 2, 3, . . . , k compute the common intervals of π1 and πj.
Output all intervals that are found in all of these comparisons.

π3

π2

π1 2 3 4 5 6 7

5 1 4 3 2 07

20 4 3 5 67 1

6

10

Jens Stoye: New models and algorithms for genome comparison 21

Finding all common intervals of k ≥ 2 permutations

Obvious generalization:
Given k permutations π1, π2, . . . , πk.
For j = 2, 3, . . . , k compute the common intervals of π1 and πj.
Output all intervals that are found in all of these comparisons.

π3

π2

π1 2 3 4 5 6 7

5 1 4 3 2 07

20 4 3 5 67 1

6

10
[3,4] [5,7]

[0,4] [0,5] [0,7]

[6,7]

[1,4] [1,5] [1,7] [2,3] [2,4]

Jens Stoye: New models and algorithms for genome comparison 21

Finding all common intervals of k ≥ 2 permutations

Obvious generalization:
Given k permutations π1, π2, . . . , πk.
For j = 2, 3, . . . , k compute the common intervals of π1 and πj.
Output all intervals that are found in all of these comparisons.

π3

π2

π1 2 3 4 5 6 7

5 1 4 3 2 07

20 4 3 5 67 1

6

10
[3,4] [5,7]

[0,4] [0,5] [0,7]

[6,7]

[1,4] [1,5] [1,7] [2,3] [2,4]

[0,1] [0,2] [0,4] [0,5] [0,6] [0,7] [1,2]

[1,6] [2,4] [2,5] [3,4] [3,5] [3,6]

[5,6]

[1,4]

[1,5] [2,6]

Jens Stoye: New models and algorithms for genome comparison 21

Finding all common intervals of k ≥ 2 permutations

Obvious generalization:
Given k permutations π1, π2, . . . , πk.
For j = 2, 3, . . . , k compute the common intervals of π1 and πj.
Output all intervals that are found in all of these comparisons.

π3

π2

π1 2 3 4 5 6 7

5 1 4 3 2 07

20 4 3 5 67 1

6

10
[3,4] [5,7]

[0,4] [0,5] [0,7]

[6,7]

[1,4] [1,5] [1,7] [2,3] [2,4]

[0,1] [0,2] [0,4] [0,5] [0,6] [0,7] [1,2]

[1,6] [2,4] [2,5] [3,4] [3,5] [3,6]

[5,6]

[1,4]

[1,5] [2,6]

[0,1]

[5,6]

[1,6]

[0,2] [0,6]

[2,6][2,5] [3,5]

[1,2]

[3,6][3,4][2,4]

[1,4][0,4]

[1,5]

[0,5] [0,7]

[5,7] [6,7]

[1,7] [2,3]

[3,4]

[2,4][1,4][0,4] [1,5][0,5] [0,7]

Jens Stoye: New models and algorithms for genome comparison 21

Finding all common intervals of k ≥ 2 permutations

Obvious generalization:
Given k permutations π1, π2, . . . , πk.
For j = 2, 3, . . . , k compute the common intervals of π1 and πj.
Output all intervals that are found in all of these comparisons.

π3

π2

π1 2 3 4 5 6 7

5 1 4 3 2 07

20 4 3 5 67 1

6

10
[3,4] [5,7]

[0,4] [0,5] [0,7]

[6,7]

[1,4] [1,5] [1,7] [2,3] [2,4]

[0,1] [0,2] [0,4] [0,5] [0,6] [0,7] [1,2]

[1,6] [2,4] [2,5] [3,4] [3,5] [3,6]

[5,6]

[1,4]

[1,5] [2,6]

[0,1]

[5,6]

[1,6]

[0,2] [0,6]

[2,6][2,5] [3,5]

[1,2]

[3,6][3,4][2,4]

[1,4][0,4]

[1,5]

[0,5] [0,7]

[5,7] [6,7]

[1,7] [2,3]

[3,4]

[2,4][1,4][0,4] [1,5][0,5] [0,7]

Analysis:
O(kn +

∑
|Ki|) time

where Ki = the number of common intervals of π1 and πi.

Jens Stoye: New models and algorithms for genome comparison 21

Irreducible Intervals

Goal: An algorithm with output-dependent time complexity O(kn + |output|).

Observation: Common intervals form “chains” of non-trivially overlapping
intervals.

π2

π1

[0,7]

[1,7]
[0,4]

[1,5]
[5,7]

[6,7]
[2,4]

[2,3]
[3,4]

[0,5]

0 1 6 7

0

2 3 4 5

6 7 5 1 4 3 2

Definition:
A common interval c is reducible if there exists a non-trivial chain that generates
c, otherwise it is irreducible.

Jens Stoye: New models and algorithms for genome comparison 22

Properties of irreducible intervals

Lemma:
The subchains of all the maximal chains of irreducible intervals generate exactly
all common intervals.

Theorem: For is the number of irreducible intervals K the following holds:

1 ≤ K ≤ n− 1

Example:

π1

K = 1

π2

[0,7]

0 1 2 3 4 5 6 7

76543210

0 1 6 7

7

2 3 4 5

0 4 1 5 2 6 3

π1

K = n− 1

π2

[0,1]

[2,3]
[3,4]

[4,5]
[5,6]

[6,7]

[1,2]

0 1 2 3 4 5 6 7

76543210

0 1 6 7

7

2 3 4 5

0 1 2 3 4 5 6

Jens Stoye: New models and algorithms for genome comparison 23

Finding all common intervals of k ≥ 2 permutations

Algorithm:

• Find the set of all irreducible intervals.

• Partition this set into maximal chains of non-trivially overlapping intervals.

• For each such chain generate all subchains: the common intervals.

π3

π2

π1

[0,7]
[0,4]

[1,5]
[1,4]
[2,4]
[3,4]

2 3 4 5 6 7

5 1 4 3 2 07

20 4 3 5 67 1

6

10

Jens Stoye: New models and algorithms for genome comparison 24

Finding all common intervals of k ≥ 2 permutations

Algorithm:

• Find the set of all irreducible intervals.

• Partition this set into maximal chains of non-trivially overlapping intervals.

• For each such chain generate all subchains: the common intervals.

π3

π2

π1

[0,7]
[0,4]

[1,5]
[1,4]
[2,4]
[3,4]

2 3 4 5 6 7

5 1 4 3 2 07

20 4 3 5 67 1

6

10

[0,5]

Jens Stoye: New models and algorithms for genome comparison 24

Finding all common intervals of k ≥ 2 permutations

Algorithm:

• Find the set of all irreducible intervals.

• Partition this set into maximal chains of non-trivially overlapping intervals.

• For each such chain generate all subchains: the common intervals.

π3

π2

π1

[0,7]
[0,4]

[1,5]
[1,4]
[2,4]
[3,4]

2 3 4 5 6 7

5 1 4 3 2 07

20 4 3 5 67 1

6

10

[0,5]

Analysis: O(kn + |output|) time, O(n) additional space

Jens Stoye: New models and algorithms for genome comparison 24

More realistic genome models

1. Genomes of higher organisms often have more than one chromosome
⇒ multichromosomal permutations

π1

π2

0 1 2 3 6 74 5 8

1 05 86 72 3 4

2. Genes of a cluster should lie on the same DNA strand
⇒ signed permutations

π2

π1 +0

+8 +7 +3 +5 +4 −6 −0 −1 −2

+8+7+6+5+4+3+2+1

3. Bacterial, archaeal, and mitochondrial DNA is often circular
⇒ circular permutations

π1 π1

0

1

2

8
7

6

5
4 3

0

3

7

1
8

6

5
4 2

Jens Stoye: New models and algorithms for genome comparison 25

Overview: New models and algorithms for genome comparison

• Introduction

– Comparative genomics
– Gene clusters

• Finding gene clusters

– Gene clusters of permutations
– Gene clusters of sequences
– Experimental results

• Conserved intervals

– Finding conserved intervals
– Application to mitochondrial genomes

• Summary and Conclusion

Jens Stoye: New models and algorithms for genome comparison 26

Inclusion of paralogous genes

Problem:
In case of duplicated genes, it is difficult to assign correct orthologous gene pairs.
Possibly the ortholog does not even exist.

Consequence:
Do not distinguish between paralogous gene copies.

New model:
Use the same element (number) more than once for paralogous copies of genes.
→ genomes are modeled as sequences instead of permutations.

Jens Stoye: New models and algorithms for genome comparison 27

Formal model

Given: k sequences S = (S1, S2, . . . , Sk) over an alphabet Σ.

Common interval:
a subset C ⊆ Σ whose elements occur contiguously in each Sl ∈ S.

Goal:
Find all maximal occurrences of common intervals in S.

Jens Stoye: New models and algorithms for genome comparison 28

Formal model

Given: k sequences S = (S1, S2, . . . , Sk) over an alphabet Σ.

Common interval:
a subset C ⊆ Σ whose elements occur contiguously in each Sl ∈ S.

Goal:
Find all maximal occurrences of common intervals in S.

Example:

S3

S2

S1 1 2 3 1 5 2 63

5 5 5 1 4 234

55 3 6 57 1

2

Jens Stoye: New models and algorithms for genome comparison 28

Formal model

Given: k sequences S = (S1, S2, . . . , Sk) over an alphabet Σ.

Common interval:
a subset C ⊆ Σ whose elements occur contiguously in each Sl ∈ S.

Goal:
Find all maximal occurrences of common intervals in S.

Example:

S3

S2

S1 1 2 3 1 5 2 63

5 5 5 1 4 234

55 3 6 57 1

2

7 5 1 5 6 5

22415554

1 2 1 5 2 63

3

3

3

Common intervals: {3}

Jens Stoye: New models and algorithms for genome comparison 28

Formal model

Given: k sequences S = (S1, S2, . . . , Sk) over an alphabet Σ.

Common interval:
a subset C ⊆ Σ whose elements occur contiguously in each Sl ∈ S.

Goal:
Find all maximal occurrences of common intervals in S.

Example:

S3

S2

S1 1 2 3 1 5 2 63

5 5 5 1 4 234

55 3 6 57 1

2

7 5 1 5 6 5

22415554

1 2 1 5 2 63

3

3

3

Common intervals: {3}

7 5 5 3 6 5

4 2 2

625323

4 3 5 5 5

1

1

11

{1}

Jens Stoye: New models and algorithms for genome comparison 28

Formal model

Given: k sequences S = (S1, S2, . . . , Sk) over an alphabet Σ.

Common interval:
a subset C ⊆ Σ whose elements occur contiguously in each Sl ∈ S.

Goal:
Find all maximal occurrences of common intervals in S.

Example:

S3

S2

S1 1 2 3 1 5 2 63

5 5 5 1 4 234

55 3 6 57 1

2

7 5 1 5 6 5

22415554

1 2 1 5 2 63

3

3

3

Common intervals: {3}

7 5 5 3 6 5

4 2 2

625323

4 3 5 5 5

1

1

11

{1}

7 1 3 6

4 2 2

6213213

4 3 1

5 5

5 5 5

5

5

{5}

Jens Stoye: New models and algorithms for genome comparison 28

Formal model

Given: k sequences S = (S1, S2, . . . , Sk) over an alphabet Σ.

Common interval:
a subset C ⊆ Σ whose elements occur contiguously in each Sl ∈ S.

Goal:
Find all maximal occurrences of common intervals in S.

Example:

S3

S2

S1 1 2 3 1 5 2 63

5 5 5 1 4 234

55 3 6 57 1

2

7 5 1 5 6 5

22415554

1 2 1 5 2 63

3

3

3

Common intervals: {3}

7 5 5 3 6 5

4 2 2

625323

4 3 5 5 5

1

1

11

{1}

7 1 3 6

4 2 2

6213213

4 3 1

5 5

5 5 5

5

5

{5}

7 3 6 5

4 2 2

63

4 3

2321

5 1 5

1 5

5 5 5 1

{1,5}

Jens Stoye: New models and algorithms for genome comparison 28

Formal model

Given: k sequences S = (S1, S2, . . . , Sk) over an alphabet Σ.

Common interval:
a subset C ⊆ Σ whose elements occur contiguously in each Sl ∈ S.

Goal:
Find all maximal occurrences of common intervals in S.

Example:

S3

S2

S1 1 2 3 1 5 2 63

5 5 5 1 4 234

55 3 6 57 1

2

7 5 1 5 6 5

22415554

1 2 1 5 2 63

3

3

3

Common intervals: {3}

7 5 5 3 6 5

4 2 2

625323

4 3 5 5 5

1

1

11

{1}

7 1 3 6

4 2 2

6213213

4 3 1

5 5

5 5 5

5

5

{5}

7 3 6 5

4 2 2

63

4 3

2321

5 1 5

1 5

5 5 5 1

{1,5}

7 6 5

2244

3 1 2 2 63 1 5

15553

5 1 5 3

{1,3,5}

Jens Stoye: New models and algorithms for genome comparison 28

Formal model

Given: k sequences S = (S1, S2, . . . , Sk) over an alphabet Σ.

Common interval:
a subset C ⊆ Σ whose elements occur contiguously in each Sl ∈ S.

Goal:
Find all maximal occurrences of common intervals in S.

Example:

S3

S2

S1 1 2 3 1 5 2 63

5 5 5 1 4 234

55 3 6 57 1

2

7 5 1 5 6 5

22415554

1 2 1 5 2 63

3

3

3

Common intervals: {3}

7 5 5 3 6 5

4 2 2

625323

4 3 5 5 5

1

1

11

{1}

7 1 3 6

4 2 2

6213213

4 3 1

5 5

5 5 5

5

5

{5}

7 3 6 5

4 2 2

63

4 3

2321

5 1 5

1 5

5 5 5 1

{1,5}

7 6 5

2244

3 1 2 2 63 1 5

15553

5 1 5 3

{1,3,5}

7 5 1 5 3 6 5

4

25

15

13

55

21

34

3 6

2 2

Jens Stoye: New models and algorithms for genome comparison 28

An elementary algorithm for two sequences

Preprocessing: compute two tables for S1 = (3, 1, 2, 3, 1, 5, 2, 6):

POS[1] = 2, 5
POS[2] = 3, 7
POS[3] = 1, 4
POS[4] = empty
POS[5] = 6
POS[6] = 8

NUM(i, j) : i\
j 0 1 2 3 4 5 6 7

0 1 2 3 3 3 4 4 5

1 1 2 3 3 4 4 5

2 1 2 3 4 4 5

3 1 2 3 4 5

4 1 2 3 4

5 1 2 3

6 1 2

7 1

Algorithm:
While reading S2, mark in S1 the observed characters and track maximal intervals
of marked characters.

S1 S21 2 3 1 5 2 63 4 3 2241555
0 1 2 3 5 6 74

Jens Stoye: New models and algorithms for genome comparison 29

An elementary algorithm for two sequences

Preprocessing: compute two tables for S1 = (3, 1, 2, 3, 1, 5, 2, 6):

POS[1] = 2, 5
POS[2] = 3, 7
POS[3] = 1, 4
POS[4] = empty
POS[5] = 6
POS[6] = 8

NUM(i, j) : i\
j 0 1 2 3 4 5 6 7

0 1 2 3 3 3 4 4 5

1 1 2 3 3 4 4 5

2 1 2 3 4 4 5

3 1 2 3 4 5

4 1 2 3 4

5 1 2 3

6 1 2

7 1

Algorithm:
While reading S2, mark in S1 the observed characters and track maximal intervals
of marked characters.

S1 S21 2 3 1 5 2 63 4 3 2241555
0 1 2 3 5 6 74

1 2 3 1 5 2 63 4 3 2241555
i = j

Jens Stoye: New models and algorithms for genome comparison 29

An elementary algorithm for two sequences

Preprocessing: compute two tables for S1 = (3, 1, 2, 3, 1, 5, 2, 6):

POS[1] = 2, 5
POS[2] = 3, 7
POS[3] = 1, 4
POS[4] = empty
POS[5] = 6
POS[6] = 8

NUM(i, j) : i\
j 0 1 2 3 4 5 6 7

0 1 2 3 3 3 4 4 5

1 1 2 3 3 4 4 5

2 1 2 3 4 4 5

3 1 2 3 4 5

4 1 2 3 4

5 1 2 3

6 1 2

7 1

Algorithm:
While reading S2, mark in S1 the observed characters and track maximal intervals
of marked characters.

S1 S21 2 3 1 5 2 63 4 3 2241555
0 1 2 3 5 6 74

1 2 3 1 5 2 63 4 3 2241555
i = j

1 2 3 1 5 2 63 4 3 2241555
i j

Jens Stoye: New models and algorithms for genome comparison 29

An elementary algorithm for two sequences

Preprocessing: compute two tables for S1 = (3, 1, 2, 3, 1, 5, 2, 6):

POS[1] = 2, 5
POS[2] = 3, 7
POS[3] = 1, 4
POS[4] = empty
POS[5] = 6
POS[6] = 8

NUM(i, j) : i\
j 0 1 2 3 4 5 6 7

0 1 2 3 3 3 4 4 5

1 1 2 3 3 4 4 5

2 1 2 3 4 4 5

3 1 2 3 4 5

4 1 2 3 4

5 1 2 3

6 1 2

7 1

Algorithm:
While reading S2, mark in S1 the observed characters and track maximal intervals
of marked characters.

S1 S21 2 3 1 5 2 63 4 3 2241555
0 1 2 3 5 6 74

1 2 3 1 5 2 63 4 3 2241555
i = j

1 2 3 1 5 2 63 4 3 2241555
i j

4 3 2241555
j

Jens Stoye: New models and algorithms for genome comparison 29

An elementary algorithm for two sequences

Preprocessing: compute two tables for S1 = (3, 1, 2, 3, 1, 5, 2, 6):

POS[1] = 2, 5
POS[2] = 3, 7
POS[3] = 1, 4
POS[4] = empty
POS[5] = 6
POS[6] = 8

NUM(i, j) : i\
j 0 1 2 3 4 5 6 7

0 1 2 3 3 3 4 4 5

1 1 2 3 3 4 4 5

2 1 2 3 4 4 5

3 1 2 3 4 5

4 1 2 3 4

5 1 2 3

6 1 2

7 1

Algorithm:
While reading S2, mark in S1 the observed characters and track maximal intervals
of marked characters.

S1 S21 2 3 1 5 2 63 4 3 2241555
0 1 2 3 5 6 74

1 2 3 1 5 2 63 4 3 2241555
i = j

1 2 3 1 5 2 63 4 3 2241555
i j

4 3 2241555
j

4 3 2241555
j

Jens Stoye: New models and algorithms for genome comparison 29

An elementary algorithm for two sequences

Preprocessing: compute two tables for S1 = (3, 1, 2, 3, 1, 5, 2, 6):

POS[1] = 2, 5
POS[2] = 3, 7
POS[3] = 1, 4
POS[4] = empty
POS[5] = 6
POS[6] = 8

NUM(i, j) : i\
j 0 1 2 3 4 5 6 7

0 1 2 3 3 3 4 4 5

1 1 2 3 3 4 4 5

2 1 2 3 4 4 5

3 1 2 3 4 5

4 1 2 3 4

5 1 2 3

6 1 2

7 1

Algorithm:
While reading S2, mark in S1 the observed characters and track maximal intervals
of marked characters.

S1 S21 2 3 1 5 2 63 4 3 2241555
0 1 2 3 5 6 74

1 2 3 1 5 2 63 4 3 2241555
i = j

1 2 3 1 5 2 63 4 3 2241555
i j

4 3 2241555
j

4 3 2241555
j

1 2 3 1 5 2 63 4 3 2245 5 5 1
j

Jens Stoye: New models and algorithms for genome comparison 29

An elementary algorithm for two sequences

Preprocessing: compute two tables for S1 = (3, 1, 2, 3, 1, 5, 2, 6):

POS[1] = 2, 5
POS[2] = 3, 7
POS[3] = 1, 4
POS[4] = empty
POS[5] = 6
POS[6] = 8

NUM(i, j) : i\
j 0 1 2 3 4 5 6 7

0 1 2 3 3 3 4 4 5

1 1 2 3 3 4 4 5

2 1 2 3 4 4 5

3 1 2 3 4 5

4 1 2 3 4

5 1 2 3

6 1 2

7 1

Algorithm:
While reading S2, mark in S1 the observed characters and track maximal intervals
of marked characters.

S1 S21 2 3 1 5 2 63 4 3 2241555
0 1 2 3 5 6 74

1 2 3 1 5 2 63 4 3 2241555
i = j

1 2 3 1 5 2 63 4 3 2241555
i j

4 3 2241555
j

4 3 2241555
j

1 2 3 1 5 2 63 4 3 2245 5 5 1
j

Analysis: O(n2) time and space.

Jens Stoye: New models and algorithms for genome comparison 29

More algorithms

Space reduction:

• A different algorithm based on work by Didier (CPM, 2003) finds all common
intervals of two sequences in O(n2) time and O(n) space.

More than two sequences:

• Find all common intervals in k sequences in O(kn2) time and space.

• Find all common intervals that appear in at least k′ out of k given sequences in
O(k(1 + k − k′)n2) time and O(kn2) space.

Jens Stoye: New models and algorithms for genome comparison 30

Overview: New models and algorithms for genome comparison

• Introduction

– Comparative genomics
– Gene clusters

• Finding gene clusters

– Gene clusters of permutations
– Gene clusters of sequences
– Experimental results

• Conserved intervals

– Finding conserved intervals
– Application to mitochondrial genomes

• Summary and Conclusion

Jens Stoye: New models and algorithms for genome comparison 31

Experimental results. Data source: COG

Jens Stoye: New models and algorithms for genome comparison 32

Experimental results. Application to 43 bacterial genomes

Jens Stoye: New models and algorithms for genome comparison 33

Experimental results. Graphical inspection of gene clusters

Jens Stoye: New models and algorithms for genome comparison 34

Experimental results. Graphical inspection of gene clusters

Jens Stoye: New models and algorithms for genome comparison 34

Overview: New models and algorithms for genome comparison

• Introduction

– Comparative genomics
– Gene clusters

• Finding gene clusters

– Gene clusters of permutations
– Gene clusters of sequences
– Experimental results

• Conserved intervals

– Finding conserved intervals
– Application to mitochondrial genomes

• Summary and Conclusion

Jens Stoye: New models and algorithms for genome comparison 35

Overview: New models and algorithms for genome comparison

• Introduction

– Comparative genomics
– Gene clusters

• Finding gene clusters

– Gene clusters of permutations
– Gene clusters of sequences
– Experimental results

• Conserved intervals

– Finding conserved intervals
– Application to mitochondrial genomes

• Summary and Conclusion

Jens Stoye: New models and algorithms for genome comparison 36

On genomic distances

So far: use gene clusters for functional genomics

More traditional approach in geome rearrangement studies:
use gene order data to estimate evolutionary divergence of genomes.

Definition: The XXX distance between two permutations is the minimum
number of XXX operations that transform one permutation into the other.

History (partial): Sankoff 1992; Hannenhalli & Pevzner 1995; Bafna & Pevzner
1998; Christie 1998; Kaplan, Shamir & Tarjan 1999; Bader, Moret & Yan 2001;
Bergeron 2001; Siepel 2002.

Alternate approach: Find structures that are shared by two permutations that
are invariant under optimal, or biologically meaningful, rearrangement scenarios.

History (partial): Blanchette, Kunisawa & Sankoff 1999; Uno & Yagiura 2000;
Heber & Stoye 2001; Bergeron, Heber & Stoye 2002.

Jens Stoye: New models and algorithms for genome comparison 37

First approach: adjacencies/breakpoints

A pair of genes (a, b) is a conserved adjacency in two genomes G and H if either
a and b, or −b and −a are consecutive in both G and H.

Example:

G = 0 1 2 3 4 5 6 7

H = 0 3 −2 −1 4 −5 6 7

Property 1: Upgrades easily to sets of k genomes.

Property 2: Invariant in optimal rearrangement scenarios.

Property 3: Independent of a model of evolution.

Limits: In larger sets of genomes, few adjacencies are completely conserved.

Jens Stoye: New models and algorithms for genome comparison 38

Adjacencies in mitochondrial genomes of Arthropoda

Jens Stoye: New models and algorithms for genome comparison 39

Adjacencies in mitochondrial genomes of Arthropoda

Jens Stoye: New models and algorithms for genome comparison 39

Conserved intervals

Definition:

A pair [a, b] is a conserved interval in two genomes G and H if:

1) either a precedes b, or −b precedes −a, and

2) the sets of genes between a and b are the same.

Irreducible: Not the union of shorter conserved intervals.

Example:

G = 0 1 2 3 4 5 6 7

H = 0 3 −2 −1 4 −5 6 7

Compact representation (“family portrait”):

G = 0 1 2 3 4 5 6 7

Jens Stoye: New models and algorithms for genome comparison 40

Conserved intervals

Definition:

A pair [a, b] is a conserved interval in two genomes G and H if:

1) either a precedes b, or −b precedes −a, and

2) the sets of genes between a and b are the same.

Irreducible: Not the union of shorter conserved intervals.

Example:

G = 0 1 2 3 4 5 6 7

H = 0 3 −2 −1 4 −5 6 7

Compact representation (“family portrait”):

G = 0 1 2 3 4 5 6 7

Jens Stoye: New models and algorithms for genome comparison 40

Conserved intervals

Definition:

A pair [a, b] is a conserved interval in two genomes G and H if:

1) either a precedes b, or −b precedes −a, and

2) the sets of genes between a and b are the same.

Irreducible: Not the union of shorter conserved intervals.

Example:

G = 0 1 2 3 4 5 6 7

H = 0 3 −2 −1 4 −5 6 7

Compact representation (“family portrait”):

G = 0 1 2 3 4 5 6 7

Jens Stoye: New models and algorithms for genome comparison 40

Conserved intervals

Definition:

A pair [a, b] is a conserved interval in two genomes G and H if:

1) either a precedes b, or −b precedes −a, and

2) the sets of genes between a and b are the same.

Irreducible: Not the union of shorter conserved intervals.

Example:

G = 0 1 2 3 4 5 6 7

H = 0 3 −2 −1 4 −5 6 7

Compact representation (“family portrait”):

G = 0 1 2 3 4 5 6 7

Jens Stoye: New models and algorithms for genome comparison 40

Conserved intervals

Definition:

A pair [a, b] is a conserved interval in two genomes G and H if:

1) either a precedes b, or −b precedes −a, and

2) the sets of genes between a and b are the same.

Irreducible: Not the union of shorter conserved intervals.

Example:

G = 0 1 2 3 4 5 6 7

H = 0 3 −2 −1 4 −5 6 7

Compact representation (“family portrait”):

G = 0 1 2 3 4 5 6 7

Jens Stoye: New models and algorithms for genome comparison 40

Conserved intervals

Definition:

A pair [a, b] is a conserved interval in two genomes G and H if:

1) either a precedes b, or −b precedes −a, and

2) the sets of genes between a and b are the same.

Irreducible: Not the union of shorter conserved intervals.

Example:

G = 0 1 2 3 4 5 6 7

H = 0 3 −2 −1 4 −5 6 7

Compact representation (“family portrait”):

G = 0 1 2 3 4 5 6 7

Jens Stoye: New models and algorithms for genome comparison 40

Conserved intervals in mitochondrial genomes of Arthropoda

Jens Stoye: New models and algorithms for genome comparison 41

Conserved intervals in mitochondrial genomes of Arthropoda

Jens Stoye: New models and algorithms for genome comparison 41

Conserved intervals in mitochondrial genomes of Arthropoda

Jens Stoye: New models and algorithms for genome comparison 41

Conserved intervals in mitochondrial genomes of Arthropoda

Jens Stoye: New models and algorithms for genome comparison 41

Conserved intervals in mitochondrial genomes of Arthropoda

Jens Stoye: New models and algorithms for genome comparison 41

Properties

Property 1: Upgrades easily to sets of k genomes.

Property 2: Invariant in (most) optimal rearrangement scenarios.

Property 3: Independent of a model of evolution.

Property 4: Computable in linear time:

1: stack 0 on S, stack n onM
2: M0 ← n

3: for i = 1, . . . , n do
4: unstack fromM all elements m smaller than |πi|
5: Mi ← m

6: stack the element |πi| onM
7: unstack from S all indices s such that (|πi| < πs or |πi| > Ms)

8: if i− s = πi − πs and Mi = Ms then
9: output positive irreducible conserved interval [πs, πi]

10: end if
11: if πi is positive then
12: stack the index i on S
13: end if
14: end for

Jens Stoye: New models and algorithms for genome comparison 42

Algorithm summary

Two permutations:

• find all irreducible conserved intervals in O(n) time and space

• find all K conserved intervals in O(n + K) time and O(n) space

More than two permutations:

• find the intersection of two sets of irreducible intervals in O(n) time and space

• find all irreducible conserved of a set of k permutations in O(kn) time and
O(n) space

Jens Stoye: New models and algorithms for genome comparison 43

Similarity and distance

The number of conserved intervals between two genomes is a measure of similarity.

It is possible to derive a measure of distance between two genomes:

d(G, H) = N1 + N2 − 2N

where

N1 is the number of conserved intervals in G
N2 is the number of conserved intervals in H
N is the number of conserved intervals in G ∪H

Jens Stoye: New models and algorithms for genome comparison 44

Interval distance and reversal/transposition distance table

Fruit Fly Mosquito Silkworm Locust Tick Centipede

Fruit Fly – – 90 2 62 1 62 1 158 2 188 3

Mosquito 90 2 – – 140 3 140 3 200 4 230 5

Silkworm 62 1 140 3 – – 116 2 180 3 194 4

Locust 62 1 140 3 116 2 – – 188 3 218 4

Tick 158 2 200 4 180 3 188 3 – – 110 1

Centipede 188 3 230 5 194 4 218 4 110 1 – –

Jens Stoye: New models and algorithms for genome comparison 45

Links with rearrangement theories

Link 1: Conserved intervals between two permutations are the connected
components of the interleaving cycles of the breakpoint graph.
(First noticed by Hannenhalli, 1995.)

Link 2: Interval distance is sensitive ot the length of rearranged segments.

Link 3: Optimal rearrangement scenarios that break conserved intervals are
suspicious.

Jens Stoye: New models and algorithms for genome comparison 46

Overview: New models and algorithms for genome comparison

• Introduction

– Comparative genomics
– Gene clusters

• Finding gene clusters

– Gene clusters of permutations
– Gene clusters of sequences
– Experimental results

• Conserved intervals

– Finding conserved intervals
– Application to mitochondrial genomes

• Summary and Conclusion

Jens Stoye: New models and algorithms for genome comparison 47

Summary: Gene clusters and common intervals

Some algorithmic results:

• Find all common intervals of k permutations in O(kn + |output|) time.

• Find all common intervals of k sequences in O(kn2) time.

• Find all conserved intervals of k permutations in O(kn) time

Jens Stoye: New models and algorithms for genome comparison 48

Conclusion

Points raised:

• Comparative genomics can help in functional genome annotation

• Conserved regions in genomes have a static and a dynamic aspect

• Interesting combinatorics in Bioinformatics

Next steps:

• Statistical assessment of gene clusters

• Patterns in overlapping gene clusters

• Application to more data

Jens Stoye: New models and algorithms for genome comparison 49

Acknowledgments

Common intervals

• Steffen Heber (Raleigh)

• Mathieu Raffinot (Paris)

• Hannes Luz (Berlin)

• Thomas Schmidt (Bielefeld)

Conserved intervals

• Anne Bergeron (Montréal)

References:

• Heber & Stoye, Finding all Common Intervals of k Permutations, Proc. CPM 2001.
• Heber & Stoye, Algorithms for Finding Gene Clusters, Proc. WABI 2001.
• Bergeron & Stoye, On the Similarity of Sets of Permutations and its Applications to Genome

Comparison, Proc. COCOON 2003.
• Schmidt & Stoye, Quadratic Time Algorithms for Finding Common Intervals in Two and More

Sequences, Proc. CPM 2004 (to appear).

Jens Stoye: New models and algorithms for genome comparison 50

Black slide

51

