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Overview: Suffix trees, affix trees, ...

• Introduction: Pattern matching in biosequence analysis

• A flexible index structure for sequence analysis: The suffix tree

– Basic definitions
– Application 1: Repeats, tandem repeats
– Application 2: Multiple Genome Aligner (MGA)

• An even more flexible data structure: The affix tree

– Basic definitions
– Application: Search for palindromic patterns

• Conclusion
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Pattern matching in biological sequence analysis

Finding known patterns: (exact/approximate)

• Search for homologous proteins
– assumption: similar sequence → similar structure → similar function

• Search for given sequence or structural pattern
– mapping of expressed sequence tags (ESTs) on genomic DNA

– palindromic or other RNA structural patterns

• Known repeats or low complexity regions (for further exclusion from analysis)
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Finding known patterns: (exact/approximate)

• Search for homologous proteins
– assumption: similar sequence → similar structure → similar function

• Search for given sequence or structural pattern
– mapping of expressed sequence tags (ESTs) on genomic DNA

– palindromic or other RNA structural patterns

• Known repeats or low complexity regions (for further exclusion from analysis)

Finding structural patterns: (exact/approximate)

• Ab initio gene prediction (start/stop codons, exons/introns)

• Search for over-/underrepresented substrings/-sequences, for example
– unknown promoter binding sites

– repeats, tandem repeats

– possible DNA methylation sites

• Calculation of RNA secondary structure
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Requirements for computational tools

• Efficiency: linear in space and time

• Flexibility: applicable to as many problems as possible

• Statistical assessment of significance of results

• Visualization
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Requirements for computational tools

• Efficiency: linear in space and time

• Flexibility: applicable to as many problems as possible

• Statistical assessment of significance of results

• Visualization

For routine tasks, even linear time is intolerable → index

Many indices for massive sequence data use the property that the text is
partitioned into words (e.g. natural language, syntactic tags).

Genomic data is not divided into obvious “words”.

We need an index that allows access to any substring of the text.

→ Suffix Tree

6



Overview

• Introduction: Pattern matching in biosequence analysis

• A flexible index structure for sequence analysis: The suffix tree

– Basic definitions
– Application 1: Repeats, tandem repeats
– Application 2: Multiple Genome Aligner (MGA)

• An even more flexible data structure: The affix tree

– Basic definitions
– Application: Search for palindromic patterns

• Conclusion

7



Suffix Tree: Definition

• A suffix of a string S of length n
is a substring of S that ends at position n. 1 n

• The suffix tree of S, T (S), is a rooted tree whose edges are labeled with strings
such that

– all edges leaving a node begin with different characters and
– the paths from the root to the leaves represent all the suffixes of S.
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Suffix tree properties

• T (S) represents exactly the substrings of S.

• T (S) allows to enumerate these substrings and
their locations in S in a convenient way.

• This is very useful for many pattern recognition problems, for example:

– exact string matching as part of other applications, e.g. detecting DNA
contamination

– all-pairs suffix-prefix matching, important in fragment assembly
– finding repeats and palindromes, tandem repeats, degenerate repeats
– DNA primer design
– DNA chip design
– ...

See also:

– A. Apostolico: The myriad virtues of subword trees, 1985.
– D. Gusfield: Algorithms on strings, trees, and sequences, 1997.
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Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12 Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12 s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

10



Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.
2. Each internal node is branching ⇒ at most n− 1 internal nodes.
3. A tree with at most 2n− 1 nodes has at most 2n− 2 edges.
4. Each node requires constant space.
5. Each edge label is a substring of S ⇒ pair of pointers (i, j) into S.

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

10



Representation of suffix trees

11



Representation of suffix trees

(6,6)

(6,6)

(6,6)1 2 4 5 63

(4,6)
(2,3)(6,6)

(4,6)

(1,1)
(2,3)

A T A T $S = T

11



Representation of suffix trees

(6,6)

(6,6)

(6,6)1 2 4 5 63

(4,6)
(2,3)(6,6)

(4,6)

(1,1)
(2,3)

A T A T $S = T

Standard representation of trees:

• Store nodes as records with child and sibling pointer.
• An edge label (i, j) is stored at node below the edge.
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Ideas for more efficient representation:

• Do not represent leaves explicitly.
• Avoid sibling pointers by storing all children of the same node in a row.
• Do not represent the right pointer of an edge label.
⇒ below 12n bytes in the worst case, 8.5n on average
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Construction of suffix trees

Theorem [Weiner, 1973]: T (S) can be constructed in O(n) time.

There are two practical algorithms that construct the suffix tree in linear time:
McCreight (1976) and Ukkonen (1993).
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Construction of suffix trees

Theorem [Weiner, 1973]: T (S) can be constructed in O(n) time.

There are two practical algorithms that construct the suffix tree in linear time:
McCreight (1976) and Ukkonen (1993).

A simpler algorithm is the WOTD (write-only, top-down) algorithm:

1. Let X be the set of all suffixes of S.

2. Sort the suffixes in X according to their first character.

3. For each group Xc (c ∈ Σ):

(i) if Xc is a singleton, create a leaf;

(ii) otherwise, find the longest common prefix of the suffixes in Xc, create an internal

node, and recursively continue with Step 2, X being the set of remaining suffixes from

Xc after splitting off the longest common prefix.

Analysis: O(n2) worst-case time, O(n log n) expected time, O(n) space
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The WOTD construction algorithm
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Note: The WOTD algorithm is well suited for a lazy construction of suffix trees.
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Comparison: Exact string matching online and offline

Theoretical results:

online (no preprocessing) offline (suffixtree)

1 pattern search O(n + m) O(n + m)

k pattern searches O(k (n + m)) O(n + km)

n = text length m = pattern length
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Comparison: Exact string matching online and offline

Experimental results: index construction plus ρn pattern searches for ρ ∈ [0, 1]

mamy = suffix array (implementation by Manber/Myers)

mcch = suffix tree (McCreight’s algorithm with hash tables)

bmh = online search (Boyer-Moore-Horspool algorithm)
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mamy = suffix array (implementation by Manber/Myers)

mcch = suffix tree (McCreight’s algorithm with hash tables)

bmh = online search (Boyer-Moore-Horspool algorithm)

wotdlazy = suffix tree write-only top-down construction (lazy version)
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Overview

• Introduction: Pattern matching in biosequence analysis

• A flexible index structure for sequence analysis: The suffix tree

– Basic definitions
– Application 1: Repeats, tandem repeats
– Application 2: Multiple Genome Aligner (MGA)

• An even more flexible data structure: The affix tree

– Basic definitions
– Application: Search for palindromic patterns

• Conclusion
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Repeats in biosequence analysis

• DNA of eukaryotes is highly repetitive.

– 30% in human genome?
– 10% introduced by retroviruses?

• Repeat regions are rapidly changing hot spots in evolution.

• Vast literature on repetitive structures and their hypothesized functional and
evolutionary roles: ALUs, SINEs, LINEs, satellites, ...

• Repeats are involved in several biological mechanisms, including genetically
inherited diseases.

– e.g. Huntington’s disease

• Repeats tend to confuse sequence analysis programs and hence should be
masked in a preprocessing step.

⇒ Repeats are very important when studying genomic DNA.
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Repeats in the human genome

(Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas)
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Basic definitions

A pair of substrings R = (S[i1, j1], S[i2, j2]) is called a repeat.

→ exact repeat if S[i1, j1] = S[i2, j2]

S
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Basic definitions

A pair of substrings R = (S[i1, j1], S[i2, j2]) is called a repeat.

→ exact repeat if S[i1, j1] = S[i2, j2]

S
j1 i2 j2i1

→ k-mismatch repeat if there are k mismatches between S[i1, j1] and S[i2, j2]

S
i1 j1 i2 j2

XA YB

→ k-differences repeat if there are k differences (mismatches, insertions,
deletions) between S[i1, j1] and S[i2, j2]

S
i1 j1 i2 j2

AD B I
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Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

• It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

• consider string S and its suffix tree T (S).

• repeated substrings of S correspond to
internal locations in T (S).

• leaf numbers tell us positions where
substrings occur.
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Folklore: (see e.g. Gusfield, 1997)
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Finding maximal exact repeats
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YXA B

Idea:

• For right-maximality (X 6= Y)

– consider only internal nodes of T (S)
– report only pairs of leaves from different subtrees

4 3 213 14 5 971511
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– keep lists for the different left-characters
– report only pairs from different lists

B: [7,9,11]

A: [5,15]

B: [2,13]

A: [3,4,14]
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Variation: Palindromic repeats

P

P
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Variation: Palindromic repeats

P

P

P−1

• One repeat instance must be reverse Watson/Crick complement P−1.

• Essentially same problem as computing direct repeats.

• Instead of S use S#S−1 (where S−1 is the reverse complement of S).
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Variation: Palindromic repeats

P

P

P−1

• One repeat instance must be reverse Watson/Crick complement P−1.

• Essentially same problem as computing direct repeats.

• Instead of S use S#S−1 (where S−1 is the reverse complement of S).

S

P

S−1

#
P−1 P P−1

• # is a unique separator symbol.

• One of the duplicates must be in S and the other in S−1.

• Calculate position in S−1 relative to the beginning of S.
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Summary: Repeats and suffix trees

Some results: (z is always the output size)

• Find all z maximal repeats in O(n + z) time.

• Find all z maximal palindromic repeats in O(n + z) time.

• Find all z tandem repeats in O(n log n + z) time or O(n + z) time.

• Find all z maximal repeats with bounded gap in O(n log n + z) time.

• Find all z maximal repeats with lower-bounded gap in O(n + z) time.

• Find all degenerate repeats with ≤ k errors in O(n + ζk3) time
(E(ζ) = O

(
n2/4s

)
).
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Tandem repeats: Definitions

• tandem repeat (square)

αw = α ∈ Σ+α
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Tandem repeats: Definitions

• tandem repeat (square)

αw = α ∈ Σ+α

• occurrence of a tandem repeat

S α α

i

(i, |α|, 2)

• (right-) branching occurrence of a tandem repeat

S α α

i

xaa x 6= a

• a string w is primitive if and only if w = uk implies k = 1

• a tandem repeat αα is primitive if and only if α is primitive
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Finding tandem repeats: Overview

A. Find all ccurrences of tandem repeats in a string.

• Main/Lorentz, 1979/1984
• Landau/Schmidt, 1993

B. Find all occurrences of primitive tandem repeats in a string.

• Crochemore, 1981
• Apostolico/Preparata, 1983

C. Find all occurrences of primitive tandem arrays in a string.

Here:
Simple and flexible detection of all of these in optimal time using a suffix tree.
(TCS 2002, joint work with Dan Gusfield)
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Basic observation

Lemma:
Any non-branching occurrence (i, l, 2) of a tandem repeat is the left-rotation of
another tandem repeat (i + 1, l, 2), starting one position to its right.

Example:

A B A A B A A B B B A $
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Suffix trees and tandem repeats

Lemma: (folklore)
Consider two positions i and j of S, 1 ≤ i < j ≤ n, let l = j − i. Then the
following assertions are equivalent:

(a) (i, l, 2) is an occurrence of a tandem repeat;

(b) i and j occur in the same leaf-list of some node v in T (S) with depth D(v) ≥ l.

Example: ABBBAAAABA
1 2 3 4 5 6 7 8 9 10 11

$
12

B
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Suffix trees and branching tandem repeats

Lemma:
Consider two positions i and j of S, 1 ≤ i < j ≤ n, let l = j − i. Then the
following assertions are equivalent:

(a) (i, l, 2) is an occurrence of a branching tandem repeat;

(b) i and j occur in the same leaf-list of some node v in T (S) with depth D(v) = l,
but do not appear in the same leaf-list of any node with depth greater than l.
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Basic algorithm

Idea:
For each node v of T (S), test if αα = L(v)L(v) is a branching tandem repeat.

Algorithm:

All nodes of T (S) begin unmarked.
Step 1 is repeated until all nodes are marked.

1. Select an unmarked internal node v.
Mark v and execute steps 2a and 2b for node v.

2a. Collect the leaf-list LL(v).

2b. For each leaf i in LL(v), test whether the leaf j = i + D(v) is in LL(v).
If so, test whether S[i] 6= S[i + 2D(v)]. There is a branching tandem repeat of
length 2D(v) starting at position i if and only if both tests return true.

Analysis: O(n2) time, O(n) space
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Testing in constant time

Depth-first numbering and look-up table:
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Speedup of the basic algorithm

Definitions

• For each node v, v′ denotes the child of v with the largest leaf-list.

• LL′(v) denotes LL(v)− LL(v′).

The “Smaller Half” Trick
It is well known that

∑
v
|LL′(v)| ≤ n log2 n.

[. . . . . . . . . , x, . . . . . . . . .]

[. . . , x, . . .]

[. . . . . . , x, . . . . . .]

Any value x can be

in at most log2 n leaf-lists LL′.
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Optimized basic algorithm

Algorithm:

All nodes of T (S) begin unmarked.
Step 1 is repeated until all nodes are marked.

1. Select an unmarked internal node v.
Mark v and execute steps 2a, 2b and 2c for node v.

2a. Collect the list LL′(v) for v.

2b. For each leaf i in LL′(v), test whether leaf j = i + D(v) is in LL(v), the
leaf-list of v. If so, test whether S[i] 6= S[i + 2D(v)]. There is a branching
tandem repeat of length 2D(v) starting at position i if and only if both tests
return true.

2c. Do the same test for each leaf j in LL′(v), and i = j −D(v).

Analysis: O(n log n) time, O(n) space
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Putting things together

Finding all tandem repeats

Starting at each of the branching occurrences, do a series of consecutive
left-rotations to find all z tandem repeats.

A B A A B A A B B B A $

Analysis: O(n log n + z) time, no additional space
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Tandem repeats in linear time!

Fraenkel & Simpson, 1998:

• The vocabulary of all tandem repeats in S has only O(n) elements.

Idea:

• Mark in T (S) all end points of tandem repeats.
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Analysis: O(n + |output|) time, O(n) space
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Overview

• Introduction: Pattern matching in biosequence analysis

• A flexible index structure for sequence analysis: The suffix tree

– Basic definitions
– Application 1: Repeats, tandem repeats
– Application 2: Multiple Genome Aligner (MGA)

• An even more flexible data structure: The affix tree

– Basic definitions
– Application: Search for palindromic patterns

• Conclusion
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Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Höhl et al., ISMB 2002).
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Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Höhl et al., ISMB 2002).

Algorithm:

1. Find all maximal multiple exact matches (multiMEMs) in the given genomes
(similar to repeats, using the generalized suffix tree).
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Overview

• Introduction: Pattern matching in biosequence analysis

• A flexible index structure for sequence analysis: The suffix tree

– Basic definitions
– Application 1: Repeats, tandem repeats
– Application 2: Multiple Genome Aligner (MGA)

• An even more flexible data structure: The affix tree

– Basic definitions
– Application: Search for palindromic patterns

• Conclusion
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Other data structures for genomic sequence analysis

• DAWG (directed acyclic word graph)

• Suffix Array: space-efficient alternative with slightly longer search time;
well suited for persistent memory representation

• Enhanced Suffix Array

• Level Compressed Trie

• Suffix Cactus

• Suffix Oracle

• Affix Tree: specialized for bi-directional pattern searches
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Towards a bi-directional data structure

• Suffix tree is asymmetric: left-to-right matching only

• Similar data structure for right-to-left matching: reverse prefix tree

• But: What if we have an “inside out” pattern matching problem?
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The affix tree

• To save space apply same idea to compact suffix tree and reverse prefix tree.

• Problem: Corresponding node might be missing ⇒ create the missing nodes.

• The joined data structure is called the affix tree of S.

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

41



The affix tree

• To save space apply same idea to compact suffix tree and reverse prefix tree.

• Problem: Corresponding node might be missing ⇒ create the missing nodes.

• The joined data structure is called the affix tree of S.

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

41



The affix tree

• To save space apply same idea to compact suffix tree and reverse prefix tree.

• Problem: Corresponding node might be missing ⇒ create the missing nodes.

• The joined data structure is called the affix tree of S.

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

41



The affix tree

• To save space apply same idea to compact suffix tree and reverse prefix tree.

• Problem: Corresponding node might be missing ⇒ create the missing nodes.

• The joined data structure is called the affix tree of S.

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

41



The affix tree

• To save space apply same idea to compact suffix tree and reverse prefix tree.

• Problem: Corresponding node might be missing ⇒ create the missing nodes.

• The joined data structure is called the affix tree of S.

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

41



The affix tree

• To save space apply same idea to compact suffix tree and reverse prefix tree.

• Problem: Corresponding node might be missing ⇒ create the missing nodes.

• The joined data structure is called the affix tree of S.

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

41



The affix tree

• To save space apply same idea to compact suffix tree and reverse prefix tree.

• Problem: Corresponding node might be missing ⇒ create the missing nodes.

• The joined data structure is called the affix tree of S.

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

41



The affix tree

• To save space apply same idea to compact suffix tree and reverse prefix tree.

• Problem: Corresponding node might be missing ⇒ create the missing nodes.

• The joined data structure is called the affix tree of S.

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

41



The affix tree

• To save space apply same idea to compact suffix tree and reverse prefix tree.

• Problem: Corresponding node might be missing ⇒ create the missing nodes.

• The joined data structure is called the affix tree of S.

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

41



The affix tree

• To save space apply same idea to compact suffix tree and reverse prefix tree.

• Problem: Corresponding node might be missing ⇒ create the missing nodes.

• The joined data structure is called the affix tree of S.

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

41



The affix tree

• To save space apply same idea to compact suffix tree and reverse prefix tree.

• Problem: Corresponding node might be missing ⇒ create the missing nodes.

• The joined data structure is called the affix tree of S.

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

41



The affix tree

• To save space apply same idea to compact suffix tree and reverse prefix tree.

• Problem: Corresponding node might be missing ⇒ create the missing nodes.

• The joined data structure is called the affix tree of S.

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

41



The affix tree

• To save space apply same idea to compact suffix tree and reverse prefix tree.

• Problem: Corresponding node might be missing ⇒ create the missing nodes.

• The joined data structure is called the affix tree of S.

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

41



The affix tree

• To save space apply same idea to compact suffix tree and reverse prefix tree.

• Problem: Corresponding node might be missing ⇒ create the missing nodes.

• The joined data structure is called the affix tree of S.

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

A

A

A

A

T

T

A

T

A

T
A

A

A

T

T

T

A

T

A

A

A
T

A

A

A

A
A

T

41



Space usage of affix trees

The affix tree of S requires O(n) space:

• at most 2n− 2 nodes

• at most 2n− 4 edges

• as for suffix trees, edge labels can be
represented by pairs of pointers into S

S =A A T A T A
1 2 3 4 5 6

AATATAS−1 =
12345

(5,4)

6

(6,6)

(3,6)

(2,2)

(4,4)

(3,3)

(2,2)

(1,1)

(1,1)

(1,1)

(1,1)

(5,6)
(3,1)

(4,4)

(3,3)

(3,3)

(5,4)

(6,6)

(5,5)

(1,1)
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Construction of affix trees

Possible construction methods:

• By reverse union of suffix and prefix tree:
no algorithm known faster than O(n log n) time.

• Bidirectional online algorithm: O(n) time and space (Maaß, CPM 2000).

Idea of bi-directional online construction:

• read string in any direction (also inside-out possible)

• for each character update suffix tree part and prefix tree part

• one-step algorithm: extension of Ukkonen’s algorithm for suffix tree

→ track active suffix and active prefix
→ at most one node can be deleted in each step
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Overview

• Introduction: Pattern matching in biosequence analysis

• A flexible index structure for sequence analysis: The suffix tree

– Basic definitions
– Application 1: Repeats, tandem repeats
– Application 2: Multiple Genome Aligner (MGA)

• An even more flexible data structure: The affix tree

– Basic definitions
– Application: Search for palindromic patterns

• Conclusion
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Application: Search for palindromic patterns

Define an RNA hairpin by the following “mirror pattern” (in HyPaL syntax):

stem = .4

hairpin = @stem CGCG reverse(@stem)
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Conclusion

The analysis of biological sequence data produces several interesting
computational questions. Several CS disciplines involved:

• Algorithms and data structures

• Algorithm engineering

• Software engineering

• Visualization

Not only does Biology profit from Computer Science, but also vice versa!
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