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Introduction Biological Background Genomic Distances

Biological Background

On—-— — dmm— —

@ Genome is the entire DNA of a living organism

@ Gene is a segment of DNA that is involved e.g. in
producing a protein, and its orientation depends on the
DNA-strand that it lies on

@ Genome consists of chromosomes
@ Chromosomes are linear or circular
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Conserved synteny between human and mouse:
Exchange of intra- and interchromosomal segments

during evolution — Genome rearrangements

Figure: Eichler & Sankoff, Science (2003)
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Rearrangement Operations

Inversions reverse the order and the orientation of a segment:

XX —— -
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Rearrangement Operations

Inversions reverse the order and the orientation of a segment:
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Rearrangement Operations

Block interchanges exchange two segments:

YK X ——
— ) —mmp -

Transpositions are block interchanges whose exchanged
segments are adjacent:
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Rearrangement Operations

Translocations exchange two chromosome ends:

or
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Rearrangement Operations

Fusions and fissions are translocations involving or creating
empty chromosomes:

- — ) —
—amp— ) ) —
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Genome Rearrangements

Genome rearrangements change the content ander the order
of genes of a genome:
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The number of rearrangements needed to transform one
genome into another is a measure for the evolutionary distance
between two species
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Genomic Distances

Definition
Distance d(A, B): minimum number of operations needed to
transform genome A into genome B

@ What kind of genome model?
e Unichromosomal vs. multichromosomal genomes

e Linear vs. circular chromosomes
e Linearly ordered vs. partially ordered chromosomes
e Duplicates, gene families

© Which set of operations?
e Only single operation

e Weights
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Historical Overview

Inversions-only: Sankoff (1992), Bafna & Pevzner (1993), Hannenhalli &
Pevzner (1995), Kaplan et al. (1999), Bader et al. (2001), Bergeron et al. (2004)

Translocations-only: Hannenhalli (1996), Bergeron et al. (2005)

Inversions, translocations, fusions & fissions: Hannenhalli & Pevzner
(1995), Tesler (2002), Ozery-Flato & Shamir (2003)

Block interchanges: Christie (1996)
Transpositions: Bafna & Pevzner (1998), Hartman (2003), Labarre (2005)

Weighted inversions, transpositions & inverted transpositions:
Bader & Ohlebusch (2006)

Inversions, translocations, fusions, fissions &
block-interchanges: VYancopoulos et al. (2005), Bergeron et al. (2006)
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DCJ Operation Graphs

e The DCJ Operation
@ Graphs with Vertices of Degree One or Two
@ The Genome Graph
@ The Adjacency Graph
@ Algorithm for Sorting by DCJ Operations
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DCJ Operation Graphs Genome Graph Adjacency Graph DCJ Sorting

Let G be a graph where each vertex has degree one or two.

@ A vertex of degree one is called external and a vertex of
degree two internal

@ An internal vertex connecting edges p and q is also
denoted by {p, g} and an external vertex incident to an
edge p by {p}

@ Cycle is a circular component and a path is a linear
component

@ A cycle or path is even if it has an even number of edges,
otherwise it is odd

e anes R I
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DCJ Operation Graphs Genome Graph Adjacency Graph DCJ Sorting

The DCJ operation acts on two vertices v and v of a graph with vertices of
degree one or two in one of the following three ways:

(a) Ifboth u={p,q} and v = {r, s} are internal vertices, these are
replaced by the two vertices {p, r} and {s, q} or by the two vertices
{p, s}t and {q,r}.

(b) If u={p,q}isinternal and v = {r} is external, these are replaced by
{p,r} and {q} or by {g, r} and {p}.

(c) Ifboth u={q} and v = {r} are external, these are replaced by {q, r}.

In addition, as an inverse of case (iii), a single internal vertex {q, r} can be
replaced by two external vertices {q} and {r}.

Bergeron, Mixtacki, and Stoye DCJ and genome rearrangements PICB Spring School 2007



DCJ Operation Graphs Genome Graph Adjacency Graph DCJ Sorting

Global Effects on the Graph

(1) DCJ operation applied on 1 or 2 paths:
@ Path translocation
@ Path fusion or path fission
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DCJ Operation Graphs Genome Graph Adjacency Graph DCJ Sorting

Global Effects on the Graph

(2) DCJ applied on 1 path, or 1 path and 1 cycle:
@ Inversions
@ Excisions or integrations
@ Circularizations or linearizations
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DCJ Operation Graphs Genome Graph Adjacency Graph DCJ Sorting

Global Effects on the Graph

(3) DCJ operation applied on 1 or 2 cycles:
@ Inversions
@ Cycle fusions or cycles fissions

The application of a single DCJ operation changes the number
of circular or linear components by at most one.
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Global Effects on the Graph

Bergeron, Mixtacki, and Stoye DCJ and genome rearrangements PICB Spring School 2007



DCJ Operation Graphs Genome Graph Adjacency Graph DCJ Sorting

Genome Graph

On—-— —dmm— — )

@ A gene ais an oriented sequence of DNA that starts with a
tail a; and ends with a head ap

@ Head and tail are called the extremities of a gene

@ An adjacency of two consecutive genes a and b,
depending on their respective orientation, can be of four
different types:

{an, bt},{an, b}, {at, bt}, {at, bn}

@ An extremity that is not adjacent to any other gene is called
a telomere, represented by a singleton set {a} or {a;}
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DCJ Operation Graphs Genome Graph Adjacency Graph DCJ Sorting

Definition

A genome is a set of adjacencies and telomeres such that the
tail or the head of any gene appears in exactly one adjancency
or telomere.

A= {{at}v {a/h Cf}v {th dh}7 {dt}v {bh7 et}u {efh bt}v {fl‘}7 {fhu gl‘}7 {gh}}

Definition

Genome graph: Given a genome, one reconstructs its
chromosomes by representing the telomeres and adjacencies
as vertices and joining for each gene its tail and its head by an
edge.

by ée;
B a0 Cudy dy “ h gt g
o Thedt 4

25
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DCJ Operation Graphs Genome Graph Adjacency Graph DCJ Sorting

Observation
The genome graph is a graph with vertices of degree 1 or 2.

>

{{af}v {ahv Cf}7 {Ch7 dh}7 {df}’7 {bh7 ef}v {e/'h bf}v {ft}’ {fh7 gt}, {gh}}
B = {{afh bf}» {bhv af}v {Cf}a {Chv df}v {dh}v {ef}v {eh}’ {fhv gt}v {ghv ff}}

The DCJ Distance Problem

Given two genomes A and B, find a shortest sequence of DCJ
operations that transforms A into B. The length of such a
sequence is called the DCJ distance between A and B,
denoted by dpgy(A, B).
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DCJ Operation Graphs Genome Graph Adjacency Graph DCJ Sorting

Adjacency Graph

Definition

The adjacency graph AG(A, B) is a bipartite multi-graph whose
set of vertices are the adjacencies and telomeres of A and B.
For each u € Aand v € Bthere are |un v| edges between u
and v.
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DCJ Operation Graphs Genome Graph Adjacency Graph DCJ Sorting

Lemma

Let A and B be two genomes defined on the same set of N
genes, then we have

A=B ifandonlyif N=C+1/2

where C is the number of cycles and / the number of odd paths
in AG(A, B).

ag antt Chdh a; bteh etbh ft fh gt gh

ag ante Chdh a; bteh etbh ft fh gt 9h
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DCJ Operation Graphs Genome Graph Adjacency Graph DCJ Sorting

The application of a single DCJ operation changes the number
of odd paths in the adjacency graph by —2, 0, or 2.
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DCJ Operation Graphs Genome Graph Adjacency Graph DCJ Sorting

Lemma

Let A and B be two genomes defined on the same set of N
genes, then we have

dpcy(A,B) = N—(C+1/2)

where C is the number of cycles and / the number of odd paths
in AG(A, B).
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DCJ Operation Graphs Genome Graph Adjacency Graph DCJ Sorting

Sorting by DCJ Operations

1. Generate the adjacencies of B that are not yet present in A

Any pair of edges in the adjacency graph that connect two
different vertices of genome A with an adjacency {p, g} in
genome B can be transformed by a single DCJ operation into a
cycle of length two, plus the remaining structure, reduced by
the two edges — C increases by one!
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Sorting by DCJ Operations

2. Generate the telomeres of B that are not yet present in A

All adjacencies of genome B are contained in cycles of length
two. There might still be pairs of telomeres of B that form an
adjacency in A. These adjacencies can be split into two
telomeres, thus creating two odd paths of length one each

— | increases by two!
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DCJ Operation Graphs Genome Graph

Algorithm for sorting by DCJ operations

1: Let AG(A, B) be the adjacency graph of Aand B

{Generate the adjacencies of B that are not yet present in A}
2: for each adjacency {p, g} in genome B do
let u be the vertex of A that contains p
let v be the vertex of A that contains g
if u # v then

end if
end for

{Generate the telomeres of B that are not yet present in A}
9: for each telomere {p} in B do
10: let u be the vertex of A that contains p
11: if uis an adjacency then
12: replace vertex uin Aby {p} and (u\ {p})
13: endif
14: end for

3

4

5

6: replace vertices uand vin Aby {p,q} and (u\ {p}) U (v \ {q})
7

8:

Adjacency Graph DCJ Sorting

Bergeron, Mixtacki, and Stoye DCJ and genome rearrangements
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The DCJ Distance

Theorem (Bergeron, Mixtacki and Stoye 2006)

Let A and B be two genomes defined on the same set of N
genes, then we have

dpcy(A,B) = N—(C+1/2)

where C is the number of cycles and / the number of odd paths
in AG(A, B). An optimal sorting sequence can be found in
optimal O(|A| + |B|) time.

34
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Related distances Inversion Distance Translocation Distance

e Relation to other Genomic Distances
@ The Inversion Distance
@ The Translocation Distance
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Related distances Inversion Distance Translocation Distance

The Inversion Distance Problem

Pedrgs| . . [Pgrdys
N/
PIS
@
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Related distances Inversion Distance Translocation Distance

The Inversion Distance Problem
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Related distances Inversion Distance Translocation Distance

The Inversion Distance Problem

Uni-chromosomal genomes with the same gene content:

@ Gene is represented by a signed integer between 1 and N
@ Orientation of a gene is represented by the sign

P=(0 1 5 3 5 7

‘11 1;‘51 5l‘4h 41"31 322f 2/7‘6/7 61.

. o e
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Related distances Inversion Distance Translocation Distance

The Inversion Distance Problem

Inversion changes the order and the signs of an interval of
genes:

P-=(0 1 5 3 5 7)

Joo 1430 84 455, 52 2,6 6,
P=0 1 -3 5 6 7

ey = 4000 =
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The Inversion Distance Problem

Inversion changes the order and the signs of an interval of
genes:
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Related distances Inversion Distance Translocation Distance

Problem: How many inversions do we need to transform one
genome into the other?

P=@0 1 5 3 2 67
© 1 5 3 6 7)
o 1 -5 3 6 7)
o 1 2 -3 5 6 7)
0 1 -3 4 5 6 7
ld=(0 1 3 5 6 7)

Definition

Inversion distance dj,,(P): minimum number of inversions
needed to transform P into the identity permutation
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Theorem (Hannenhalli and Pevzner 1995)

For a signed permutation P

dm(P) = N—C—1+h+f

where C is the number of cycles, h the number of hurdles, and f = 1 if P has a

fortress, and f = 0 otherwise.

Summary of our Results (Bergeron, Mixtacki and Stoye 2004)
@ If a signed permutation P on the set {0,...,N — 1} has C cycles and the

associated tree Tp has minimal cost t, then

dndP) = N—C—1+1
= dDCJ+t

@ Yields a simple linear-time algorithm to compute the inversion distance.

v
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Related distances

Inversion Distance Translocation Distance

The Translocation Distance Problem
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Related distances Inversion Distance Translocation Distance

The Translocation Distance Problem

Multi-chromosomal genomes with the same gene content and
number of chromosomes:

A= {(* 3), (1 5, (6 -8 9)}
Internal translocation exchanges two non-empty chromosome

ends:

A= {(*3), (1 5), (6 8 9))
A= 5), (1 3, 6 & 9)
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Problem: How many internal translocations do we need to
transform one genome into the other?

A= {("_3).(1 5),(6 -8 9)}

{(+ -7 5,12 3),(9 8-6)}

Definition
Translocation distance d(A): minimum number of translocations
needed to transform A into the identity permutation spilit in

chromosomes sharing the ends of A
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Theorem (Hannenhalli 1996)

For a genome A with chr chromosomes and N genes

dnans(A) = N—C—chr+s+o0+2i

where C is the number of cycles, s the number of minimal subpermutations, o = 1 if the number of minimal

subpermutations is odd and o = 0 otherwise, and i = 1 if P has an even-isolation and i = 0 otherwise.

Summary of our Results (Bergeron, Mixtacki and Stoye 2005)

@ Let A be a genome with C cycles and whose forest F4 has L leaves and T trees.

Then
= dpcy +t
where
L+2 ifLisevenand T =1
= L+1 if Lis odd
L if Lisevenand T # 1.

@ First correct algorithm for sorting by translocations.

v
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Summary

@ Representation of genomes containing linear and circular
chromosomes

@ All classical operations are modeled by DCJ

@ Simple DCJ distance formula

@ Linear-time algorithm for sorting by DCJ operations
@ Relation to other well-studied models:

d(A,B) = dpcy(A,B) + t

where t represents the additional cost of not resorting to
DCJ operations.
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Global Picture on Genome Rearrangement Models
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Thanks to:

Julia Mixtacki (Bielefeld)

Anne Bergeron (Montreal)

... and you for your attention!!!

Questions?
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