
Index Structures in Biological Sequence Analysis
From Simplicity to Complexity and Back

Jens Stoye

AG Genominformatik, Technische Fakultät

Institute of Bioinformatics, Center of Biotechnology

Bielefeld University, Germany

Index structures in biological sequence analysis

1 Introduction

2 Suffix trees

3 Affix trees

4 Suffix arrays

5 The q-Gram index

6 Summary and Conclusion

Index structures in biological sequence analysis

1 Introduction

2 Suffix trees

3 Affix trees

4 Suffix arrays

5 The q-Gram index

6 Summary and Conclusion

Biological sequence analysis

The data:

DNA sequences – may be very long, small alphabet A,C ,G ,T

RNA sequences – usually moderately long

protein sequences – usually short, larger alphabet size

The tasks:

sequence comparison

pattern matching

pattern discovery

The challenges:

efficient algorithms

flexible tools

statistical assessment of significance of results

visualization

Biological sequence analysis

The data:

DNA sequences – may be very long, small alphabet A,C ,G ,T

RNA sequences – usually moderately long

protein sequences – usually short, larger alphabet size

The tasks:

sequence comparison

pattern matching

pattern discovery

The challenges:

efficient algorithms

flexible tools

statistical assessment of significance of results

visualization

Some applications

Sequence comparison

alignment, multiple alignment
similar sequence → similar structure → similar function

Pattern matching

mapping of expressed sequence tags (ESTs) on genomic DNA
targets of a given miRNA
palindromic or other RNA structural patterns
known repeats (for further exclusion from analysis)

Pattern discovery

unknown promoter binding sites
repeats, tandem repeats
possible DNA methylation sites

Index structures

The result of preprocessing the data for faster search.

Inde x

abstract, 72
boolean, 28
byte, 28
case, 3 5
catch, 9 8
char, 28
class, 21
default, 3 5
double, 21 , 28
do, 3 1
else, 3 2
extends, 23 , 6 6
false, 26
finally, 9 8
final, 21
float, 28
for, 3 1
if, 26 , 3 2
implements, 9 0
import, 23 , 9 4
instanceof, 9 9
int, 25 , 28
length, 26
long, 28
new, 21
package, 23 , 9 3
private, 24 , 6 2
protected, 24
public, 24
short, 28
static, 21 , 22, 6 1
String, 28 , 3 9
super, 6 8
switch, 3 5
this, 6 0
throws, 9 7
throw, 9 7
true, 26

try, 9 8
void, 22
while, 26 , 3 1

a bstra k te
K la ssen, 71
Metho den, 71

a bstra k te D a tenty pen, 5 5
Alg o rithmen

B o y er-Mo o re (B M), 4 3
B o y er-Mo o re-Ho rspo o l (B MH), 4 4
K nuth-Mo rris-Pra tt (K MP), 4 6
T ex tsucha lg o rithmen, 3 9

Arra y , 26
mehrdimensio na l, 3 3

Ausg a be, 1 1 3
Ausna hmen, 9 4

B a ck us-Na ur-Fo rm, 8
B ito pera to ren, 3 0
B NF, 8
B o o l’sche O pera to ren, 29
B o y er-Mo o re (B M), 4 3
B o y er-Mo o re-Ho rspo o l (B MH), 4 4

ca ll by reference, 6 5
ca ll by v a lue, 6 4
ca sting , 6 7

D a tena bstra k tio n, 5 5
D a tenk a pselung , 5 5
D a tenströ me, 1 1 7
D a tenty p

a bstra k t, 5 5
Sta ck , 5 6

D ek rement, 3 0
direk te V erk ettung , 1 0 7
D o k umentierung , 6 3
D o uble Ha shing , 1 0 8

1 23

Many applications assume that the text is partitioned into words
(natural language, syntactic tags, . . .)

Genomic data is not divided into obvious “words”

→ we need indices that allow access to any substring of the text

Index structures

The result of preprocessing the data for faster search.

Inde x

abstract, 72
boolean, 28
byte, 28
case, 3 5
catch, 9 8
char, 28
class, 21
default, 3 5
double, 21 , 28
do, 3 1
else, 3 2
extends, 23 , 6 6
false, 26
finally, 9 8
final, 21
float, 28
for, 3 1
if, 26 , 3 2
implements, 9 0
import, 23 , 9 4
instanceof, 9 9
int, 25 , 28
length, 26
long, 28
new, 21
package, 23 , 9 3
private, 24 , 6 2
protected, 24
public, 24
short, 28
static, 21 , 22, 6 1
String, 28 , 3 9
super, 6 8
switch, 3 5
this, 6 0
throws, 9 7
throw, 9 7
true, 26

try, 9 8
void, 22
while, 26 , 3 1

a bstra k te
K la ssen, 71
Metho den, 71

a bstra k te D a tenty pen, 5 5
Alg o rithmen

B o y er-Mo o re (B M), 4 3
B o y er-Mo o re-Ho rspo o l (B MH), 4 4
K nuth-Mo rris-Pra tt (K MP), 4 6
T ex tsucha lg o rithmen, 3 9

Arra y , 26
mehrdimensio na l, 3 3

Ausg a be, 1 1 3
Ausna hmen, 9 4

B a ck us-Na ur-Fo rm, 8
B ito pera to ren, 3 0
B NF, 8
B o o l’sche O pera to ren, 29
B o y er-Mo o re (B M), 4 3
B o y er-Mo o re-Ho rspo o l (B MH), 4 4

ca ll by reference, 6 5
ca ll by v a lue, 6 4
ca sting , 6 7

D a tena bstra k tio n, 5 5
D a tenk a pselung , 5 5
D a tenströ me, 1 1 7
D a tenty p

a bstra k t, 5 5
Sta ck , 5 6

D ek rement, 3 0
direk te V erk ettung , 1 0 7
D o k umentierung , 6 3
D o uble Ha shing , 1 0 8

1 23

Many applications assume that the text is partitioned into words
(natural language, syntactic tags, . . .)

Genomic data is not divided into obvious “words”

→ we need indices that allow access to any substring of the text

Index structures

The result of preprocessing the data for faster search.

Inde x

abstract, 72
boolean, 28
byte, 28
case, 3 5
catch, 9 8
char, 28
class, 21
default, 3 5
double, 21 , 28
do, 3 1
else, 3 2
extends, 23 , 6 6
false, 26
finally, 9 8
final, 21
float, 28
for, 3 1
if, 26 , 3 2
implements, 9 0
import, 23 , 9 4
instanceof, 9 9
int, 25 , 28
length, 26
long, 28
new, 21
package, 23 , 9 3
private, 24 , 6 2
protected, 24
public, 24
short, 28
static, 21 , 22, 6 1
String, 28 , 3 9
super, 6 8
switch, 3 5
this, 6 0
throws, 9 7
throw, 9 7
true, 26

try, 9 8
void, 22
while, 26 , 3 1

a bstra k te
K la ssen, 71
Metho den, 71

a bstra k te D a tenty pen, 5 5
Alg o rithmen

B o y er-Mo o re (B M), 4 3
B o y er-Mo o re-Ho rspo o l (B MH), 4 4
K nuth-Mo rris-Pra tt (K MP), 4 6
T ex tsucha lg o rithmen, 3 9

Arra y , 26
mehrdimensio na l, 3 3

Ausg a be, 1 1 3
Ausna hmen, 9 4

B a ck us-Na ur-Fo rm, 8
B ito pera to ren, 3 0
B NF, 8
B o o l’sche O pera to ren, 29
B o y er-Mo o re (B M), 4 3
B o y er-Mo o re-Ho rspo o l (B MH), 4 4

ca ll by reference, 6 5
ca ll by v a lue, 6 4
ca sting , 6 7

D a tena bstra k tio n, 5 5
D a tenk a pselung , 5 5
D a tenströ me, 1 1 7
D a tenty p

a bstra k t, 5 5
Sta ck , 5 6

D ek rement, 3 0
direk te V erk ettung , 1 0 7
D o k umentierung , 6 3
D o uble Ha shing , 1 0 8

1 23

Many applications assume that the text is partitioned into words
(natural language, syntactic tags, . . .)

Genomic data is not divided into obvious “words”

→ we need indices that allow access to any substring of the text

Full-text index structures

Limitation:

Most full-text indices allow only simple searches.

But:

Simple searches are often the core of more complex methods.

Example: degenerate repeats

Task: In a given string S of length n, find all pairs of occurrences
of substrings of length at least ` that differ by at most k errors.

︷ ︸︸ ︷≥ ` ︷ ︸︸ ︷≥ `

C –A G

Full-text index structures

Limitation:

Most full-text indices allow only simple searches.

But:

Simple searches are often the core of more complex methods.

Example: degenerate repeats

Task: In a given string S of length n, find all pairs of occurrences
of substrings of length at least ` that differ by at most k errors.

︷ ︸︸ ︷≥ ` ︷ ︸︸ ︷≥ `

C –A G

Full-text index structures

Limitation:

Most full-text indices allow only simple searches.

But:

Simple searches are often the core of more complex methods.

Example: degenerate repeats

Task: In a given string S of length n, find all pairs of occurrences
of substrings of length at least ` that differ by at most k errors.

︷ ︸︸ ︷≥ ` ︷ ︸︸ ︷≥ `

C –A G

Finding degenerate repeats

Idea: A repeat of length ` with k errors contains an exact match of
length at least s := b`/(k + 1)c.

Algorithm:

1 Find all exact repeats of length ≥ s. (Using an index)

2 Extend these by up to k errors.

3 Report matches whenever length ` is reached.

××××

× × × ×× × × ×

≥ ` ?

≥ ` ?
︸ ︷︷ ︸≥ ` ?

︸ ︷︷ ︸ ︸ ︷︷ ︸
≥ ` ?︸ ︷︷ ︸

≥ ` ?︸ ︷︷ ︸
≥ ` ?

︸ ︷︷ ︸

Analysis: O(n + ζk) time with E (ζ) = O
(
n2/4s

)
.

Finding degenerate repeats

Idea: A repeat of length ` with k errors contains an exact match of
length at least s := b`/(k + 1)c.

Algorithm:

1 Find all exact repeats of length ≥ s. (Using an index)

2 Extend these by up to k errors.

3 Report matches whenever length ` is reached.

××××× × × ×

× × × ×

≥ ` ?

≥ ` ?
︸ ︷︷ ︸≥ ` ?

︸ ︷︷ ︸ ︸ ︷︷ ︸
≥ ` ?︸ ︷︷ ︸

≥ ` ?︸ ︷︷ ︸
≥ ` ?

︸ ︷︷ ︸

Analysis: O(n + ζk) time with E (ζ) = O
(
n2/4s

)
.

Finding degenerate repeats

Idea: A repeat of length ` with k errors contains an exact match of
length at least s := b`/(k + 1)c.

Algorithm:

1 Find all exact repeats of length ≥ s. (Using an index)

2 Extend these by up to k errors.

3 Report matches whenever length ` is reached.

××××× × × ×× × × ×

≥ ` ?

≥ ` ?
︸ ︷︷ ︸≥ ` ?

︸ ︷︷ ︸ ︸ ︷︷ ︸
≥ ` ?︸ ︷︷ ︸

≥ ` ?︸ ︷︷ ︸
≥ ` ?

︸ ︷︷ ︸

Analysis: O(n + ζk) time with E (ζ) = O
(
n2/4s

)
.

Finding degenerate repeats

Idea: A repeat of length ` with k errors contains an exact match of
length at least s := b`/(k + 1)c.

Algorithm:

1 Find all exact repeats of length ≥ s. (Using an index)

2 Extend these by up to k errors.

3 Report matches whenever length ` is reached.

××××× × × ×× × × ×

≥ ` ?

≥ ` ?
︸ ︷︷ ︸≥ ` ?

︸ ︷︷ ︸ ︸ ︷︷ ︸
≥ ` ?︸ ︷︷ ︸

≥ ` ?︸ ︷︷ ︸
≥ ` ?

︸ ︷︷ ︸

Analysis: O(n + ζk) time with E (ζ) = O
(
n2/4s

)
.

Finding degenerate repeats

Idea: A repeat of length ` with k errors contains an exact match of
length at least s := b`/(k + 1)c.

Algorithm:

1 Find all exact repeats of length ≥ s. (Using an index)

2 Extend these by up to k errors.

3 Report matches whenever length ` is reached.

××××× × × ×× × × ×

≥ ` ?

≥ ` ?
︸ ︷︷ ︸≥ ` ?

︸ ︷︷ ︸ ︸ ︷︷ ︸
≥ ` ?︸ ︷︷ ︸

≥ ` ?︸ ︷︷ ︸
≥ ` ?

︸ ︷︷ ︸

Analysis: O(n + ζk) time with E (ζ) = O
(
n2/4s

)
.

String matching

Given a string S and a pattern P,
find all exact/approximate occurrences of P in S .

(A) Online: no preprocessing of the text, linear search time

Exact string matching

Finite automata, e.g. Knuth-Morris-Pratt, Aho-Corasick

Boyer-Moore

Boyer-Moore-Horspool

Approximate string matching

Sellers’ algorithm (dynamic programming)

FASTA, BLAST (heuristic methods)

String matching

Given a string S and a pattern P,
find all exact/approximate occurrences of P in S .

(A) Online: no preprocessing of the text, linear search time

Exact string matching

Finite automata, e.g. Knuth-Morris-Pratt, Aho-Corasick

Boyer-Moore

Boyer-Moore-Horspool

Approximate string matching

Sellers’ algorithm (dynamic programming)

FASTA, BLAST (heuristic methods)

String matching

(B) Offline: preprocessing of the text, sublinear search time

Examples of full-text index structures:

Suffix tree

Patricia trie

Directed acyclic word graph

Suffix array

String B tree

Suffix cactus

Suffix vector

Factor oracle

Enhanced suffix array

Affix tree

q-Gram index

String matching

(B) Offline: preprocessing of the text, sublinear search time

Examples of full-text index structures:

Suffix tree

Patricia trie

Directed acyclic word graph

Suffix array

String B tree

Suffix cactus

Suffix vector

Factor oracle

Enhanced suffix array

Affix tree

q-Gram index

Exact string matching online and offline

Theoretical results:

Online search in O(n + m) time possible
Offline search in O(m) time after O(n) time preprocessing

online offline

1 pattern search O(n + m) O(n + m)

k pattern searches O(k (n + m)) O(n + km)

where n = text length, m = pattern length

Index structures in biological sequence analysis

1 Introduction

2 Suffix trees

3 Affix trees

4 Suffix arrays

5 The q-Gram index

6 Summary and Conclusion

Suffix Tree: Definition

A suffix of a string S of length n is a
substring of S that ends at position n. 1 n

The suffix tree of S , T (S), is a rooted tree whose edges are
labeled with strings such that

the paths from the root to the leaves are the suffixes of S ;
all edges leaving a node begin with different characters.

$

1

TS = A T
3

A T $
65421

2

$
T

$

4
A

T
$

3

5

$

$

6

A

T

A

T

A

T

P = A T A
A

T

AA

T

A

P = T A T T T

A

T

T

A

T

Suffix Tree: Definition

A suffix of a string S of length n is a
substring of S that ends at position n. 1 n

The suffix tree of S , T (S), is a rooted tree whose edges are
labeled with strings such that

the paths from the root to the leaves are the suffixes of S ;
all edges leaving a node begin with different characters.

$

1

TS = A T
3

A T $
65421

2

$
T

$

4
A

T
$

3

5

$

$

6

A

T

A

T

A

T

P = A T A

A

T

AA

T

A

P = T A T T T

A

T

T

A

T

Suffix Tree: Definition

A suffix of a string S of length n is a
substring of S that ends at position n. 1 n

The suffix tree of S , T (S), is a rooted tree whose edges are
labeled with strings such that

the paths from the root to the leaves are the suffixes of S ;
all edges leaving a node begin with different characters.

$

1

TS = A T
3

A T $
65421

2

$
T

$

4
A

T
$

3

5

$

$

6

A

T

A

T

A

T

P = A T A

A

T

AA

T

A

P = T A T T T

A

T

T

A

T

Suffix Tree: Definition

A suffix of a string S of length n is a
substring of S that ends at position n. 1 n

The suffix tree of S , T (S), is a rooted tree whose edges are
labeled with strings such that

the paths from the root to the leaves are the suffixes of S ;
all edges leaving a node begin with different characters.

$

1

TS = A T
3

A T $
65421

2

$
T

$

4
A

T
$

3

5

$

$

6

A

T

A

T

A

T

P = A T A
A

T

AA

T

A

P = T A T T T

A

T

T

A

T

Suffix Tree: Definition

A suffix of a string S of length n is a
substring of S that ends at position n. 1 n

The suffix tree of S , T (S), is a rooted tree whose edges are
labeled with strings such that

the paths from the root to the leaves are the suffixes of S ;
all edges leaving a node begin with different characters.

$

1

TS = A T
3

A T $
65421

2

$
T

$

4
A

T
$

3

5

$

$

6

A

T

A

T

A

T

P = A T A
A

T

AA

T

A

P = T A T T T

A

T

T

A

T

Suffix Tree: Definition

A suffix of a string S of length n is a
substring of S that ends at position n. 1 n

The suffix tree of S , T (S), is a rooted tree whose edges are
labeled with strings such that

the paths from the root to the leaves are the suffixes of S ;
all edges leaving a node begin with different characters.

$

1

TS = A T
3

A T $
65421

2

$
T

$

4
A

T
$

3

5

$

$

6

A

T

A

T

A

T

P = A T A
A

T

A

A

T

A

P = T A T T T

A

T

T

A

T

Suffix Tree: Definition

A suffix of a string S of length n is a
substring of S that ends at position n. 1 n

The suffix tree of S , T (S), is a rooted tree whose edges are
labeled with strings such that

the paths from the root to the leaves are the suffixes of S ;
all edges leaving a node begin with different characters.

$

1

TS = A T
3

A T $
65421

2

$
T

$

4
A

T
$

3

5

$

$

6

A

T

A

T

A

T

P = A T A
A

T

A

A

T

A

P = T A T T T

A

T

T

A

T

Suffix Tree: Definition

A suffix of a string S of length n is a
substring of S that ends at position n. 1 n

The suffix tree of S , T (S), is a rooted tree whose edges are
labeled with strings such that

the paths from the root to the leaves are the suffixes of S ;
all edges leaving a node begin with different characters.

$

1

TS = A T
3

A T $
65421

2

$
T

$

4
A

T
$

3

5

$

$

6

A

T

A

T

A

T

P = A T A
A

T

A

A

T

A

P = T A T T

T

A

T

T

A

T

Suffix Tree: Definition

A suffix of a string S of length n is a
substring of S that ends at position n. 1 n

The suffix tree of S , T (S), is a rooted tree whose edges are
labeled with strings such that

the paths from the root to the leaves are the suffixes of S ;
all edges leaving a node begin with different characters.

$

1

TS = A T
3

A T $
65421

2

$
T

$

4
A

T
$

3

5

$

$

6

A

T

A

T

A

T

P = A T A
A

T

A

A

T

A

P = T A T T

T

A

T

T

A

T

Suffix Tree: Definition

A suffix of a string S of length n is a
substring of S that ends at position n. 1 n

The suffix tree of S , T (S), is a rooted tree whose edges are
labeled with strings such that

the paths from the root to the leaves are the suffixes of S ;
all edges leaving a node begin with different characters.

$

1

TS = A T
3

A T $
65421

2

$
T

$

4
A

T
$

3

5

$

$

6

A

T

A

T

A

T

P = A T A
A

T

A

A

T

A

P = T A T T T

A

T

T

A

T

Suffix Tree: Definition

A suffix of a string S of length n is a
substring of S that ends at position n. 1 n

The suffix tree of S , T (S), is a rooted tree whose edges are
labeled with strings such that

the paths from the root to the leaves are the suffixes of S ;
all edges leaving a node begin with different characters.

$

1

TS = A T
3

A T $
65421

2

$
T

$

4
A

T
$

3

5

$

$

6

A

T

A

T

A

T

P = A T A
A

T

A

A

T

A

P = T A T T T

A

T

T

A

T

Suffix Tree: Definition

A suffix of a string S of length n is a
substring of S that ends at position n. 1 n

The suffix tree of S , T (S), is a rooted tree whose edges are
labeled with strings such that

the paths from the root to the leaves are the suffixes of S ;
all edges leaving a node begin with different characters.

$

1

TS = A T
3

A T $
65421

2

$
T

$

4
A

T
$

3

5

$

$

6

A

T

A

T

A

T

P = A T A
A

T

A

A

T

A

P = T A T T T

A

T

T

A

T

Suffix Tree: Definition

A suffix of a string S of length n is a
substring of S that ends at position n. 1 n

The suffix tree of S , T (S), is a rooted tree whose edges are
labeled with strings such that

the paths from the root to the leaves are the suffixes of S ;
all edges leaving a node begin with different characters.

$

1

TS = A T
3

A T $
65421

2

$
T

$

4
A

T
$

3

5

$

$

6

A

T

A

T

A

T

P = A T A
A

T

A

A

T

A

P = T A T T T

A

T

T

A

T

A larger example

S = ss ippiM i s s i
987654321 10 11

$
12

$

s
i

s
s

i
p

p
i

$

p

p

i

$

$

i

p

p

i

s

s

i

s
p

p

i

$

p

p

i

$

i

$

$

i

Mississippi$

$
i

p
p

s

s

i

p
p

i
$

s
s

i
p

p
i

$

1

8

5

4

7

9

10

11

6 3

12

2

Suffix tree properties

T (S) represents exactly the substrings of S .

T (S) allows to enumerate these substrings and their locations
in S in a convenient way.

This is very useful for many pattern recognition problems, for
example:

exact string matching as part of other applications, e.g.
detecting DNA contamination
all-pairs suffix-prefix matching, important in fragment
assembly
finding repeats and palindromes, tandem repeats, degenerate
repeats
DNA primer design
DNA chip design
...

See also:

A. Apostolico: The myriad virtues of subword trees, 1985.

D. Gusfield: Algorithms on strings, trees, and sequences, 1997.

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12 Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12)

(2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12)

(10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12)

(6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Space usage of suffix trees

Observation: T (S) requires O(n) space.

Proof sketch:

1. T (S) has at most n leaves.

2. Each internal node is branching ⇒ at most n − 1 internal nodes.

3. A tree with at most 2n − 1 nodes has at most 2n − 2 edges.

4. Each node requires constant space.

5. Each edge label is a substring of S ⇒ pair of pointers (i , j) into S .

S = ippississiM
1 2 3 4 5 6 7 8 9 10 11

$
12

Mis

s
si

sippi$

i

p
p

i
$

s

s

i

p
p

i
$

s
s

i
p

p
i

$

$

p

$

i

$

i

p

s

i

$

i

p

p

$

p

i

p

i

s

s

s
i

p

p

i

$

s
s

i
p

p
i

$

$

(1,12) (2,2)

(9,12)

(6,8)

(9,12)

(6,12)

(12,12)

(9,9)

(11,12) (10,12)

(3,3)

(5,5)

(9,12)

(6,12)

(4,5)

(9,12) (6,12)

(12,12)

Representation of suffix trees

(6,6)

(6,6)

(6,6)1 2 4 5 63

(4,6)
(2,3)(6,6)

(4,6)

(1,1)
(2,3)

A T A T $S = T

Standard representation of trees:

Store nodes as records with child and sibling pointer.

⇒ about 32n bytes in the worst case

(4,6) (6,6)

(6,6)

(6,6)(1,1)

(2,3)(6,6)(4,6)

(2,3)

—

More efficient representation: (Giegerich, Kurtz & JS, SP&E 2003)

Avoid storing redundant information.

⇒ below 12n bytes in the worst case, 8.5n on average

6 8 112 1 6 4 6 2 6 4 6

1 2 3 4 5 6 7 8 9 121110
1
1

1
0

1
1

0
0

1
1

1
0

1
1

0
0

0
0last child bit →

leaf bit →

Representation of suffix trees

(6,6)

(6,6)

(6,6)1 2 4 5 63

(4,6)
(2,3)(6,6)

(4,6)

(1,1)
(2,3)

A T A T $S = T

Standard representation of trees:

Store nodes as records with child and sibling pointer.

⇒ about 32n bytes in the worst case

(4,6) (6,6)

(6,6)

(6,6)(1,1)

(2,3)(6,6)(4,6)

(2,3)

—

More efficient representation: (Giegerich, Kurtz & JS, SP&E 2003)

Avoid storing redundant information.

⇒ below 12n bytes in the worst case, 8.5n on average

6 8 112 1 6 4 6 2 6 4 6

1 2 3 4 5 6 7 8 9 121110
1
1

1
0

1
1

0
0

1
1

1
0

1
1

0
0

0
0last child bit →

leaf bit →

Construction of suffix trees

Theorem [Weiner, 1973]: T (S) can be constructed in O(n) time.

Two practical algorithms: McCreight (1976) and Ukkonen (1993).

A simpler algorithm: Write-Only, Top-Down (WOTD).

T

1

2

3

4

5

6

T
A
T
A

$
T
A
T
A T

A
T
$

$
T
A T

$
$

$

A
T

$A
T
$

T

$A
T
$

A
T
A
T
$

$

6

5

3

1

4

2

⇒

$T

$
A

T

$A
T

$A
T
$

T
A

$

1

4

2 3

5

6

⇒
T

A
T

A
T

$ A

T

A
T
$

$

$

$

$

1

2

3

5

6

4

⇒

Analysis: O(n2) worst-case, O(n log n) expected time, O(n) space

Note: The WOTD algorithm is well suited for a lazy construction.

Construction of suffix trees

Theorem [Weiner, 1973]: T (S) can be constructed in O(n) time.

Two practical algorithms: McCreight (1976) and Ukkonen (1993).

A simpler algorithm: Write-Only, Top-Down (WOTD).

T

1

2

3

4

5

6

T
A
T
A

$
T
A
T
A T

A
T
$

$
T
A T

$
$

$

A
T

$A
T
$

T

$A
T
$

A
T
A
T
$

$

6

5

3

1

4

2

⇒

$T

$
A

T

$A
T

$A
T
$

T
A

$

1

4

2 3

5

6

⇒
T

A
T

A
T

$ A

T

A
T
$

$

$

$

$

1

2

3

5

6

4

⇒

Analysis: O(n2) worst-case, O(n log n) expected time, O(n) space

Note: The WOTD algorithm is well suited for a lazy construction.

Construction of suffix trees

Theorem [Weiner, 1973]: T (S) can be constructed in O(n) time.

Two practical algorithms: McCreight (1976) and Ukkonen (1993).

A simpler algorithm: Write-Only, Top-Down (WOTD).

T

1

2

3

4

5

6

T
A
T
A

$
T
A
T
A T

A
T
$

$
T
A T

$
$

$

A
T

$A
T
$

T

$A
T
$

A
T
A
T
$

$

6

5

3

1

4

2

⇒

$T

$
A

T

$A
T

$A
T
$

T
A

$

1

4

2 3

5

6

⇒
T

A
T

A
T

$ A

T

A
T
$

$

$

$

$

1

2

3

5

6

4

⇒

Analysis: O(n2) worst-case, O(n log n) expected time, O(n) space

Note: The WOTD algorithm is well suited for a lazy construction.

Construction of suffix trees

Theorem [Weiner, 1973]: T (S) can be constructed in O(n) time.

Two practical algorithms: McCreight (1976) and Ukkonen (1993).

A simpler algorithm: Write-Only, Top-Down (WOTD).

T

1

2

3

4

5

6

T
A
T
A

$
T
A
T
A T

A
T
$

$
T
A T

$
$

$

A
T

$A
T
$

T

$A
T
$

A
T
A
T
$

$

6

5

3

1

4

2

⇒

$T

$
A

T

$A
T

$A
T
$

T
A

$

1

4

2 3

5

6

⇒
T

A
T

A
T

$ A

T

A
T
$

$

$

$

$

1

2

3

5

6

4

⇒

Analysis: O(n2) worst-case, O(n log n) expected time, O(n) space

Note: The WOTD algorithm is well suited for a lazy construction.

Construction of suffix trees

Theorem [Weiner, 1973]: T (S) can be constructed in O(n) time.

Two practical algorithms: McCreight (1976) and Ukkonen (1993).

A simpler algorithm: Write-Only, Top-Down (WOTD).

T

1

2

3

4

5

6

T
A
T
A

$
T
A
T
A T

A
T
$

$
T
A T

$
$

$

A
T

$A
T
$

T

$A
T
$

A
T
A
T
$

$

6

5

3

1

4

2

⇒

$T

$
A

T

$A
T

$A
T
$

T
A

$

1

4

2 3

5

6

⇒
T

A
T

A
T

$ A

T

A
T
$

$

$

$

$

1

2

3

5

6

4

⇒

Analysis: O(n2) worst-case, O(n log n) expected time, O(n) space

Note: The WOTD algorithm is well suited for a lazy construction.

Construction of suffix trees

Theorem [Weiner, 1973]: T (S) can be constructed in O(n) time.

Two practical algorithms: McCreight (1976) and Ukkonen (1993).

A simpler algorithm: Write-Only, Top-Down (WOTD).

T

1

2

3

4

5

6

T
A
T
A

$
T
A
T
A T

A
T
$

$
T
A T

$
$

$

A
T

$A
T
$

T

$A
T
$

A
T
A
T
$

$

6

5

3

1

4

2

⇒

$T

$
A

T

$A
T

$A
T
$

T
A

$

1

4

2 3

5

6

⇒

T
A

T

A
T

$ A

T

A
T
$

$

$

$

$

1

2

3

5

6

4

⇒

Analysis: O(n2) worst-case, O(n log n) expected time, O(n) space

Note: The WOTD algorithm is well suited for a lazy construction.

Construction of suffix trees

Theorem [Weiner, 1973]: T (S) can be constructed in O(n) time.

Two practical algorithms: McCreight (1976) and Ukkonen (1993).

A simpler algorithm: Write-Only, Top-Down (WOTD).

T

1

2

3

4

5

6

T
A
T
A

$
T
A
T
A T

A
T
$

$
T
A T

$
$

$

A
T

$A
T
$

T

$A
T
$

A
T
A
T
$

$

6

5

3

1

4

2

⇒

$T

$
A

T

$A
T

$A
T
$

T
A

$

1

4

2 3

5

6

⇒
T

A
T

A
T

$ A

T

A
T
$

$

$

$

$

1

2

3

5

6

4

⇒

Analysis: O(n2) worst-case, O(n log n) expected time, O(n) space

Note: The WOTD algorithm is well suited for a lazy construction.

Construction of suffix trees

Theorem [Weiner, 1973]: T (S) can be constructed in O(n) time.

Two practical algorithms: McCreight (1976) and Ukkonen (1993).

A simpler algorithm: Write-Only, Top-Down (WOTD).

T

1

2

3

4

5

6

T
A
T
A

$
T
A
T
A T

A
T
$

$
T
A T

$
$

$

A
T

$A
T
$

T

$A
T
$

A
T
A
T
$

$

6

5

3

1

4

2

⇒

$T

$
A

T

$A
T

$A
T
$

T
A

$

1

4

2 3

5

6

⇒
T

A
T

A
T

$ A

T

A
T
$

$

$

$

$

1

2

3

5

6

4

⇒

Analysis: O(n2) worst-case, O(n log n) expected time, O(n) space

Note: The WOTD algorithm is well suited for a lazy construction.

Construction of suffix trees

Theorem [Weiner, 1973]: T (S) can be constructed in O(n) time.

Two practical algorithms: McCreight (1976) and Ukkonen (1993).

A simpler algorithm: Write-Only, Top-Down (WOTD).

T

1

2

3

4

5

6

T
A
T
A

$
T
A
T
A T

A
T
$

$
T
A T

$
$

$

A
T

$A
T
$

T

$A
T
$

A
T
A
T
$

$

6

5

3

1

4

2

⇒

$T

$
A

T

$A
T

$A
T
$

T
A

$

1

4

2 3

5

6

⇒
T

A
T

A
T

$ A

T

A
T
$

$

$

$

$

1

2

3

5

6

4

⇒

Analysis: O(n2) worst-case, O(n log n) expected time, O(n) space

Note: The WOTD algorithm is well suited for a lazy construction.

Lazy construction of suffix trees

Experimental results:
index construction plus ρn pattern searches for ρ ∈ [0, 1]

 0

 1

 2

 3

 4

 5

 6

 0 0.0005 0.001 0.0015 0.002

re
la

tiv
e

tim
e

[s
/1

,0
00

,0
00

 c
ha

rs
]

rho

mcch
bmh

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

re
la

tiv
e

tim
e

[s
/1

,0
00

,0
00

 c
ha

rs
]

rho

mcch

 0

 1

 2

 3

 4

 5

 6

 0 0.0005 0.001 0.0015 0.002

re
la

tiv
e

tim
e

[s
/1

,0
00

,0
00

 c
ha

rs
]

rho

mcch
bmh

wotdlazy

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

re
la

tiv
e

tim
e

[s
/1

,0
00

,0
00

 c
ha

rs
]

rho

mcch
wotdlazy

mcch = suffix tree (McCreight’s algorithm with hash tables)
bmh = online search (Boyer-Moore-Horspool algorithm)

wotdlazy = suffix tree write-only top-down construction (lazy version)

Lazy construction of suffix trees

Experimental results:
index construction plus ρn pattern searches for ρ ∈ [0, 1]

 0

 1

 2

 3

 4

 5

 6

 0 0.0005 0.001 0.0015 0.002

re
la

tiv
e

tim
e

[s
/1

,0
00

,0
00

 c
ha

rs
]

rho

mcch
bmh

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

re
la

tiv
e

tim
e

[s
/1

,0
00

,0
00

 c
ha

rs
]

rho

mcch

 0

 1

 2

 3

 4

 5

 6

 0 0.0005 0.001 0.0015 0.002

re
la

tiv
e

tim
e

[s
/1

,0
00

,0
00

 c
ha

rs
]

rho

mcch
bmh

wotdlazy

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

re
la

tiv
e

tim
e

[s
/1

,0
00

,0
00

 c
ha

rs
]

rho

mcch
wotdlazy

mcch = suffix tree (McCreight’s algorithm with hash tables)
bmh = online search (Boyer-Moore-Horspool algorithm)

wotdlazy = suffix tree write-only top-down construction (lazy version)

Index structures in biological sequence analysis

1 Introduction

2 Suffix trees

3 Affix trees

4 Suffix arrays

5 The q-Gram index

6 Summary and Conclusion

More complicated search: Inside-out

Define an RNA hairpin (in HyPaL syntax):

stem = .4

hairpin = @stem CGGA complement(@stem)

C A

G G

acomplement(a)

b

c

d

complement(b)

complement(c)

complement(d)

Search strategy:

1 Find all exact matches of CGGA (left-to-right)
2 Extend by

an arbitrary character a to the right
complementary character to the left
an arbitrary character b to the right
complementary character to the left
. . .

Search treeC
G
G

A

CA G U

U G C A

More complicated search: Inside-out

Define an RNA hairpin (in HyPaL syntax):

stem = .4

hairpin = @stem CGGA complement(@stem)

C A

G G

acomplement(a)

b

c

d

complement(b)

complement(c)

complement(d)

Search strategy:

1 Find all exact matches of CGGA (left-to-right)

2 Extend by

an arbitrary character a to the right
complementary character to the left
an arbitrary character b to the right
complementary character to the left
. . .

Search tree

C
G
G

A

CA G U

U G C A

More complicated search: Inside-out

Define an RNA hairpin (in HyPaL syntax):

stem = .4

hairpin = @stem CGGA complement(@stem)

C A

G G

acomplement(a)

b

c

d

complement(b)

complement(c)

complement(d)

Search strategy:

1 Find all exact matches of CGGA (left-to-right)

2 Extend by

an arbitrary character a to the right
complementary character to the left
an arbitrary character b to the right
complementary character to the left
. . .

Search treeC

G
G

A

CA G U

U G C A

More complicated search: Inside-out

Define an RNA hairpin (in HyPaL syntax):

stem = .4

hairpin = @stem CGGA complement(@stem)

C A

G G

acomplement(a)

b

c

d

complement(b)

complement(c)

complement(d)

Search strategy:

1 Find all exact matches of CGGA (left-to-right)

2 Extend by

an arbitrary character a to the right
complementary character to the left
an arbitrary character b to the right
complementary character to the left
. . .

Search treeC
G

G

A

CA G U

U G C A

More complicated search: Inside-out

Define an RNA hairpin (in HyPaL syntax):

stem = .4

hairpin = @stem CGGA complement(@stem)

C A

G G

acomplement(a)

b

c

d

complement(b)

complement(c)

complement(d)

Search strategy:

1 Find all exact matches of CGGA (left-to-right)

2 Extend by

an arbitrary character a to the right
complementary character to the left
an arbitrary character b to the right
complementary character to the left
. . .

Search treeC
G
G

A

CA G U

U G C A

More complicated search: Inside-out

Define an RNA hairpin (in HyPaL syntax):

stem = .4

hairpin = @stem CGGA complement(@stem)

C A

G G

acomplement(a)

b

c

d

complement(b)

complement(c)

complement(d)

Search strategy:

1 Find all exact matches of CGGA (left-to-right)

2 Extend by

an arbitrary character a to the right
complementary character to the left
an arbitrary character b to the right
complementary character to the left
. . .

Search treeC
G
G

A

CA G U

U G C A

More complicated search: Inside-out

Define an RNA hairpin (in HyPaL syntax):

stem = .4

hairpin = @stem CGGA complement(@stem)

C A

G G

acomplement(a)

b

c

d

complement(b)

complement(c)

complement(d)

Search strategy:

1 Find all exact matches of CGGA (left-to-right)
2 Extend by

an arbitrary character a to the right

complementary character to the left
an arbitrary character b to the right
complementary character to the left
. . .

Search treeC
G
G

A

CA G U

U G C A

More complicated search: Inside-out

Define an RNA hairpin (in HyPaL syntax):

stem = .4

hairpin = @stem CGGA complement(@stem)

C A

G G

acomplement(a)

b

c

d

complement(b)

complement(c)

complement(d)

Search strategy:

1 Find all exact matches of CGGA (left-to-right)
2 Extend by

an arbitrary character a to the right
complementary character to the left

an arbitrary character b to the right
complementary character to the left
. . .

Search treeC
G
G

A

CA G U

U G C A

More complicated search: Inside-out

Define an RNA hairpin (in HyPaL syntax):

stem = .4

hairpin = @stem CGGA complement(@stem)

C A

G G

acomplement(a)

b

c

d

complement(b)

complement(c)

complement(d)

Search strategy:

1 Find all exact matches of CGGA (left-to-right)
2 Extend by

an arbitrary character a to the right
complementary character to the left
an arbitrary character b to the right

complementary character to the left
. . .

Search treeC
G
G

A

CA G U

U G C A

More complicated search: Inside-out

Define an RNA hairpin (in HyPaL syntax):

stem = .4

hairpin = @stem CGGA complement(@stem)

C A

G G

acomplement(a)

b

c

d

complement(b)

complement(c)

complement(d)

Search strategy:

1 Find all exact matches of CGGA (left-to-right)
2 Extend by

an arbitrary character a to the right
complementary character to the left
an arbitrary character b to the right
complementary character to the left

. . .

Search treeC
G
G

A

CA G U

U G C A

More complicated search: Inside-out

Define an RNA hairpin (in HyPaL syntax):

stem = .4

hairpin = @stem CGGA complement(@stem)

C A

G G

acomplement(a)

b

c

d

complement(b)

complement(c)

complement(d)

Search strategy:

1 Find all exact matches of CGGA (left-to-right)
2 Extend by

an arbitrary character a to the right
complementary character to the left
an arbitrary character b to the right
complementary character to the left
. . .

Search treeC
G
G

A

CA G U

U G C A

Towards a bi-directional data structure

Suffix tree is asymmetric: left-to-right matching only

Similar data structure for right-to-left matching:
reverse prefix tree

Idea: Create the atomic suffix tree and reverse prefix tree.

Create bi-directional links between corresponding nodes.

A

T

A

A

T

A

T

A

S =A A T A T A

T

A

T

A

T

A
T

A

T

A

A

A

A

A T

A

A

AATATAS−1 =

T

A

A

P = T AA TT TA

A

TA A

T

A

T

T

A

T

A

Problem: quadratic space

Towards a bi-directional data structure

Suffix tree is asymmetric: left-to-right matching only

Similar data structure for right-to-left matching:
reverse prefix tree

Idea: Create the atomic suffix tree and reverse prefix tree.

Create bi-directional links between corresponding nodes.

A

T

A

A

T

A

T

A

S =A A T A T A

T

A

T

A

T

A
T

A

T

A

A

A

A

A T

A

A

AATATAS−1 =

T

A

A

P = T AA TT TA

A

TA A

T

A

T

T

A

T

A

Problem: quadratic space

Towards a bi-directional data structure

Suffix tree is asymmetric: left-to-right matching only

Similar data structure for right-to-left matching:
reverse prefix tree

Idea: Create the atomic suffix tree and reverse prefix tree.

Create bi-directional links between corresponding nodes.

A

T

A

A

T

A

T

A

S =A A T A T A

T

A

T

A

T

A
T

A

T

A

A

A

A

A T

A

A

AATATAS−1 =

T

A

A

P = T AA TT TA

A

TA A

T

A

T

T

A

T

A

Problem: quadratic space

Towards a bi-directional data structure

Suffix tree is asymmetric: left-to-right matching only

Similar data structure for right-to-left matching:
reverse prefix tree

Idea: Create the atomic suffix tree and reverse prefix tree.

Create bi-directional links between corresponding nodes.

A

T

A

A

T

A

T

A

S =A A T A T A

T

A

T

A

T

A
T

A

T

A

A

A

A

A T

A

A

AATATAS−1 =

T

A

A

P = T AA T

T TA

A

TA A

T

A

T

T

A

T

A

Problem: quadratic space

Towards a bi-directional data structure

Suffix tree is asymmetric: left-to-right matching only

Similar data structure for right-to-left matching:
reverse prefix tree

Idea: Create the atomic suffix tree and reverse prefix tree.

Create bi-directional links between corresponding nodes.

A

T

A

A

T

A

T

A

S =A A T A T A

T

A

T

A

T

A
T

A

T

A

A

A

A

A T

A

A

AATATAS−1 =

T

A

A

P =

T

AA TT T

A

A

TA A

T

A

T

T

A

T

A

Problem: quadratic space

Towards a bi-directional data structure

Suffix tree is asymmetric: left-to-right matching only

Similar data structure for right-to-left matching:
reverse prefix tree

Idea: Create the atomic suffix tree and reverse prefix tree.

Create bi-directional links between corresponding nodes.

A

T

A

A

T

A

T

A

S =A A T A T A

T

A

T

A

T

A
T

A

T

A

A

A

A

A T

A

A

AATATAS−1 =

T

A

A

P =

T A

A TT

T

A

A

T

A A

T

A

T

T

A

T

A

Problem: quadratic space

Towards a bi-directional data structure

Suffix tree is asymmetric: left-to-right matching only

Similar data structure for right-to-left matching:
reverse prefix tree

Idea: Create the atomic suffix tree and reverse prefix tree.

Create bi-directional links between corresponding nodes.

A

T

A

A

T

A

T

A

S =A A T A T A

T

A

T

A

T

A
T

A

T

A

A

A

A

A T

A

A

AATATAS−1 =

T

A

A

P =

T AA

TT

T

A

A

T

A A

T

A

T

T

A

T

A

Problem: quadratic space

Towards a bi-directional data structure

Suffix tree is asymmetric: left-to-right matching only

Similar data structure for right-to-left matching:
reverse prefix tree

Idea: Create the atomic suffix tree and reverse prefix tree.

Create bi-directional links between corresponding nodes.

A

T

A

A

T

A

T

A

S =A A T A T A

T

A

T

A

T

A

T

A

T

A

A

A

A

A T

A

A

AATATAS−1 =

T

A

A

P =

T AA T

T

T

A

A

T

A

A

T

A

T

T

A

T

A

Problem: quadratic space

Towards a bi-directional data structure

Suffix tree is asymmetric: left-to-right matching only

Similar data structure for right-to-left matching:
reverse prefix tree

Idea: Create the atomic suffix tree and reverse prefix tree.

Create bi-directional links between corresponding nodes.

A

T

A

A

T

A

T

A

S =A A T A T A

T

A

T

A

T

A

T

A

T

A

A

A

A

A T

A

A

AATATAS−1 =

T

A

A

P =

T AA T

T

T

A

A

T

A

A

T

A

T

T

A

T

A

Problem: quadratic space

The affix tree

To save space apply same idea to compact suffix tree and
reverse prefix tree.

Problem: Corresponding node might be missing ⇒ create the
missing nodes.

The joined data structure is called the affix tree of S .

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

A

A

A

A

T

T

A

T

A

T
A

A

A

T

T

T

A

T

A

A

A
T

A

A

A

A
A

T

The affix tree

To save space apply same idea to compact suffix tree and
reverse prefix tree.

Problem: Corresponding node might be missing ⇒ create the
missing nodes.

The joined data structure is called the affix tree of S .

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

A

A

A

A

T

T

A

T

A

T
A

A

A

T

T

T

A

T

A

A

A
T

A

A

A

A
A

T

The affix tree

To save space apply same idea to compact suffix tree and
reverse prefix tree.

Problem: Corresponding node might be missing ⇒ create the
missing nodes.

The joined data structure is called the affix tree of S .

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

A

A

A

A

T

T

A

T

A

T
A

A

A

T

T

T

A

T

A

A

A
T

A

A

A

A
A

T

The affix tree

To save space apply same idea to compact suffix tree and
reverse prefix tree.

Problem: Corresponding node might be missing ⇒ create the
missing nodes.

The joined data structure is called the affix tree of S .

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

A

A

A

A

T

T

A

T

A

T
A

A

A

T

T

T

A

T

A

A

A
T

A

A

A

A
A

T

The affix tree

To save space apply same idea to compact suffix tree and
reverse prefix tree.

Problem: Corresponding node might be missing ⇒ create the
missing nodes.

The joined data structure is called the affix tree of S .

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

A

A

A

A

T

T

A

T

A

T
A

A

A

T

T

T

A

T

A

A

A
T

A

A

A

A
A

T

The affix tree

To save space apply same idea to compact suffix tree and
reverse prefix tree.

Problem: Corresponding node might be missing ⇒ create the
missing nodes.

The joined data structure is called the affix tree of S .

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

A

A

A

A

T

T

A

T

A

T
A

A

A

T

T

T

A

T

A

A

A
T

A

A

A

A
A

T

The affix tree

To save space apply same idea to compact suffix tree and
reverse prefix tree.

Problem: Corresponding node might be missing ⇒ create the
missing nodes.

The joined data structure is called the affix tree of S .

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

A

A

A

A

T

T

A

T

A

T
A

A

A

T

T

T

A

T

A

A

A
T

A

A

A

A
A

T

The affix tree

To save space apply same idea to compact suffix tree and
reverse prefix tree.

Problem: Corresponding node might be missing ⇒ create the
missing nodes.

The joined data structure is called the affix tree of S .

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

A

A

A

A

T

T

A

T

A

T
A

A

A

T

T

T

A

T

A

A

A
T

A

A

A

A
A

T

The affix tree

To save space apply same idea to compact suffix tree and
reverse prefix tree.

Problem: Corresponding node might be missing ⇒ create the
missing nodes.

The joined data structure is called the affix tree of S .

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

A

A

A

A

T

T

A

T

A

T
A

A

A

T

T

T

A

T

A

A

A
T

A

A

A

A
A

T

The affix tree

To save space apply same idea to compact suffix tree and
reverse prefix tree.

Problem: Corresponding node might be missing ⇒ create the
missing nodes.

The joined data structure is called the affix tree of S .

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

A

A

A

A

T

T

A

T

A

T
A

A

A

T

T

T

A

T

A

A

A
T

A

A

A

A
A

T

The affix tree

To save space apply same idea to compact suffix tree and
reverse prefix tree.

Problem: Corresponding node might be missing ⇒ create the
missing nodes.

The joined data structure is called the affix tree of S .

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

A

A

A

A

T

T

A

T

A

T
A

A

A

T

T

T

A

T

A

A

A
T

A

A

A

A
A

T

The affix tree

To save space apply same idea to compact suffix tree and
reverse prefix tree.

Problem: Corresponding node might be missing ⇒ create the
missing nodes.

The joined data structure is called the affix tree of S .

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

A

A

A

A

T

T

A

T

A

T
A

A

A

T

T

T

A

T

A

A

A
T

A

A

A

A
A

T

The affix tree

To save space apply same idea to compact suffix tree and
reverse prefix tree.

Problem: Corresponding node might be missing ⇒ create the
missing nodes.

The joined data structure is called the affix tree of S .

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

A

A

A

A

T

T

A

T

A

T
A

A

A

T

T

T

A

T

A

A

A
T

A

A

A

A
A

T

The affix tree

To save space apply same idea to compact suffix tree and
reverse prefix tree.

Problem: Corresponding node might be missing ⇒ create the
missing nodes.

The joined data structure is called the affix tree of S .

T

A

A

T

T

A

T

A

A

T

A

T

A

A

S =A A T A T A

T

A

T

A

A

A

A
T

A T

A

A

A

A

AATATAS−1 =

A

A

A

A

T

T

A

T

A

T
A

A

A

T

T

T

A

T

A

A

A
T

A

A

A

A
A

T

Affix tree properties

The affix tree of S requires O(n) space:

at most 2n − 2 nodes

at most 2n − 4 edges

as for suffix trees, edge labels
can be represented by pairs
of pointers into S

S =A A T A T A
1 2 3 4 5 6

AATATAS−1 =
12345

(5,4)

6

(6,6)

(3,6)

(2,2)

(4,4)

(3,3)

(2,2)

(1,1)

(1,1)

(1,1)

(1,1)

(5,6)
(3,1)

(4,4)

(3,3)

(3,3)

(5,4)

(6,6)

(5,5)

(1,1)

The affix tree can be constructed in O(n) time and space
(Maaß, CPM 2000).

Supports all applications of suffix tree, and some more.

Index structures in biological sequence analysis

1 Introduction

2 Suffix trees

3 Affix trees

4 Suffix arrays

5 The q-Gram index

6 Summary and Conclusion

The suffix array

S = ss ippiM i s s i
987654321 10 11

$
12

$

s
i

s
s

i
p

p
i

$

p

p

i

$

$

i

p

p

i

s

s

i

s
p

p

i

$

p

p

i

$

i

$

$

i

Mississippi$

$
i

p
p

s

s

i

p
p

i
$

s
s

i
p

p
i

$

1

8

5

4

7

9

10

11

6 3

12

2

Suffix tree, affix tree:

very flexible data structures

support a ‘myriad’ of applications

But: require considerable space in practice

Suffix tree: 10-20 bytes per text character
Affix tree: roughly twice as much

Alternative using less space: suffix array (Manber & Myers, 1993)

M i p s $

issi si ssi

123647910112581

The suffix array

S = ss ippiM i s s i
987654321 10 11

$
12

M i p s $

issi si ssi

123647910112581

Array containing suffix numbers, lexicographically sorted by
their suffixes

Space usage: 4n bytes

Query time: O(|P| log n) time (or O(|P|+ log n) with tricks)

Technique to simulate all suffix tree operations:
enhanced suffix array (Abouelhoda et al., JDA 2004)

Construction of suffix arrays

(a) Read leaf numbers of suffix tree
→ O(n) time

(b) Direct construction of suffix arrays:
simple algorithms use O(n2) or O(n log n) time

Kim et al., CPM 2003
Ko & Aluru, CPM 2003
Kärkkäinen & Sanders, ICALP 2003

→ O(n) time

(c) Practical algorithms have worse time complexities

deep shallow sorting (Manzini & Ferragina, Algorithmica 2004)
Bucket-pointer refinement (Schürmann & JS, SP&E 2006)

→ O(n2) time in worst case, much better in practice

The bucket-pointer refinement algorithm

DNA sequences
construction time (sec.)

bpr deep cache copy qsufsort difference divide& skew
shallow cover conquer

E. coli genome 1.46 1.71 3.69 2.89 2.87 4.32 5.81 13.48
A. thaliana chr. 4 5.24 5.01 12.24 9.94 8.42 13.29 16.94 38.30
H.sapiens chr.22 15.92 16.64 40.08 30.04 26.52 44.93 51.31 112.38
C. elegans chr. 1 5.70 6.03 20.79 17.48 13.09 16.94 18.64 41.28
6 Streptococci 5.27 5.97 14.43 10.38 13.16 14.50 16.40 36.24
4 Chlamydophila 2.31 3.43 17.46 14.45 7.49 5.59 6.13 14.13
3 E. coli 8.01 13.75 437.18 1,294.30 32.72 20.57 21.58 47.32

text
construction time (sec.)

bpr deep cache copy qsufsort difference divide & skew
shallow cover conquer

bible 1.90 1.41 2.91 2.24 3.17 3.74 6.39 11.59
world192 1.05 0.73 1.47 1.24 1.91 2.28 3.57 6.45
rfc 31.16 26.37 57.97 55.21 58.10 71.10 101.57 169.03
sprot34 35.75 29.77 71.95 71.96 60.24 81.76 104.71 169.16
howto 22.10 19.63 39.92 47.27 41.14 48.45 83.32 141.50
reuters 47.32 52.74 111.80 157.63 73.19 108.85 108.84 169.18
w3c2 41.04 61.37 82.46 167.76 69.40 96.02 105.89 163.15
jdk13 40.35 47.23 101.58 263.86 73.75 97.12 98.13 162.39
linux 23.72 23.95 50.93 99.47 61.01 65.66 98.06 173.05
etext99 32.60 33.25 68.84 267.48 61.19 65.31 110.95 190.33
gcc 33.19 76.23 2,894.81 21,836.56 59.44 73.54 83.96 162.06

Application to approximate DNA matching

QUASAR: Q-Gram based database search Using A Suffix ARray
(Burkhardt et al., RECOMB 1999)

Idea: Search dot-plot for regions with many q-Grams.

query

database

Use suffix array to locate all occurrences of a q-Gram in the database S :

A

A

A

A

A

A

A A

A

A

A

A

C

G

T

C

C G

T T T

suffix array of S

︸ ︷︷ ︸ . . . ︸ ︷︷ ︸︸︷︷︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

Application to approximate DNA matching

QUASAR: Q-Gram based database search Using A Suffix ARray
(Burkhardt et al., RECOMB 1999)

Idea: Search dot-plot for regions with many q-Grams.

query

database

Use suffix array to locate all occurrences of a q-Gram in the database S :

A

A

A

A

A

A

A A

A

A

A

A

C

G

T

C

C G

T T T

suffix array of S

︸ ︷︷ ︸ . . . ︸ ︷︷ ︸︸︷︷︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

QUASAR algorithm

Algorithm: Filter database for relevant blocks.

1 Divide database into overlapping blocks.

2 Shift window of certain size over query;
for each database block find the number
of matching q-Grams from the current window;
if this number is at least T (n, q, e) := n + 1− q(e + 1),
consider this block relevant.

3 Test the relevant blocks with a more complex method.

query

database

QUASAR algorithm

Algorithm: Filter database for relevant blocks.

1 Divide database into overlapping blocks.

2 Shift window of certain size over query;
for each database block find the number
of matching q-Grams from the current window;
if this number is at least T (n, q, e) := n + 1− q(e + 1),
consider this block relevant.

3 Test the relevant blocks with a more complex method.

query

database

QUASAR algorithm

Algorithm: Filter database for relevant blocks.

1 Divide database into overlapping blocks.

2 Shift window of certain size over query;
for each database block find the number
of matching q-Grams from the current window;
if this number is at least T (n, q, e) := n + 1− q(e + 1),
consider this block relevant.

3 Test the relevant blocks with a more complex method.

query

database

QUASAR algorithm

Algorithm: Filter database for relevant blocks.

1 Divide database into overlapping blocks.

2 Shift window of certain size over query;
for each database block find the number
of matching q-Grams from the current window;
if this number is at least T (n, q, e) := n + 1− q(e + 1),
consider this block relevant.

3 Test the relevant blocks with a more complex method.

query

database

QUASAR algorithm

Algorithm: Filter database for relevant blocks.

1 Divide database into overlapping blocks.

2 Shift window of certain size over query;
for each database block find the number
of matching q-Grams from the current window;
if this number is at least T (n, q, e) := n + 1− q(e + 1),
consider this block relevant.

3 Test the relevant blocks with a more complex method.

query

database

QUASAR algorithm

Algorithm: Filter database for relevant blocks.

1 Divide database into overlapping blocks.

2 Shift window of certain size over query;
for each database block find the number
of matching q-Grams from the current window;
if this number is at least T (n, q, e) := n + 1− q(e + 1),
consider this block relevant.

3 Test the relevant blocks with a more complex method.

query

database

QUASAR algorithm

Algorithm: Filter database for relevant blocks.

1 Divide database into overlapping blocks.

2 Shift window of certain size over query;
for each database block find the number
of matching q-Grams from the current window;
if this number is at least T (n, q, e) := n + 1− q(e + 1),
consider this block relevant.

3 Test the relevant blocks with a more complex method.

query

database

QUASAR algorithm

Algorithm: Filter database for relevant blocks.

1 Divide database into overlapping blocks.

2 Shift window of certain size over query;
for each database block find the number
of matching q-Grams from the current window;
if this number is at least T (n, q, e) := n + 1− q(e + 1),
consider this block relevant.

3 Test the relevant blocks with a more complex method.

query

database

QUASAR algorithm

Algorithm: Filter database for relevant blocks.

1 Divide database into overlapping blocks.

2 Shift window of certain size over query;
for each database block find the number
of matching q-Grams from the current window;
if this number is at least T (n, q, e) := n + 1− q(e + 1),
consider this block relevant.

3 Test the relevant blocks with a more complex method.

query

database

QUASAR algorithm

Algorithm: Filter database for relevant blocks.

1 Divide database into overlapping blocks.

2 Shift window of certain size over query;
for each database block find the number
of matching q-Grams from the current window;
if this number is at least T (n, q, e) := n + 1− q(e + 1),
consider this block relevant.

3 Test the relevant blocks with a more complex method.

query

database

QUASAR algorithm

Algorithm: Filter database for relevant blocks.

1 Divide database into overlapping blocks.

2 Shift window of certain size over query;
for each database block find the number
of matching q-Grams from the current window;
if this number is at least T (n, q, e) := n + 1− q(e + 1),
consider this block relevant.

3 Test the relevant blocks with a more complex method.

query

database

Two ideas for improving QUASAR
(Rasmussen, JS & Myers, JCB 2006)

1 Use a simpler index structure: q-Gram index
A

A

A

A

A

A

A A

A

A

A

A

C

G

T

C

C C

T T T

3

5

39

1

11

35

22

92

171

49

4 38

71

110

77

72

33 34

79

158

122

46 47

201

103

63

48 91 121 157 200

113 174 182

94 13132

21

27

Analysis: simple O(n) construction time

2 Reduce size of the relevant regions: parallelograms

query

database

→ need proper filter criteria

Two ideas for improving QUASAR
(Rasmussen, JS & Myers, JCB 2006)

1 Use a simpler index structure: q-Gram index
A

A

A

A

A

A

A A

A

A

A

A

C

G

T

C

C C

T T T

3

5

39

1

11

35

22

92

171

49

4 38

71

110

77

72

33 34

79

158

122

46 47

201

103

63

48 91 121 157 200

113 174 182

94 13132

21

27

Analysis: simple O(n) construction time

2 Reduce size of the relevant regions: parallelograms

query

database

→ need proper filter criteria

Filter criteria for parallelograms

Define ε-match: match of database substring α and query
substring β of length n ≥ n0 with at most e := bεnc errors.

Given: q, n0, ε
Compute: threshold τ such that for every ε-match there exists a
w × e parallelogram containing at least τ q-Gram hits.

α

β

}
e +

1


w + 1

The SWIFT algorithm

Algorithm: Filter database for relevant parallelograms.

1 Divide database into overlapping diagonal blocks of width e.

2 Shift window of size w over query;

3 Find w × e parallelograms with more than τ q-grams.

4 Test these with a more complex method,
e.g. X -drop extension.

query

database

The SWIFT algorithm

Algorithm: Filter database for relevant parallelograms.

1 Divide database into overlapping diagonal blocks of width e.

2 Shift window of size w over query;

3 Find w × e parallelograms with more than τ q-grams.

4 Test these with a more complex method,
e.g. X -drop extension.

query

database

The SWIFT algorithm

Algorithm: Filter database for relevant parallelograms.

1 Divide database into overlapping diagonal blocks of width e.

2 Shift window of size w over query;

3 Find w × e parallelograms with more than τ q-grams.

4 Test these with a more complex method,
e.g. X -drop extension.

query

database

The SWIFT algorithm

Algorithm: Filter database for relevant parallelograms.

1 Divide database into overlapping diagonal blocks of width e.

2 Shift window of size w over query;

3 Find w × e parallelograms with more than τ q-grams.

4 Test these with a more complex method,
e.g. X -drop extension.

query

database

The SWIFT algorithm

Algorithm: Filter database for relevant parallelograms.

1 Divide database into overlapping diagonal blocks of width e.

2 Shift window of size w over query;

3 Find w × e parallelograms with more than τ q-grams.

4 Test these with a more complex method,
e.g. X -drop extension.

query

database

The SWIFT algorithm

Algorithm: Filter database for relevant parallelograms.

1 Divide database into overlapping diagonal blocks of width e.

2 Shift window of size w over query;

3 Find w × e parallelograms with more than τ q-grams.

4 Test these with a more complex method,
e.g. X -drop extension.

query

database

The SWIFT algorithm

Algorithm: Filter database for relevant parallelograms.

1 Divide database into overlapping diagonal blocks of width e.

2 Shift window of size w over query;

3 Find w × e parallelograms with more than τ q-grams.

4 Test these with a more complex method,
e.g. X -drop extension.

query

database

The SWIFT algorithm

Algorithm: Filter database for relevant parallelograms.

1 Divide database into overlapping diagonal blocks of width e.

2 Shift window of size w over query;

3 Find w × e parallelograms with more than τ q-grams.

4 Test these with a more complex method,
e.g. X -drop extension.

query

database

The SWIFT algorithm

Algorithm: Filter database for relevant parallelograms.

1 Divide database into overlapping diagonal blocks of width e.

2 Shift window of size w over query;

3 Find w × e parallelograms with more than τ q-grams.

4 Test these with a more complex method,
e.g. X -drop extension.

query

database

The SWIFT algorithm

Algorithm: Filter database for relevant parallelograms.

1 Divide database into overlapping diagonal blocks of width e.

2 Shift window of size w over query;

3 Find w × e parallelograms with more than τ q-grams.

4 Test these with a more complex method,
e.g. X -drop extension.

query

database

The SWIFT algorithm

Algorithm: Filter database for relevant parallelograms.

1 Divide database into overlapping diagonal blocks of width e.

2 Shift window of size w over query;

3 Find w × e parallelograms with more than τ q-grams.

4 Test these with a more complex method,
e.g. X -drop extension.

query

database

The SWIFT algorithm

Algorithm: Filter database for relevant parallelograms.

1 Divide database into overlapping diagonal blocks of width e.

2 Shift window of size w over query;

3 Find w × e parallelograms with more than τ q-grams.

4 Test these with a more complex method,
e.g. X -drop extension.

query

database

Experimental results

SSEARCH BLASTN SWIFT
parameters (ε, n0) — — (5%, 50) (4%, 30) (5%, 30)
running time 8h 773 s 18 s 29 s 35 s
filtration ratio — — 6.5e-6 4.5e-6 5.4e-6

Index structures in biological sequence analysis

1 Introduction

2 Suffix trees

3 Affix trees

4 Suffix arrays

5 The q-Gram index

6 Summary and Conclusion

Summary and Conclusion

Handling large amounts of DNA sequence data is challenging

Standard methods do not apply in bioinformatics

Data structures discussed: suffix tree, affix tree, suffix array,
q-Gram index

Popular approach: filtration

Tools that use index structures: MUMmer, Genalyzer,
SSAHA, BLAT, SWIFT, PatternHunter, ...

Simplicity is often a key element of practical algorithms!

Acknowledgments

Suffix trees

Robert Giegerich (Bielefeld)

Stefan Kurtz (Hamburg)

Repeats

Dan Gusfield (Davis)

Enno Ohlebusch (Ulm)

Chris Schleiermacher (Köln)

Jomuna Choudhuri (Mannheim)

Affix trees

Moritz Maaß (München)

Suffix arrays

Klaus-Bernd Schürmann (Bielefeld)

SWIFT

Kim Roland Rasmussen (Bielefeld)

Gene Myers (HHMI, Janelia Farm)

The end.

	Introduction
	Suffix trees
	Affix trees
	Suffix arrays
	The q-Gram index
	Summary and Conclusion

