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Motivation

Current status in DNA sequence analysis:

Sequencing technologies are cheap and
fast

Numerous individual genomes per species
are sequenced

→ Huge amounts of partially redundant
sequences

Challenges:

Efficient storage

Efficient analysis

Effective analysis
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The sequence-based pangenome

How to efficiently store huge amounts of partially redundant sequences?
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Colored de Bruijn graphs

Colored de Bruijn graph (C-DBG)

k = 3

S1 : TGCGATTA

S2 : TGCAGTTA

S3 : TGCACTTA

Vertices represent substrings of length k (k-mers)

Associated color represents sequence of origin

Edges between vertices that share a k − 1 overlap
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Colored de Bruijn graphs

Compacted colored de Bruijn graph

k = 3

S1 : TGCGATTA

S2 : TGCAGTTA

S3 : TGCACTTA

Vertices of unique paths are replaced by single vertex (unitig)

Label of unitig is sequence spelled by the path

Allows even more efficiency
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Colored de Bruijn graphs (C-DBGs)

Why to store pan-genomes as compacted colored de Bruijn graphs?

Reduced memory requirements

No data preprocessing necessary (assembly)

Data is stored based on similarity

Allows analysis of multiple sequences in parallel

Genome A

Genome B Genome C
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Querying a sequence DB - BLAST

BLAST – Basic Local Alignment Search Tool

Developed by Stephen Altschul et al. in 1990 (second version in 1997)
Is used to query databases of DNA and protein sequences

Different flavors are available:

DNA→DNA (blastn)

protein→protein (blastp)

translated DNA→protein (blastx)

protein→translated DNA (tblastn)

...

Algorithmic steps:

1 Finding BLAST hits

2 Hit extension X-drop algorithm

3 Gapped alignment calculation
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Querying a sequence DB - BLAST

BLAST – Basic Local Alignment Search Tool

Developed by Stephen Altschul et al. in 1990 (second version in 1997)
Is used to query databases of DNA and protein sequences

Problem statement:

Given a query sequence x ∈ Σ∗ and a sequence database Y , find all highest scoring local
alignments between x and y ∈ Y above a certain significance value and return them along
with their score.
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Querying a colored de Bruijn graph - PLAST

How to query a C-DBG to analyze the pangenome it represents?

Idea: Develop a method that queries a C-DBG in a BLAST-like manner to find local
alignments between a query sequence and the sequences stored in the C-DBG.

→ Pangenome Local Alignment Search Tool – PLAST

Problem statement:
Given a query sequence x ∈ Σ∗ and a set of sequences Y represented as a C-DBG, find all
highest scoring local alignments between x and y ∈ Y above a certain significance value and
return them along with their score.
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Querying a colored de Bruijn graph - PLAST

How to query a C-DBG to analyze the pangenome it represents?

Idea: Develop a method that queries a C-DBG in a BLAST-like manner to find local
alignments between a query sequence and the sequences stored in the C-DBG.

→ Pangenome Local Alignment Search Tool – PLAST

Procedure of PLAST:

1 Seed detection

2 Seed extension

3 Gapped alignment calculation
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Querying a colored de Bruijn graph - PLAST
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Querying a colored de Bruijn graph - PLAST

1. Seed detection:
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Querying a colored de Bruijn graph - PLAST

1. Seed detection:

ATCC

CGCTCC CCACC

ACCA

ACCGATACC

AAAC
AACC

TCCA

ACCTAA

TAAC

AACGTG

GTGTTAGT

AGTG

GTGGCCC

CCCC

1

2

3

4

5

6

7

8

9

10 11

12

13

14

15

Possible in the same way BLAST does, using a precalculated index of the graph
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Querying a colored de Bruijn graph - PLAST

2. Seed extension:
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Querying a colored de Bruijn graph - PLAST

2. Seed extension:

ATCC

CGCTCC CCACC

ACCA

ACCGATACC

AAAC
AACC

TCCA

ACCTAA

TAAC

AACGTG

GTGTTAGT

AGTG

GTGGCCC

CCCC

Expensive since graph sequence is ambiguous

Brute-force traversal (DFS) mostly feasible
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Querying a colored de Bruijn graph - PLAST

The endless extension problem:

Graphs may have some collapsed regions

Regions have

I many short loops

I vertices with short sequences and high branching factor

→ nearly every possible sequence may be generated here

→ X -drop algorithm is unable to end extensions ⇒ hard break
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Querying a colored de Bruijn graph - PLAST

3. Gapped alignment of best extended seeds:
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Querying a colored de Bruijn graph - PLAST

3. Gapped alignment of best extended seeds:

ATCC

CGCTCC CCACC

ACCA

ACCGATACC

AAAC
AACC

TCCA

ACCTAA

TAAC

AACGTG

GTGTTAGT

AGTG

GTGGCCC

CCCC

Banded, gapped alignment calculation following the extension path
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Querying a colored de Bruijn graph - PLAST

3. Gapped alignment of best extended seeds:

ATCC

CGCTCC CCACC

ACCA

ACCGATACC

AAAC
AACC

TCCA

ACCTAA

TAAC

AACGTG

GTGTTAGT

AGTG

GTGGCCC

CCCC
Even more expensive than step 2

Only performed for a small subset of all findings, thus feasible
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Usage of quorum and search color set

PLAST allows to find

highest scoring (consensus) alignments (by default)

highest scoring alignments shared by a certain number of genomes (using a quorum)

highest scoring alignments supported by a subset of genomes (using a search color set)
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Alignment Statistics

Alignment statistic for BLAST:

BLAST ranks findings according to significance values

E-value:
E = Kmn︸︷︷︸

C

e−λS
P-value:

P = 1− e−E

where n = query length, m = database size

How does a sequence to graph alignment statistic work?
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Alignment Statistics on a Pangenome

Assumptions:

Graph sequences are highly similar (random hits –)

High branching factors increase number of possible sequences (random hits +)

Maximum scores follows an exponential distribution

λ and C depend on sequence relatedness and diversity within pangenome

But: Details unknown!
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Parameter estimations

How to get good estimates for λ and C?

Our approach: Obtain estimates by random sampling

Problem:
I Frequency of high scoring alignments is very low (< 10−6)

I A lot of sampling required

But: Parameters need to be reliable esp. for high scores

→ Importance sampling based on Metropolis-Hastings Markov Chain Monte Carlo (MCMC)
strategy
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Importance sampling via MCMC

Idea: Construct Markov chain such that the probability to sample a random sequence with
score s is exponentially biased towards higher scores

Procedure:

1 From sequence x propose a new sequence y by substituting/ deleting∗/ inserting∗ a single
base in x

2 Accept proposal with probability min{1, exp(λ0 · (sy − sx))}
3 If y is accepted make a new proposal for y (for x otherwise)

→ after 2n/3 accepts, procedure yields new sample with uncorrelated score

→ Calculate sample’s score

∗ with shifting in/out a base at the sequence borders
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Estimation of λ and C

Follow “naive” random sampling strategy to obtain initial estimates for λ and C

Generate many sample sequences using MCMC and score them

Let Rs be the absolute number of times score s was observed among all samples, then

Ts := Σs′≥sRs′ · exp(−λ0 · s ′)

λ can be estimated by fitting line to points (s, logTs)

C is estimated from 10% of highest scores of naive sampling
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Estimation of λ and C for 220 Salmonella enterica genomes

20 40 60 80 100
Score

0.00

0.05

0.10

0.15

0.20

0.25

0.30

naive sampling ungapped

importance sampling ungapped, 0 = 1.05

naive sampling gapped

importance sampling gapped, 0 = 0.85

10 15 20 25 30 35 40 45
Score

10 10

10 8

10 6

10 4

10 2

100

naive sampling ungapped

importance sampling ungapped, 0 = 1.05

naive sampling gapped

importance sampling gapped, 0 = 0.85

Jens Stoye Bielefeld U, Germany 18



Conceptual comparison: BLAST vs. PLAST

BLAST PLAST

Allows comparison of
I query and each DB sequence

Processes every DB sequence
independent from each other

Increased runtime if sequence similarity
increases

Allows comparison of
I query and each graph sequence
I graph sequences among each other

(with respect to query)

Processes many sequences in parallel
most of the time

Saves run time with increasing similarity
of graph sequences
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Runtime and memory comparison

Database: 5,000 Salmonella typhimurium assemblies (total: 24 GB)

Queries: 100 random substrings of length 1,000 from the Salmonella reference genome
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Runtime and memory comparison

Database: 5,000 Salmonella typhimurium assemblies (total: 24 GB)

Queries: 100 random substrings of length 1,000 from the Salmonella reference genome
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Experimental comparison to other tools

Tool Results T
o
o
l\
P
L
A
S
T

P
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S
T
\T

o
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l

T
o
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l\
B
L
A
S
T

B
L
A
S
T
\T

o
o
l

PLAST 7,565 – – 357 290
4.72% 0.02%

BLAST 1,246,221 290 357 – –
0.02% 4.72%

BLAT 457,089 1 456 508 49,798
0.00% 6.03% 0.11% 4.00%

MMseqs2 695,792 6 322 800 21,022
0.00% 4.26% 0.12% 1.69%

UBLAST 4,881,509 111,386 272 220,577 5,459
2.28% 3.59% 4.52% 0.44%

Two results match if they overlap by at least 90% of the shorter alignment.

Not included:

DIAMOND (protein databases only)

SWORD (proteins only)

GHOSTZ (index building took too long)

LAST (index building took too long)

RAPSearch2 (reported issue)

LASTZ, YASS, BLASTZ (performed worse in earlier
studies)
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Use case: Pathogenicity islands in Vibrio cholerae

Database: Vibrio cholerae pangenome consisting of 21 genomes; some assembled, some not

Query: VPI-1 region: 19 genes associated with pathogenicity
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Beyond microbial pangenomes

Construction of a human pangenome

We used

variant information from the 1000 Genomes Project phase 3 and

human reference genome GRCh37

to construct a pangenome of all 2,504 human individuals for

chromosome 2 and

chromosome 15
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Beyond microbial pangenomes

Exemplary use case: Investigation of polymorphism within human

SNP rs1426654 influences skin pigmentation
I Reference allele: light skin color (West Eurasian ancestry)
I Located on exon 3 of gene SLC24A5 (chr. 15)

PLAST input:
I Pangenome of human chromosome 15
I Reference sequence of exon 3 as query (GRCh37)

Result:
I No quorum: perfect match (reference), single mismatch (variant)
I 99% quorum of all European samples: reference allele exclusively
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Beyond microbial pangenomes

Performance on human pangenome: PLAST vs. MMseqs2

Setup:
I Data set: Pangenome of chr. 2 (≈ 8% of comp. human genome)
I Search of 100 1kb queries (randomly drawn from reference)

PLAST took
I 317s per query on average
I and 24GB of memory
I on a single core

MMseqs2 (on subset of only 1,000 chromosomes) took
I 339s per query on average
I and 259 GB of memory
I on all available 28 cores

Sizes of input files on disk:
I 9.2 GB (PLAST)
I 2.2 TB (MMseqs2)
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Conclusion and Outlook

Conclusions:

Increasing amounts of available DNA sequences motivate the usage of pangenomic
approaches

Querying of C-DBGs in a BLAST-like manner seems to be computationally feasible

Searching withing C-DBGs allows comparison of graph sequences in parallel
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End

Thank you!

Manuscript on bioRxiv:
https://doi.org/10.1101/2020.09.03.280958
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