Suffix trees, Affix trees,
and some of their applications

Jens Stoye

Genome Informatics Group, Faculty of Technology
and

Institute of Bioinformatics, Center of Biotechnology
Bielefeld University, Germany

CeBiTec
(Center of Biotechnology)

Institute of Graduate School Institute of Genome

Bioinformatics _— Research
e 2 scientific groups

. il C ® 2 mentors C _

° ractical Computer [enetics

Sci ! P e 21 PhD grants
cience

up to 3 years each
e Bio- and Medical (up Y)

Informatics

e Genome Research

e Transcriptomics

e Genome Informatics .
e Proteomics

e Analysis of Mass Spectra

Bioinformatics
e Central Unit for Genome

e Bibiserv Tools Resource Research

e Bibiserv Media e Hard- and Software e Competence Network
maintenance GenoMik

e Theoretical Bioinformatics e Bioinformatics project
support

e Biomathematics

http://www.cebitec.uni-bielefeld.de/IoB
http://www.cebitec.uni-bielefeld.de/IoB
http://www.techfak.uni-bielefeld.de/ags/pi
http://www.techfak.uni-bielefeld.de/ags/pi
http://www.techfak.uni-bielefeld.de/ags/bi
http://www.techfak.uni-bielefeld.de/ags/bi
http://www.techfak.uni-bielefeld.de/ags/gi
http://www.cebitec.uni-bielefeld.de/~boecker
http://bibiserv.techfak.uni-bielefeld.de
http://bibiserv.techfak.uni-bielefeld.de
http://www.genetik.uni-bielefeld.de/ZfG
http://www.genetik.uni-bielefeld.de/ZfG
http://www.genetik.uni-bielefeld.de
http://www.cebitec.uni-bielefeld.de/groups/gf
http://www.genetik.uni-bielefeld.de/ZfG/Transcriptomics/
http://www.genetik.uni-bielefeld.de/ZfG/Proteomics/
http://www.genetik.uni-bielefeld.de
http://www.genetik.uni-bielefeld.de
http://www.genetik.uni-bielefeld.de/GenoMik
http://www.genetik.uni-bielefeld.de/GenoMik
http://www.cebitec.uni-bielefeld.de/GradSchool
http://www.genetik.uni-bielefeld.de/ZfG/Bioinformatics
http://www.genetik.uni-bielefeld.de/ZfG/Bioinformatics
http://www.cebitec.uni-bielefeld.de/
http://www.cebitec.uni-bielefeld.de/
http://www.techfak.uni-bielefeld.de
http://www.techfak.uni-bielefeld.de
http://www.techfak.uni-bielefeld.de/ags/ai
http://www.techfak.uni-bielefeld.de/ags/ai
http://www.techfak.uni-bielefeld.de/ags/ani
http://www.techfak.uni-bielefeld.de/ags/ani
http://www.mathematik.uni-bielefeld.de
http://www.mathematik.uni-bielefeld.de
http://www.biologie.uni-bielefeld.de
http://www.biologie.uni-bielefeld.de
http://www.physik.uni-bielefeld.de
http://www.physik.uni-bielefeld.de
http://www.chemie.uni-bielefeld.de
http://www.chemie.uni-bielefeld.de

CeBiTec
(Center of Biotechnology)

Institute of
Bioinformatics

Technical
Faculty

e Applied Computer
Science

e Applied
Neuroinformatics

\

Practical Computer \

Science

Bio- and Medical
Informatics

Genome Informatics

Analysis of Mass Spectra

Bibiserv Tools
Bibiserv Media

Theoretical Bioinformatig/

Faculty of
Mathematics

Ko

Graduate School
e 2 scientific groups
® 2 mentors

e 21 PhD grants
(up to 3 years each)

Bioinformatics
Resource

e Hard- and Software
maintenance

e Bioinformatics project

Institute of Genome
Research

K Genetics

Genome Research

Transcriptomics

(Proteomics

%

Faculty of
Biology

Central Unit for Genome
Research

Competence Network
GenoMik

Biomathematics \ support
/Faculty of Faculty of
Physics Chemistry
/ .

\0

http://www.cebitec.uni-bielefeld.de/IoB
http://www.cebitec.uni-bielefeld.de/IoB
http://www.techfak.uni-bielefeld.de/ags/pi
http://www.techfak.uni-bielefeld.de/ags/pi
http://www.techfak.uni-bielefeld.de/ags/bi
http://www.techfak.uni-bielefeld.de/ags/bi
http://www.techfak.uni-bielefeld.de/ags/gi
http://www.cebitec.uni-bielefeld.de/~boecker
http://bibiserv.techfak.uni-bielefeld.de
http://bibiserv.techfak.uni-bielefeld.de
http://www.genetik.uni-bielefeld.de/ZfG
http://www.genetik.uni-bielefeld.de/ZfG
http://www.genetik.uni-bielefeld.de
http://www.cebitec.uni-bielefeld.de/groups/gf
http://www.genetik.uni-bielefeld.de/ZfG/Transcriptomics/
http://www.genetik.uni-bielefeld.de/ZfG/Proteomics/
http://www.genetik.uni-bielefeld.de
http://www.genetik.uni-bielefeld.de
http://www.genetik.uni-bielefeld.de/GenoMik
http://www.genetik.uni-bielefeld.de/GenoMik
http://www.cebitec.uni-bielefeld.de/GradSchool
http://www.genetik.uni-bielefeld.de/ZfG/Bioinformatics
http://www.genetik.uni-bielefeld.de/ZfG/Bioinformatics
http://www.cebitec.uni-bielefeld.de/
http://www.cebitec.uni-bielefeld.de/
http://www.techfak.uni-bielefeld.de
http://www.techfak.uni-bielefeld.de
http://www.techfak.uni-bielefeld.de/ags/ai
http://www.techfak.uni-bielefeld.de/ags/ai
http://www.techfak.uni-bielefeld.de/ags/ani
http://www.techfak.uni-bielefeld.de/ags/ani
http://www.mathematik.uni-bielefeld.de
http://www.mathematik.uni-bielefeld.de
http://www.biologie.uni-bielefeld.de
http://www.biologie.uni-bielefeld.de
http://www.physik.uni-bielefeld.de
http://www.physik.uni-bielefeld.de
http://www.chemie.uni-bielefeld.de
http://www.chemie.uni-bielefeld.de

= File Edit »iew Go Bookmarks Tools ‘Window Help

@m - ’@v - H;%ad §§, I_& hﬁp:waw.nw—news.defcgi—hinfprintuersiDn.u:gi‘?jwl %t i

T _/ﬁHnme| whBookmarks DB Entrez-PubMed ¢ Google ##LEO

[e
Neuwe Westfilische imnternet

wW-news.de =

q LOKALARTIKEL

29.04. 2003
Die Uni wichst weiter

Meues Laborgebdude fiir Haturwissenschaften f Geplanter Baubeginn 2004

Bielefeld. Die Universitat Bielefeld bekommt mehr Platz. Im Mordwesten der Hochschule sall
| 2in neues Laborgebaude fir Genomforschung, Biophysik und -informatik entstehen,

| Baubeginn kdnnte nach Informationen der Redaktion des Haller Kreisblatts im Frdhjahr 2004
zein.

Standort des 44 bdeter langen und 20 Meter breiten fiinfgeschossigen Gebdudes ist ein Teil
M des Parkplatzes neben den Sportaniagen im Mordwesten (Wellensiek). Zunachst sollen
| Labore und Biros mit giner Mutzflache von 2100 Guadratmetern gebaot werden, spater
b kinnte die Flache auf 3.300 Guadratmeter vergrofer werden. Bauvolumen der ersten
Bauphasze: 2walf Millionen Euro. Die Planung liegt beim Bau- und Liegenschatshetrieb des
Landes Mordrhein-Westfalen.

Diese Erveiterung sei "dringend notyendig”, sagt Hartmut Kraui, Planungsdezernent der Universitat. For die seit zehn Jahren
wachsende Technische Fakultdt sind Labors mit hdchstem Standard geplant. Der Meubau ist eine Reakfion auf die Raumnot
der aufstrebenden Maturwissenschaften. Das Land Mordrhein-'Westfalen hat das Bielefelder Projekt ganz oben auf seine
Frioritdtenliste gesetzt.

Schwerpunkte der Biologen im neuen Erweiterungsbau werden die mikrobiologische und Pllanzen-Genomforschung sein. Die
Biophysik wird wor allem Manoforschung betreiben. For ultraempfindliche Bikroskope etwa missen hesondere
Raumbedingungen geschaffen werden.

kit dem Hauptgebiude der 30 Jahre jungen Universitat, den so genannten Z8hnen, wird der Meubau zunachst nicht
verbunden sein, wie Uni-Kanzler Hans-Jdrgen Simm erklat. Far den zweiten Bauabschnitt sei diese Verbindung im Gesprach.

Widk ELMAR KRAMER
BILD: Die Uni-Z&hne bei Macht; LAuft alles nach Plan, bekommen sie im nachsten Jahr Zuwachs, FOTO: AMDREAS FRUCHT

/

i EL <2 Ea |Transferring data fram s ms-news. de.. || |=4D=||Iﬁ“||

Overview: Suffix trees, affix trees, ...

e Introduction: Pattern matching in biosequence analysis

e A flexible index structure for sequence analysis: The suffix tree

— Basic definitions
— Application 1: Repeats, tandem repeats
— Application 2: Multiple Genome Aligner (MGA)

e An even more flexible data structure: The affix tree

— Basic definitions
— Application: Search for palindromic patterns

e Conclusion

Overview: Suffix trees, affix trees, ...

e Introduction: Pattern matching in biosequence analysis

e A flexible index structure for sequence analysis: The suffix tree

— Basic definitions
— Application 1: Repeats, tandem repeats
— Application 2: Multiple Genome Aligner (MGA)

e An even more flexible data structure: The affix tree

— Basic definitions
— Application: Search for palindromic patterns

e Conclusion

Pattern matching in biological sequence analysis

Finding known patterns: (exact/approximate)
e Search for homologous proteins

— assumption: similar sequence — similar structure — similar function

e Search for given sequence or structural pattern

— mapping of expressed sequence tags (ESTs) on genomic DNA
— palindromic or other RNA structural patterns

e Known repeats or low complexity regions (for further exclusion from analysis)

Pattern matching in biological sequence analysis

Finding known patterns: (exact/approximate)
e Search for homologous proteins

— assumption: similar sequence — similar structure — similar function

e Search for given sequence or structural pattern

— mapping of expressed sequence tags (ESTs) on genomic DNA
— palindromic or other RNA structural patterns

e Known repeats or low complexity regions (for further exclusion from analysis)

Finding structural patterns: (exact/approximate)

e Ab initio gene prediction (start/stop codons, exons/introns)

e Search for over-/underrepresented substrings/-sequences, for example
— unknown promoter binding sites
— repeats, tandem repeats
— possible DNA methylation sites

e (Calculation of RNA secondary structure

Requirements for computational tools

e Efficiency: linear in space and time
e Flexibility: applicable to as many problems as possible
e Statistical assessment of significance of results

e Visualization

Requirements for computational tools

e Efficiency: linear in space and time
e Flexibility: applicable to as many problems as possible
e Statistical assessment of significance of results

e Visualization

For routine tasks, even linear time is intolerable — index

Many indices for massive sequence data use the property that the text is
partitioned into words (e.g. natural language, syntactic tags).

Genomic data is not divided into obvious “words" .
We need an index that allows access to any substring of the text.

— Suffix Tree

Overview

e Introduction: Pattern matching in biosequence analysis

e A flexible index structure for sequence analysis: The suffix tree

— Basic definitions
— Application 1: Repeats, tandem repeats
— Application 2: Multiple Genome Aligner (MGA)

e An even more flexible data structure: The affix tree

— Basic definitions
— Application: Search for palindromic patterns

e Conclusion

Suffix Tree: Definition

e A suffix of a string S of length n ——

is a substring of S that ends at position n. 1 n
e The suffix tree of .S, T'(S), is a rooted tree whose edges are labeled with strings
such that

— all edges leaving a node begin with different characters and
— the paths from the root to the leaves represent all the suffixes of S.

S=TATATS

1 2 3 45 6

Suffix Tree: Definition

e A suffix of a string S of length n ——

is a substring of S that ends at position n. 1 n

e The suffix tree of .S, T'(S), is a rooted tree whose edges are labeled with strings
such that

— all edges leaving a node begin with different characters and
— the paths from the root to the leaves represent all the suffixes of S.
S=TATATS

1 2 3 45 6

P=ATA

Suffix Tree: Definition

e A suffix of a string S of length n ——

is a substring of S that ends at position n. 1 n

e The suffix tree of .S, T'(S), is a rooted tree whose edges are labeled with strings
such that

— all edges leaving a node begin with different characters and
— the paths from the root to the leaves represent all the suffixes of S.
S=TATATS

1 2 3 45 6

P=ATA

Suffix Tree: Definition

e A suffix of a string S of length n ——

is a substring of S that ends at position n. 1 n

e The suffix tree of .S, T'(S), is a rooted tree whose edges are labeled with strings
such that

— all edges leaving a node begin with different characters and
— the paths from the root to the leaves represent all the suffixes of S.
S=TATATS

1 2 3 45 6

P=ATA

Suffix Tree: Definition

e A suffix of a string S of length n ——

is a substring of S that ends at position n. 1 n

e The suffix tree of .S, T'(S), is a rooted tree whose edges are labeled with strings
such that

— all edges leaving a node begin with different characters and
— the paths from the root to the leaves represent all the suffixes of S.
S=TATATS

1 2 3 45 6

P=ATA

Suffix Tree: Definition

e A suffix of a string S of length n ——

is a substring of S that ends at position n. 1 n

e The suffix tree of .S, T'(S), is a rooted tree whose edges are labeled with strings
such that

— all edges leaving a node begin with different characters and
— the paths from the root to the leaves represent all the suffixes of S.
S=TATATS

1 2 3 45 6

P=ATA

Suffix Tree: Definition

e A suffix of a string S of length n ——

is a substring of S that ends at position n. 1 n
e The suffix tree of .S, T'(S), is a rooted tree whose edges are labeled with strings
such that

— all edges leaving a node begin with different characters and
— the paths from the root to the leaves represent all the suffixes of S.

S=TATATS

1 2 3 45 6

Suffix Tree: Definition

e A suffix of a string S of length n ——

is a substring of S that ends at position n. 1 n

e The suffix tree of .S, T'(S), is a rooted tree whose edges are labeled with strings
such that

— all edges leaving a node begin with different characters and
— the paths from the root to the leaves represent all the suffixes of S.
S=TATATS

1 2 3 45 6

P=TATT

Suffix Tree: Definition

e A suffix of a string S of length n ——

is a substring of S that ends at position n. 1 n

e The suffix tree of .S, T'(S), is a rooted tree whose edges are labeled with strings
such that

— all edges leaving a node begin with different characters and
— the paths from the root to the leaves represent all the suffixes of S.
S=TATATS

1 2 3 45 6

P=TATT

Suffix Tree: Definition

e A suffix of a string S of length n ——

is a substring of S that ends at position n. 1 n

e The suffix tree of .S, T'(S), is a rooted tree whose edges are labeled with strings
such that

— all edges leaving a node begin with different characters and
— the paths from the root to the leaves represent all the suffixes of S.
S=TATATS

1 2 3 45 6

P=TATT

Suffix Tree: Definition

e A suffix of a string S of length n ——

is a substring of S that ends at position n. 1 n

e The suffix tree of .S, T'(S), is a rooted tree whose edges are labeled with strings
such that

— all edges leaving a node begin with different characters and
— the paths from the root to the leaves represent all the suffixes of S.
S=TATATS

1 2 3 45 6

P=TATT

Suffix Tree: Definition

e A suffix of a string S of length n ——

is a substring of S that ends at position n. 1 n

e The suffix tree of .S, T'(S), is a rooted tree whose edges are labeled with strings
such that

— all edges leaving a node begin with different characters and
— the paths from the root to the leaves represent all the suffixes of S.
S=TATATS

1 2 3 45 6

P=TATT

Suffix Tree: Definition

e A suffix of a string S of length n ——

is a substring of S that ends at position n. 1 n
e The suffix tree of .S, T'(S), is a rooted tree whose edges are labeled with strings
such that

— all edges leaving a node begin with different characters and
— the paths from the root to the leaves represent all the suffixes of S.

S=TATATS

1 2 3 45 6

Suffix tree properties

e 1'(S) represents exactly the substrings of S.

e 7'(S) allows to enumerate these substrings and
their locations in S in a convenient way.

e This is very useful for many pattern recognition problems, for example:

— exact string matching as part of other applications, e.g. detecting DNA
contamination

— all-pairs suffix-prefix matching, important in fragment assembly

— finding repeats and palindromes, tandem repeats, degenerate repeats

— DNA primer design

— DNA chip design

See also:

— A. Apostolico: The myriad virtues of subword trees, 1985.
— D. Gusfield: Algorithms on strings, trees, and sequences, 1997.

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Space usage of suffix trees

Observation: T'(S) requires O(n) space.

Proof sketch:

1.

o B9 e

T'(S) has at most n leaves.

Each internal node is branching = at most n — 1 internal nodes.
A tree with at most 2n — 1 nodes has at most 2n — 2 edges.

Each node requires constant space.

Each edge label is a substring of S = pair of pointers (7, j) into S,

10

Representation of suffix trees

11

Representation of suffix trees

S=TATATS

1 2 3 45 6

(4.6)

(2.3)

11

, , S=TATATS
Representation of suffix trees 123456 (23)

(4.6)

Standard representation of trees:

e Store nodes as records with child and sibling pointer.
e An edge label (7,) is stored at node below the edge.

» | <
= about 32n bytes in the worst case o
2n nodes x (2 integers + 2 pointers) i I e e s
(4,6) (6,6) (2,3) (6,6)
| | < [>< [> < [><
|
(4,6) (6,6)
>< | | < | <

, , S=TATATS
Representation of suffix trees 123456 (23)

(4.6)

Standard representation of trees:

e Store nodes as records with child and sibling pointer.
e An edge label (7,) is stored at node below the edge.

» | <
= about 32n bytes in the worst case o
2n nodes x (2 integers + 2 pointers) i I e e s
(4,6) (6,6) (2,3) (6,6)
>< | | < | >< | > < | ><
|deas for more efficient representation: 1
(4,6) (6,6)
e Do not represent leaves explicitly. < | el < | o<

e Avoid sibling pointers by storing all children of the same node in a row.
e Do not represent the right pointer of an edge label.
= below 12n bytes in the worst case, 8.5n on average

2 4 9 10 11 12

af bit —|o 0 1 1 1 0
bit —

1 3 5 6 7 8
le
last child o 2 6 o 1 8 1 6 o 4 |t 6 |0 2 11 1t 6 o 4 |+ 6
| 1 I

Construction of suffix trees

12

Construction of suffix trees

Theorem [Weiner, 1973]: T'(S) can be constructed in O(n) time.

There are two practical algorithms that construct the suffix tree in linear time:
McCreight (1976) and Ukkonen (1993).

12

Construction of suffix trees

Theorem [Weiner, 1973]: T'(S) can be constructed in O(n) time.

There are two practical algorithms that construct the suffix tree in linear time:
McCreight (1976) and Ukkonen (1993).

A simpler algorithm is the WOTD (write-only, top-down) algorithm:

1. Let X be the set of all suffixes of S.
2. Sort the suffixes in X according to their first character.
3. For each group X, (c € X):
(i) if X, is a singleton, create a leaf;
(ii) otherwise, find the longest common prefix of the suffixes in X, create an internal
node, and recursively continue with Step 2, X being the set of remaining suffixes from
X after splitting off the longest common prefix.

Analysis: O(n?) worst-case time, O(nlogn) expected time, O(n) space

The WOTD construction algorithm

¥ ©
- v

<k <
<<k o
<<k e o
F<hH<<EF&»e —

13

The WOTD construction algorithm

@
Lk o
<<k &» -

&+ <

L hF & o

&¥r O

- v

<k <
<<k o
<<k e o
F<hH<<EF&»e —

13

The WOTD construction algorithm

@
Lk o
<<k &» -

©@©r <
L hF & o
()
¥y O
- v
Lk e <
<< ke o

<<k e o
F<H—-<< ke -

13

The WOTD construction algorithm

@
Lk o
<<k &» -

&+ <

L hF & o

&¥r O

- v

<k <
<<k o
<<k e o
F<hH<<EF&»e —

13

The WOTD construction algorithm

&~ >
o A
o &

w o - >

= e+ > >
N s - > >
Noea — >
D H
= - > >
w o - >
o1 P

Note: The WOTD algorithm is well suited for a lazy construction of suffix trees.

13

Comparison: Exact string matching online and offline

Theoretical results:

online (

1 pattern search

no preprocessing) | offline (suffixtree)

O(n +m) O(n + m)

k pattern searches O

(k (n+m)) O(n + km)

n = text length

m = pattern length

14

Comparison: Exact string matching online and offline

Experimental results: index construction plus pn pattern searches for p € [0, 1]

0 . 0

O O

m m

5 1o - o 10 i
= =

= =

= =

- gk _ -~ 8 _
) =

= =

= =

Toef - Toef -
0 0

2y L :
- o

> 2 1 > 2 1
= =

m m

o 0 I | | o o | | | |

= @ @.,8085 0,081 B.0015% B.,BE2 = 7] @a.z2 @a.4 B.5 @.8

rho rho

mamy = suffix array (implementation by Manber/Myers)

Comparison: Exact string matching online and offline

Experimental results: index construction plus pn pattern searches for p € [0, 1]

relative time [s-1,080080,008 charsl

19

marmy
wotdlazy
| | |
@ @.a8as3 B.ea1 B.88153
rho

Bv,oee

relative time [s-1,0800,0008 charsl

1@

|
mamy

wotdlazy

mamy = suffix array (implementation by Manber/Myers)

wotdlazy = suffix tree write-only top-down construction (lazy version)

15

Overview

Introduction: Pattern matching in biosequence analysis

A flexible index structure for sequence analysis: The suffix tree

— Basic definitions
— Application 1: Repeats, tandem repeats
— Application 2: Multiple Genome Aligner (MGA)

An even more flexible data structure: The affix tree

— Basic definitions
— Application: Search for palindromic patterns

Conclusion

16

Repeats in biosequence analysis

e DNA of eukaryotes is highly repetitive.

— 30% in human genome?
— 10% introduced by retroviruses?

e Repeat regions are rapidly changing hot spots in evolution.

e Vast literature on repetitive structures and their hypothesized functional and
evolutionary roles: ALUs, SINEs, LINEs, satellites, ...

e Repeats are involved in several biological mechanisms, including genetically
inherited diseases.

— e.g. Huntington's disease

e Repeats tend to confuse sequence analysis programs and hence should be
masked in a preprocessing step.

— Repeats are very important when studying genomic DNA.

17

Repeats in the human genome

Repeat Length Distribution

0.035

0.023

—18
—19

0.005

(Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas)

Basic definitions

A pair of substrings R = (S|i1, 71|, S|i2, j2]) is called a

if S[ilajl] — S[i27j2]

- |

19

Basic definitions

A pair of substrings R = (S|i1, 71|, S|i2, j2]) is called a

if S[ilajl] — S[i27j2]

S |

11 J1 19 J2

19

Basic definitions

A pair of substrings R = (S|i1, 71|, S|i2, j2]) is called a

if S[ilajl] — S[i27j2]

S |

i J1 12 J2
if there are £ mismatches between S|i1, j1| and S|iz, ja

o Jv j¢ @3) |

2 J1 2 J2

19

Basic definitions

A pair of substrings R = (S|i1, 71|, S|i2, j2]) is called a

if S[ilajl] — S[i27j2]

S |

11 J1 19 J2

if there are £ mismatches between S|i1, j1| and S|iz, ja

o Jv j¢ @3) |

2 J1 2 J2

if there are k differences (mismatches, insertions,
deletions) between S|iq, j1] and Sfis, jo]

o oy | | i3 B |

11 J1 12 J2

L 19

Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

e It is possible to find all

|dea:
e consider string S and its suffix tree T'(5).

o of S correspond to
internal locations in T'(S).

e leaf numbers tell us positions where
substrings occur.

(repeats) in S in linear time.

20

Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

e It is possible to find all

|dea:
e consider string S and its suffix tree T'(5).

o of S correspond to
internal locations in T'(S).

e leaf numbers tell us positions where
substrings occur.

(repeats) in S in linear time.

20

Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

e It is possible to find all

|dea:
e consider string S and its suffix tree T'(5).

o of S correspond to
internal locations in T'(S).

e leaf numbers tell us positions where
substrings occur.

(repeats) in S in linear time.

S=TATATS
123456

20

Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

e It is possible to find all

|dea:
e consider string S and its suffix tree T'(5).

o of S correspond to
internal locations in T'(S).

e leaf numbers tell us positions where
substrings occur.

(repeats) in S in linear time.

S=TATATS
123456

R A
wwrkrENDD
o1 1 W A~ b
— — — — —

20

Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

e It is possible to find all

|dea:
e consider string S and its suffix tree T'(5).

o of S correspond to
internal locations in T'(S).

e leaf numbers tell us positions where
substrings occur.

(repeats) in S in linear time.

S=TATATS
123456

AN AN AN AN S

RPoLwEFEFERDNDDN
w 1 C1 W b D

N N e e e

20

Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

e It is possible to find all

|dea:
e consider string S and its suffix tree T'(5).

o of S correspond to
internal locations in T'(S).

e leaf numbers tell us positions where
substrings occur.

(repeats) in S in linear time.

FRED RN DA
_I—‘_I—l__oo_l—l_l—‘_l\.)_l\.)
W w1 Ww s D
— — — — —

20

Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

e It is possible to find all

|dea:
e consider string S and its suffix tree T'(5).

o of S correspond to
internal locations in T'(S).

e leaf numbers tell us positions where
substrings occur.

Analysis: O(n + z) time with z = |output

, O(n) space

(repeats) in S in linear time.

FRED RN DA
_I—‘_I—l__oo_l—l_l—‘_l\.)_l\.)
W w1 Ww s D
— — — — —

20

Finding maximal exact repeats

21

Finding maximal exact repeats

21

Finding maximal exact repeats

21

Finding maximal exact repeats

B]
ldea:

e For right-maximality (X # Y)

— consider only internal nodes of T'(.S)
— report only pairs of leaves from different subtrees

13 14 4 3 2

5 11 15 7 9

21

Finding maximal exact repeats

B]

|dea:

e For right-maximality (X # Y)

— consider only internal nodes of T'(.S)
— report only pairs of leaves from different subtrees
(or from different leaf-lists)

[2,3,4,13,14]

13 14 4 3 2

[5,7,9,11,15]

5 11 15 7 9

21

Finding maximal exact repeats

B]

|dea:

[5,7,9,11,15]

e For right-maximality (X # YY) [2.3.4.13,14]

— consider only internal nodes of T'(.S)
— report only pairs of leaves from different subtrees
(or from different leaf-lists)

13 14 4 3 2 5 11 15 7 9

e For left-maximality (A # B)

A: [5,15]
B: [7,9,11]

A: [3,4,14]

— keep lists for the different left-characters B: [2.13]

— report only pairs from different lists

Finding maximal exact repeats

B]

|dea:

[5,7,9,11,15]

e For right-maximality (X # YY) [2.3.4.13,14]

— consider only internal nodes of T'(.S)
— report only pairs of leaves from different subtrees
(or from different leaf-lists)

13 14 4 3 2 5 11 15 7 9

e For left-maximality (A # B)

A: [5,15]
B: [7,9,11]

A: [3,4,14]

— keep lists for the different left-characters B: [2.13]

— report only pairs from different lists

, O(n) space

Analysis: O(n + z) time with z = |output

L 21

Variation: Palindromic repeats

ijﬂ
P?

22

Variation: Palindromic repeats

22

Variation: Palindromic repeats

e One repeat instance must be reverse Watson/Crick complement P~ 1.
e Essentially same problem as computing direct repeats.

e Instead of S use S#S~! (where S—! is the reverse complement of S).

22

Variation: Palindromic repeats

e One repeat instance must be reverse Watson/Crick complement P~ 1.
e Essentially same problem as computing direct repeats.

e Instead of S use S#S~! (where S—! is the reverse complement of S).

S St
EEEER 0 EEEER
P P! P P!
e /- is a unique separator symbol.

e One of the duplicates must be in S and the other in S—1.

e Calculate position in S~ relative to the beginning of S.

22

Summary: Repeats and suffix trees

Some results: (z is always the output size)

e Find all z maximal repeats in O(n + z) time.
e Find all z maximal palindromic repeats in O(n + z) time.
e Find all z tandem repeats in O(nlogn + z) time or O(n + z) time.

e Find all z maximal repeats with bounded gap in O(nlogn + z) time.

e Find all z maximal repeats with lower-bounded gap in O(n + z) time.

e Find all degenerate repeats with < k errors in O(n + Ck?) time

(E(¢) = O (n?/4%)).

23

Tandem repeats: Definitions

e tandem repeat (square)

w = | Q

|l e Xt

24

Tandem repeats: Definitions

e tandem repeat (square)

w = | Q

|l e Xt

e occurrence of a tandem repeat

SHEEN -
()

(%, laf,2)

24

Tandem repeats: Definitions

e tandem repeat (square)

w = | Q | Q

|l e Xt

e occurrence of a tandem repeat

SHEN - | -
()

e (right-) branching occurrence of a tandem repeat

SHE - |- o
1

(%, laf,2)

24

Tandem repeats: Definitions

e tandem repeat (square)

w= | o I o |l aex™

e occurrence of a tandem repeat

SHEEE - [- S
()

e (right-) branching occurrence of a tandem repeat

(%, laf,2)

SHEN: - |- - EE-c
1

e a string w is primitive if and only if w = u* implies k = 1

24

Tandem repeats: Definitions

tandem repeat (square)

w= | o I o |l aex™

occurrence of a tandem repeat

S T o] o T G2
1

(right-) branching occurrence of a tandem repeat

SHEN: - |- - EE-c
1

a string w is primitive if and only if w = u* implies k = 1

a tandem repeat a« is primitive if and only if « is primitive

24

Finding tandem repeats: Overview

A. Find all ccurrences of tandem repeats in a string.

e Main/Lorentz, 1979/1984
e Landau/Schmidt, 1993

B. Find all occurrences of primitive tandem repeats in a string.

e Crochemore, 1981
e Apostolico/Preparata, 1983

C. Find all occurrences of primitive tandem arrays in a string.

Here:
Simple and flexible detection of all of these in optimal time using a suffix tree.
(TCS 2002, joint work with Dan Gusfield)

25

Basic observation

Lemma:
Any non-branching occurrence of a tandem repeat is the left-rotation of

another tandem repeat (i + 1,[,2), starting one position to its right.

Example:

ABAABAABBBAYS
I

26

Suffix trees and tandem repeats

Lemma: (folklore)
Consider two positions 7 and j of S, 1 <i < j <n,let]l =75 —1. Then the
following assertions are equivalent:

(a) (i,1,2) is an occurrence of a tandem repeat;

(b) 7 and j occur in the same leaf-list of some node v in T'(.S) with depth D(v) > I.

Example: ABAABAABBBAS
1 23 45 6 7 8 9101112

Suffix trees and tandem repeats

Lemma: (folklore)
Consider two positions 7 and j of S, 1 <i < j <n,let]l =75 —1. Then the
following assertions are equivalent:

(a) (i,1,2) is an occurrence of a tandem repeat;

(b) 7 and j occur in the same leaf-list of some node v in T'(.S) with depth D(v) > I.

Example: ABAABAABBBAS
1 23 45 6 7 8 9101112

Suffix trees and tandem repeats

Lemma: (folklore)
Consider two positions 7 and j of S, 1 <i < j <n,let]l =75 —1. Then the
following assertions are equivalent:

(a) (i,1,2) is an occurrence of a tandem repeat;

(b) 7 and j occur in the same leaf-list of some node v in T'(.S) with depth D(v) > I.

Example: ABAABAABBBAS
1 23 45 6 7 8 9101112

Suffix trees and tandem repeats

Lemma: (folklore)
Consider two positions 7 and j of S, 1 <i < j <n,let]l =75 —1. Then the
following assertions are equivalent:

(a) (i,1,2) is an occurrence of a tandem repeat;

(b) 7 and j occur in the same leaf-list of some node v in T'(.S) with depth D(v) > I.

Example: ABAABAABBBAS
1 23 45 6 7 8 9101112
(3.3,2)

Suffix trees and tandem repeats

Lemma: (folklore)
Consider two positions 7 and j of S, 1 <i < j <n,let]l =75 —1. Then the
following assertions are equivalent:

(a) (i,1,2) is an occurrence of a tandem repeat;

(b) 7 and j occur in the same leaf-list of some node v in T'(.S) with depth D(v) > I.

Example: ABAABAABBBAS
1 23 45 6 7 8 9101112
(3.3,2)

Suffix trees and branching tandem repeats

Lemma:
Consider two positions 2 and j of S, 1 <1< j < n,letl =7 —1 Then the
following assertions are equivalent:

(a) (i,0,2) is an occurrence of a branching tandem repeat;

(b) 7 and j occur in the same leaf-list of some node v in T'(S) with depth D(v) = I,
but do not appear in the same leaf-list of any node with depth greater than /.

Suffix trees and branching tandem repeats

Lemma:
Consider two positions 2 and j of S, 1 <1< j < n,letl =7 —1 Then the
following assertions are equivalent:

(a) (i,0,2) is an occurrence of a branching tandem repeat;

(b) 7 and j occur in the same leaf-list of some node v in T'(S) with depth D(v) = I,
but do not appear in the same leaf-list of any node with depth greater than /.

Example: ABAABAABBBAS
123456 78 9101112

Suffix trees and branching tandem repeats

Lemma:
Consider two positions 2 and j of S, 1 <1< j < n,letl =7 —1 Then the
following assertions are equivalent:

(a) (i,0,2) is an occurrence of a branching tandem repeat;

(b) 7 and j occur in the same leaf-list of some node v in T'(S) with depth D(v) = I,
but do not appear in the same leaf-list of any node with depth greater than /.

Example: ABAABAABBBAS
123456 78 9101112

m—f— (9,1,2)

Suffix trees and branching tandem repeats

Lemma:
Consider two positions 2 and j of S, 1 <1< j < n,letl =7 —1 Then the
following assertions are equivalent:

(a) (i,0,2) is an occurrence of a branching tandem repeat;

(b) 7 and j occur in the same leaf-list of some node v in T'(S) with depth D(v) = I,
but do not appear in the same leaf-list of any node with depth greater than /.

Example: ABAABAABBBAS
123456 78 9101112

m—f— (9,1,2)

Basic algorithm

|dea:
For each node v of T'(S), test if e = L(v)L(v) is a branching tandem repeat.

Algorithm:

All nodes of T'(.S) begin unmarked.
Step 1 is repeated until all nodes are marked.

1. Select an unmarked internal node v.
Mark v and execute steps 2a and 2b for node v.

2a. Collect the leaf-list LL(v).

2b. For each leaf 7 in LL(v), whether the leaf j =i+ D(v) is in LL(v).
If so, test whether S[i| # S|i + 2D(v)]|. There is a branching tandem repeat of
length 2D (v) starting at position ¢ if and only if both tests return true.

Analysis: O(n?) time, O(n) space

L 29

Testing in constant time

Depth-first numbering and look-up table:

ABAABAABBBAYS
12345678 9101112

30

Testing in constant time

Depth-first numbering and look-up table:

ABAABAABBBAYS
12345678 9101112

30

Testing in constant time

Depth-first numbering and look-up table:

ABAABAABBBAYS
1234567
3714825

8 9 1011 12
1110 9 6 12
A[\B
A
B
B
B
A
$
3
1

B
A
A
B
AJ\B
A B
B A
B $
B
A 5
$ 8

30

Testing in constant time

Depth-first numbering and look-up table:

ABAABAABBBAYS
1234567
3714825

8 9 1011 12
1110 9 6 12 (1,2) B
Af\B
Al \s
B A
& $
B
A 6
$ >
3
1

$
B
(7,11) 8
(7.9
$
(7.8
AJ\B 10
Al \p 9
B A
B $
B
A 5
8
2
7

30

Testing in constant time

Depth-first numbering and look-up table:

$
ABAABAABBBAS (16) 2 H
12345678 9101112 A 5 25891089 g 12
371482511109 6 12 12 B B (7 B (10,11)
G543 11 (79) 4 B
A[\B B $
A $
D=1 table A ° B 5 (7.8)
B: 8 25 o2 = we(riy) Bl \ao 8 N\ AL b X
. : B '
but: (8,9) not branching N $ MNe ¥ af\e ¢ 10 11
A 6 Af\e 7 Z[\A
B $
$ 2 5 A b B
3 B 5 A 5
1 . S 8
4 2
7
L= 30

Testing in constant time

Depth-first numbering and look-up table:

ABAABAABBBAYS
1234567
3714825

8 9 101112
1110 9 6 12 (1.2)
Af\B
Al \B
B: 8 22 97 ¢ 109 (7,11) B
but: (8,9) not branching BB
o 2=} 107 W% 9c(7,11)
and: (9,10) is branching :
1

~—

8
A
A
B
B
B
A
$

2
7

B
B
A
$

5
8

30

Testing in constant time

Depth-first numbering and look-up table:

ABAABAABBBAYS
1234567
3714825

8 9 1011 12
1110 9 6 12 (1.2)
3.6 @
A[\B
A
B: 8 22 97 ¢ 109 (7,11) B
but: (8,9) not branching BB
o 2=} 107 W% 9c(7,11)
and: (9,10) is branching
AAB: 3 2=3 67 ¢ 9 (1,9) !

and: (3,6) is branching

~—

8
A
A
B
B
B
A
$

2
7

B
B
A
$

5
8

30

Speedup of the basic algorithm

Definitions
e For each node v, v/ denotes the child of v with the largest leaf-list.

e [LI'(v) denotes LL(v) — LL(v").

The “Smaller Half” Trick
It is well known that > |LL'(v)] < nlogyn.

Any value x can be
in at most log, n leaf-lists LL'.

31

Optimized basic algorithm

Algorithm:

All nodes of T'(.S') begin unmarked.
Step 1 is repeated until all nodes are marked.

1. Select an unmarked internal node v.
Mark v and execute steps 2a, 2b and 2c for node v.

2a. Collect the list LL'(v) for v.

2b. For each leaf 7 in LL'(v), test whether leaf j =i+ D(v) is in LL(v), the
leaf-list of v. If so, test whether S|i] # S[i + 2D(v)]. There is a branching
tandem repeat of length 2D (v) starting at position 7 if and only if both tests
return true.

2c. Do the same test for each leaf j in LL'(v), and i = j — D(v).

Analysis: O(nlogn) time, O(n) space

32

Putting things together

Finding all tandem repeats

Starting at each of the branching occurrences, do a series of consecutive
to find all z tandem repeats.

ABAABAABBBAY

—_—

Analysis: O(nlogn + z) time, no additional space

33

Tandem repeats in linear time!

Fraenkel & Simpson, 1998:
e The vocabulary of all tandem repeats in S has only O(n) elements.

|dea:
e Mark in T'(S) all end points of tandem repeats.

Analysis: O(n + |output|) time, O(n) space

34

Overview

Introduction: Pattern matching in biosequence analysis

A flexible index structure for sequence analysis: The suffix tree

— Basic definitions
— Application 1: Repeats, tandem repeats
— Application 2: Multiple Genome Aligner (MGA)

An even more flexible data structure: The affix tree

— Basic definitions
— Application: Search for palindromic patterns

Conclusion

35

Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., ISMB 2002).

36

Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., ISMB 2002).

Algorithm:
1. Find all (multiMEMSs) in the given genomes
(similar to repeats, using the generalized suffix tree).

Gl—
GQ—

Gg—

36

Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., ISMB 2002).

Algorithm:
1. Find all (multiMEMSs) in the given genomes
(similar to repeats, using the generalized suffix tree).

Gy r

Go —_—

G L

36

Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., ISMB 2002).

Algorithm:
1. Find all (multiMEMSs) in the given genomes

(similar to repeats, using the generalized suffix tree).

2. Select from all multiMEMs an optimal set,
I.e. a chain of non-overlapping multiMEMs of maximal weight

where the of a chain is the sum of the lengths of its members.
Gy r
Go —_—
G =

36

Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., ISMB 2002).

Algorithm:
1. Find all (multiMEMSs) in the given genomes

(similar to repeats, using the generalized suffix tree).

2. Select from all multiMEMs an optimal set,
I.e. a chain of non-overlapping multiMEMs of maximal weight

where the of a chain is the sum of the lengths of its members.
Gy r
Go —_— @
G =

G1

36

Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., ISMB 2002).

Algorithm:
1. Find all (multiMEMSs) in the given genomes

(similar to repeats, using the generalized suffix tree).

2. Select from all multiMEMs an optimal set,
I.e. a chain of non-overlapping multiMEMs of maximal weight

where the of a chain is the sum of the lengths of its members.
Gy r
G2 f— Go n O
O
G =

G1

36

Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., ISMB 2002).

Algorithm:
1. Find all (multiMEMSs) in the given genomes

(similar to repeats, using the generalized suffix tree).

2. Select from all multiMEMs an optimal set,
I.e. a chain of non-overlapping multiMEMs of maximal weight

where the of a chain is the sum of the lengths of its members.
G1 r
Go —_— @
G =

G1

36

Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., ISMB 2002).

Algorithm:
1. Find all (multiMEMSs) in the given genomes

(similar to repeats, using the generalized suffix tree).
2. Select from all multiMEMs an optimal set,

I.e. a chain of non-overlapping multiMEMs of maximal weight
where the of a chain is the sum of the lengths of its members.

G 4

Gy G

G3
G1

36

Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., ISMB 2002).

Algorithm:
1. Find all (multiMEMSs) in the given genomes

(similar to repeats, using the generalized suffix tree).

2. Select from all multiMEMs an optimal set,
I.e. a chain of non-overlapping multiMEMs of maximal weight
where the of a chain is the sum of the lengths of its members.

G1
Go

G3

36

Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., ISMB 2002).

Algorithm:
1. Find all (multiMEMSs) in the given genomes
(similar to repeats, using the generalized suffix tree).

2. Select from all multiMEMs an optimal set,
I.e. a chain of non-overlapping multiMEMs of maximal weight
where the of a chain is the sum of the lengths of its members.

3. Close the gaps recursively, and finally by a standard alignment procedure.

: —

Go

/

G3

L 36

Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., ISMB 2002).

Algorithm:
1. Find all (multiMEMSs) in the given genomes
(similar to repeats, using the generalized suffix tree).

2. Select from all multiMEMs an optimal set,
I.e. a chain of non-overlapping multiMEMs of maximal weight
where the of a chain is the sum of the lengths of its members.

3. Close the gaps recursively, and finally by a standard alignment procedure.

: —

Go

/

G3

L 36

Overview

Introduction: Pattern matching in biosequence analysis

A flexible index structure for sequence analysis: The suffix tree

— Basic definitions
— Application 1: Repeats, tandem repeats
— Application 2: Multiple Genome Aligner (MGA)

An even more flexible data structure: The affix tree

— Basic definitions
— Application: Search for palindromic patterns

Conclusion

37

Other data structures for genomic sequence analysis

e DAWG (directed acyclic word graph)

e Suffix Array: space-efficient alternative with slightly longer search time;
well suited for persistent memory representation

e Enhanced Suffix Array
e Level Compressed Trie
e Suffix Cactus

e Suffix Oracle

e Affix Tree: specialized for bi-directional pattern searches

38

Towards a bi-directional data structure

e Suffix tree is asymmetric: left-to-right matching only
e Similar data structure for right-to-left matching: reverse prefix tree

e But: What if we have an “inside out” pattern matching problem?

39

Towards a bi-directional data structure

e Suffix tree is asymmetric: left-to-right matching only
e Similar data structure for right-to-left matching: reverse prefix tree

e But: What if we have an “inside out” pattern matching problem?

S=TATATS

39

Towards a bi-directional data structure

e Suffix tree is asymmetric: left-to-right matching only
e Similar data structure for right-to-left matching: reverse prefix tree
e But: What if we have an “inside out” pattern matching problem?

S=TATATS
pP—

39

Towards a bi-directional data structure

e Suffix tree is asymmetric: left-to-right matching only
e Similar data structure for right-to-left matching: reverse prefix tree
e But: What if we have an “inside out” pattern matching problem?

S=TATATS
P=AT

39

Towards a bi-directional data structure

e Suffix tree is asymmetric: left-to-right matching only
e Similar data structure for right-to-left matching: reverse prefix tree
e But: What if we have an “inside out” pattern matching problem?

S=TATATS
P="TA

39

Towards a bi-directional data structure

e Suffix tree is asymmetric: left-to-right matching only
e Similar data structure for right-to-left matching: reverse prefix tree
e But: What if we have an “inside out” pattern matching problem?

S=TATATS
P=ATA

39

Towards a bi-directional data structure

e Suffix tree is asymmetric: left-to-right matching only
e Similar data structure for right-to-left matching: reverse prefix tree
e But: What if we have an “inside out” pattern matching problem?

S=TATATS
P=ATAT

39

Towards a bi-directional data structure

e Suffix tree is asymmetric: left-to-right matching only
e Similar data structure for right-to-left matching: reverse prefix tree
e But: What if we have an “inside out” pattern matching problem?

S=TATATS
P=ATAT

39

Towards a bi-directional data structure

e Suffix tree is asymmetric: left-to-right matching only
e Similar data structure for right-to-left matching: reverse prefix tree

e But: What if we have an “inside out” pattern matching problem?

S=TATATS

39

Towards a bi-directional data structure (2)

e |t would be nice to have all “prefix edges” inside the same data structure.

e |dea: Create the atomic suffix tree and reverse prefix tree.

40

Towards a bi-directional data structure (2)

e |t would be nice to have all “prefix edges” inside the same data structure.

e |dea: Create the atomic suffix tree and reverse prefix tree.

S=AATATA

40

Towards a bi-directional data structure (2)

e |t would be nice to have all “prefix edges” inside the same data structure.

e |dea: Create the atomic suffix tree and reverse prefix tree.

S=AATATA STL=ATATAA

40

Towards a bi-directional data structure (2)

e |t would be nice to have all “prefix edges” inside the same data structure.
e |dea: Create the atomic suffix tree and reverse prefix tree.

e Create bi-directional links between corresponding nodes.

S=AATATA STL=ATATAA

40

Towards a bi-directional data structure (2)

e |t would be nice to have all “prefix edges” inside the same data structure.
e |dea: Create the atomic suffix tree and reverse prefix tree.

e Create bi-directional links between corresponding nodes.

S=AATATA -7 T- STL=ATATAA

40

Towards a bi-directional data structure (2)

e |t would be nice to have all “prefix edges” inside the same data structure.
e |dea: Create the atomic suffix tree and reverse prefix tree.

e Create bi-directional links between corresponding nodes.

S=AATATA -7 T- STL=ATATAA

P =

40

Towards a bi-directional data structure (2)

e |t would be nice to have all “prefix edges” inside the same data structure.
e |dea: Create the atomic suffix tree and reverse prefix tree.

e Create bi-directional links between corresponding nodes.

S=AATATA -7 T- STL=ATATAA

P=AT

40

Towards a bi-directional data structure (2)

e |t would be nice to have all “prefix edges” inside the same data structure.
e |dea: Create the atomic suffix tree and reverse prefix tree.

e Create bi-directional links between corresponding nodes.

S=AATATA -7 T- STL=ATATAA

P=ATA

40

Towards a bi-directional data structure (2)

e |t would be nice to have all “prefix edges” inside the same data structure.
e |dea: Create the atomic suffix tree and reverse prefix tree.

e Create bi-directional links between corresponding nodes.

S=AATATA -7 T- STL=ATATAA

P=ATAT A \oq 77T tmeeennTTTTe-

=~

40

Towards a bi-directional data structure (2)

e |t would be nice to have all “prefix edges” inside the same data structure.
e |dea: Create the atomic suffix tree and reverse prefix tree.

e Create bi-directional links between corresponding nodes.

S=AATATA -7 T- STL=ATATAA

P=ATAT

40

Towards a bi-directional data structure (2)

e |t would be nice to have all “prefix edges” inside the same data structure.

e |dea: Create the atomic suffix tree and reverse prefix tree.

e Create bi-directional links between corresponding nodes.

S=AATATA -7 T- STL=ATATAA

P=ATAT

Problem: quadratic space

40

The affix tree

e To save space apply same idea to compact suffix tree and reverse prefix tree.
e Problem: Corresponding node might be missing = create the missing nodes.

e The joined data structure is called the affix tree of S.

S=AATATA

41

The affix tree

e To save space apply same idea to compact suffix tree and reverse prefix tree.
e Problem: Corresponding node might be missing = create the missing nodes.

e The joined data structure is called the affix tree of S.

S=AATATA STT=ATATAA

41

The affix tree

e To save space apply same idea to compact suffix tree and reverse prefix tree.
e Problem: Corresponding node might be missing = create the missing nodes.
e The joined data structure is called the affix tree of S.

S=AATATA STT=ATATAA

41

The affix tree

e To save space apply same idea to compact suffix tree and reverse prefix tree.
e Problem: Corresponding node might be missing = create the missing nodes.
e The joined data structure is called the affix tree of S.

S=AATATA STT=ATATAA

41

The affix tree

e To save space apply same idea to compact suffix tree and reverse prefix tree.
e Problem: Corresponding node might be missing = create the missing nodes.
e The joined data structure is called the affix tree of S.

S=AATATA STT=ATATAA

41

The affix tree

e To save space apply same idea to compact suffix tree and reverse prefix tree.
e Problem: Corresponding node might be missing = create the missing nodes.
e The joined data structure is called the affix tree of S.

S=AATATA STT=ATATAA

41

The affix tree

e To save space apply same idea to compact suffix tree and reverse prefix tree.
e Problem: Corresponding node might be missing = create the missing nodes.
e The joined data structure is called the affix tree of S.

S=AATATA STT=ATATAA

41

The affix tree

e To save space apply same idea to compact suffix tree and reverse prefix tree.
e Problem: Corresponding node might be missing = create the missing nodes.
e The joined data structure is called the affix tree of S.

S=AATATA STT=ATATAA

41

The affix tree

e To save space apply same idea to compact suffix tree and reverse prefix tree.
e Problem: Corresponding node might be missing = create the missing nodes.
e The joined data structure is called the affix tree of S.

S=AATATA STT=ATATAA

41

The affix tree

e To save space apply same idea to compact suffix tree and reverse prefix tree.
e Problem: Corresponding node might be missing = create the missing nodes.
e The joined data structure is called the affix tree of S.

S=AATATA STT=ATATAA

41

The affix tree

e To save space apply same idea to compact suffix tree and reverse prefix tree.
e Problem: Corresponding node might be missing = create the missing nodes.
e The joined data structure is called the affix tree of S.

S=AATATA STT=ATATAA

41

The affix tree

e To save space apply same idea to compact suffix tree and reverse prefix tree.
e Problem: Corresponding node might be missing = create the missing nodes.
e The joined data structure is called the affix tree of S.

S=AATATA STT=ATATAA

41

The affix tree

e To save space apply same idea to compact suffix tree and reverse prefix tree.
e Problem: Corresponding node might be missing = create the missing nodes.
e The joined data structure is called the affix tree of S.

S=AATATA STT=ATATAA

41

The affix tree

e To save space apply same idea to compact suffix tree and reverse prefix tree.
e Problem: Corresponding node might be missing = create the missing nodes.
e The joined data structure is called the affix tree of S.

S=AATATA STT=ATATAA

41

Space usage of affix trees

The affix tree of S requires O(n) space:

e at most 2n — 2 nodes
e at most 2n — 4 edges

e as for suffix trees, edge labels can be
represented by pairs of pointers into .S

S=AATATA
123456

(1.1)

STL=ATATAA
654321

42

Construction of affix trees

Possible construction methods:

e By reverse union of suffix and prefix tree:
no algorithm known faster than O(nlogn) time.

e Bidirectional online algorithm: O(n) time and space (MaaB8, CPM 2000).

ldea of bi-directional online construction:

e read string in any direction (also inside-out possible)
e for each character update suffix tree part and prefix tree part
e one-step algorithm: extension of Ukkonen's algorithm for suffix tree

— track active suffix and active prefix
— at most one node can be deleted in each step

43

Overview

Introduction: Pattern matching in biosequence analysis

A flexible index structure for sequence analysis: The suffix tree

— Basic definitions
— Application 1: Repeats, tandem repeats
— Application 2: Multiple Genome Aligner (MGA)

An even more flexible data structure: The affix tree

— Basic definitions
— Application: Search for palindromic patterns

Conclusion

44

Application: Search for palindromic patterns

Define an RNA hairpin by the following “mirror pattern” (in HyPal syntax):

45

Application: Search for palindromic patterns

Define an RNA hairpin by the following “mirror pattern” (in HyPal syntax):

Search strategy: Affix tree
1. Find all exact matches of CGCG (left-to-right)

Application: Search for palindromic patterns

Define an RNA hairpin by the following “mirror pattern” (in HyPal syntax):

Search strategy: Affix tree
1. Find all exact matches of CGCG (left-to-right)

Application: Search for palindromic patterns

Define an RNA hairpin by the following “mirror pattern” (in HyPal syntax):

Search strategy: Affix tree
1. Find all exact matches of CGCG (left-to-right)

Application: Search for palindromic patterns

Define an RNA hairpin by the following “mirror pattern” (in HyPal syntax):

Search strategy: Affix tree
1. Find all exact matches of CGCG (left-to-right)

Application: Search for palindromic patterns

Define an RNA hairpin by the following “mirror pattern” (in HyPal syntax):

Search strategy: Affix tree
1. Find all exact matches of CGCG (left-to-right)

Application: Search for palindromic patterns

Define an RNA hairpin by the following “mirror pattern” (in HyPal syntax):

Search strategy: Affix tree
1. Find all exact matches of CGCG (left-to-right)

2. Extend by

e an arbitrary character to the right

Application: Search for palindromic patterns

Define an RNA hairpin by the following “mirror pattern” (in HyPal syntax):

Search strategy: Affix tree
1. Find all exact matches of CGCG (left-to-right)

2. Extend by

e an arbitrary character to the right
e the same character to the left

L 45

Application: Search for palindromic patterns

Define an RNA hairpin by the following “mirror pattern” (in HyPal syntax):

Search strategy: A Affix tree
1. Find all exact matches of CGCG (left-to-right) c

G
2. Extend by

e an arbitrary character to the right
e the same character to the left U G C \A
e an arbitrary character to the right

Application: Search for palindromic patterns

Define an RNA hairpin by the following “mirror pattern” (in HyPal syntax):

Search strategy: A Affix tree
1. Find all exact matches of CGCG (left-to-right) c

G
2. Extend by

e an arbitrary character to the right
e the same character to the left y G C \A
e an arbitrary character to the right

e the same character to the left

L 45

Application: Search for palindromic patterns

Define an RNA hairpin by the following “mirror pattern” (in HyPal syntax):

Search strategy: Affix tree
1. Find all exact matches of CGCG (left-to-right)

2. Extend by

e an arbitrary character to the right
e the same character to the left

e an arbitrary character to the right
e the same character to the left

([

L 45

Overview

Introduction: Pattern matching in biosequence analysis

A flexible index structure for sequence analysis: The suffix tree

— Basic definitions
— Application 1: Repeats, tandem repeats
— Application 2: Multiple Genome Aligner (MGA)

An even more flexible data structure: The affix tree

— Basic definitions
— Application: Search for palindromic patterns

Conclusion

46

Conclusion

The analysis of biological sequence data produces several interesting
computational questions. Several CS disciplines involved:

e Algorithms and data structures
e Algorithm engineering
e Software engineering

e Visualization

Not only does Biology profit from Computer Science, but also vice versa!

47

Acknowledgments

Suffix trees

e Stefan Kurtz (U Hamburg)
e Robert Giegerich (U Bielefeld)

Repeats
e Dan Gusfield (UC Davis)

Affix trees
e Dirk Strothmann (U Bielefeld)

48

Black slide

