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Abstract

Our aim is to provide full text indexing data structures

and algorithms for universal usage in text indexing. We

present a practical algorithm for suffix array construction.

The fundamental algorithm is less complex than other

construction algorithms. We achieve very fast construction

times for common strings as well as for worst case strings by

enhancing our basic algorithms with further techniques.

1 Introduction.

Full text indices are used to process sequences of dif-
ferent kind for diverse applications. The suffix tree is
the best known full text index. It has been studied for
decades and is used in many algorithmic applications.
Nevertheless, in practice, the suffix tree is less used than
one would expect. We believe that this lack in practi-
cal usage is due to the high space requirements of the
data structure, and suffix trees are conceptually simple,
yet difficult to implement. Already the construction of
suffix trees with linear time methods is non-trivial.

The research on suffix arrays increased since Man-
ber and Myers [17] introduced this data structure as an
alternative to suffix trees in the early 1990s. They gave
an O(n log n) time algorithm to directly construct suffix
arrays, where n is the length of text to be indexed. The
algorithm is based on the doubling technique introduced
by Karp et al. [11]. The theoretically best algorithms
to construct suffix arrays run in Θ(n) time [7]. But un-
til 2003 all known algorithms reaching this bound took
the detour over suffix tree construction and afterwards
obtaining the order of suffixes by traversing the suffix
tree. The drawback of this approach is the space de-
mand of linear time suffix tree construction algorithms.
The most space efficient implementation by Kurtz [15]
uses between 8n and 14n bytes of space in total. More-
over, the linear time suffix tree construction algorithms
do not explicitly consider the memory hierarchy, which
leads to unfavorable effects on current computer archi-
tectures. When the suffix tree grows over a certain size,
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the ratio of cache misses rises.
In 2003, the problem of direct linear time construc-

tion of suffix arrays was solved by three independent
groups [10, 13, 14]. Shortly after, Hon et al. [8] gave a
linear time algorithm that needs O(n) bits of working
space.

There has also been much progress in practical
suffix array construction. Larsson and Sadakane [16]
presented a fast algorithm, called qsufsort, running in
O(n log n) worst case time using 8n bytes. Like Man-
ber and Myers [17] they utilize the doubling technique
of Karp et al. [11]. Recently, Kim et al. [12] intro-
duced a divide-and-conquer algorithm based on [13]
with O(n log log n) worst-case time complexity, but with
faster practical running times than the mentioned lin-
ear time algorithms. Both algorithms [12, 13] use the
odd-even scheme introduced by Farach [6] for suffix tree
construction.

Other viable algorithms are mainly concerned about
space. They are called lightweight algorithms due to
their small space requirements. Itoh and Tanaka [9]
as well as Seward [20] proposed algorithms using only
5n bytes. In theory their worst-case time complexity
is Ω(n2). However, in practice, they are very fast, if
the average LCP is small. (By LCP we refer to the
length of the longest common prefix of two consecutive
suffixes in the suffix array.) More recently, Manzini
and Ferragina [18] engineered an algorithm called deep-
shallow suffix sorting. They combine different methods
to sort suffixes depending on LCP lengths and spend
quite a bit of work on finding suitable settings to achieve
fast construction. The algorithm’s space demands are
small, and it is applicable for strings with high average
LCP.

The most recent lightweight algorithm was devel-
oped by Burkhardt and Kärkkäinen [3]. It is called
difference-cover algorithm. Its worst case running time
is O(n log n) by using O

(
n√
log n

)
extra space. But

for common real-life data it is on average slower than
deep-shallow suffix sorting.

The above mentioned suffix array construction al-
gorithms meet some of the following requirements for
practical suffix array construction:



• Fast construction for common real-life strings
(small average LCP) – Larsson and Sadakane [16],
Itoh and Tanaka [9], Seward [20], Manzini and Fer-
ragina [18], Kim et al. [12].

• Fast construction for degenerate strings (high av-
erage LCP) – Larsson and Sadakane [16], Manzini
and Ferragina [18], Kim et al. [12], Burkhardt and
Kärkkäinen [3], and others [10, 13, 14, 17].

• Small space demands – Itoh and Tanaka [9], Se-
ward [20], Manzini and Ferragina [18], Burkhardt
and Kärkkäinen [3].

Based on our experience with biological sequence
data, we believe that further properties are requested.
There are many applications where very long sequences
with mainly small LCPs, interrupted by occasional very
large LCPs are investigated. In genome comparison,
for example, concatenations of similar sequences are
indexed to find common subsequences, repeats, and
non-repeating regions. Thus, to compare genomes of
closely related species, one has to build suffix arrays for
strings with highly variable LCPs.

We believe that the characteristics as we observe
in a bioinformatics context can also be found in other
application areas. This, and the fact that in Burrows-
Wheeler text compression the problem of computing
the Burrows-Wheeler-Transform [4] by block-sorting the
input string is equivalent to suffix array construction,
stresses the importance of efficient ubiquitous suffix
array construction algorithms.

In Section 2 we give the basic definitions and no-
tations concerning suffix arrays and suffix sorting. Sec-
tion 3 is devoted to our approach, the bucket-pointer
refinement (bpr) algorithm. Experimental results are
presented in Section 4. Section 5 concludes and dis-
cusses open questions.

2 Suffix Arrays and Sorting – Definitions and
Terminology.

Let Σ be a finite ordered alphabet of size |Σ| and
t = t1t2 . . . tn ∈ Σn a text over Σ of length n. Let $ be
a character not contained in Σ, and assume $ < c for all
c ∈ Σ. For illustration purposes, we will often consider
a $-padded extension of string t, denoted t+ := t$n.
For 1 ≤ i ≤ n, let si(t) = ti . . . tn indicate the ith (non-
empty) suffix of string t. The starting position i is called
its suffix number.

The suffix array sa(t) of t is a permutation of the
suffix numbers {1 . . . n}, according to the lexicographic
ordering of the n suffixes of t. More precisely, for all
pairs of indices (k, l), 1 ≤ k < l ≤ n, the suffix ssa[k](t)
at position k in the suffix array is lexicographically

smaller than the suffix ssa[l](t) at position l in the suffix
array.

A bucket b = [l, r] is an interval of the suffix array
sa, determined by its left and right end in sa. A bucket
bp = [l, r] is called a level-m bucket, if all contained
suffixes ssa[l](t), ssa[l+1](t), . . . , ssa[r](t) share a common
prefix p of length m.

A radix step denotes the part of an algorithm in
which strings are sorted according to the characters at
a certain offset in the string. The offset is called radix
level. A radix step is like a single iteration of radix sort.

Range reduction performs a bijective function,
rank : Σ → {0, . . . , |Σ| − 1}, of the alphabet to the
first |Σ| natural numbers, while keeping the alphabet-
ical order. More precisely, for two characters c1 < c2

of alphabet Σ, rank(c1) is smaller than rank(c2). Ap-
plied to a string t, range reduction maps each character
of t according to its rank. Note that the suffix array
of a range reduced string equals the suffix array of the
original string.

A multiple character encoding for strings of length d
is a bijective function coded : Σd → {0, . . . , |Σ|d−1} such
that for strings u, v of length d, coded(u) < coded(v) if
and only if u is lexicographically smaller than v.

For a given rank function as defined above, such
an encoding can easily be defined as coded(u) =∑d

k=1 |Σ|d−k · rank(u[i + k − 1]). The encoding can
be generalized to strings of length greater than d, by
just encoding the first d characters. Given the encod-
ing coded(i) for suffix si(t), 1 ≤ i < n, the encoding
for suffix si+1(t) can be derived by shifting away the
first character of si(t) and adding the rank of character
t+[i + d]:

coded(i + 1) =(2.1)
|Σ|

(
coded(i) mod |Σ|d−1

)
+ rank(t+[i + d]).

3 The Bucket-Pointer Refinement algorithm.

Most of the previously mentioned practical algorithms
perform an ordering of suffixes concerning leading char-
acters into buckets, followed by a refinement of these
buckets, often recursively. Before describing our algo-
rithm that uses a similar though somewhat enhanced
technique, we classify the specific techniques used.

3.1 Classification of techniques. The first type of
bucket refinement techniques found in the literature is
formed by string sorting methods without using the de-
pendencies among suffixes. Most representatives of this
class sort the suffixes concerning leading characters and
then refine the groups of suffixes with equal prefix by
recursively performing radix steps until unique prefixes
are obtained [1, 2, 19].



String to build suffix array for: t = e f e f e f a a
1 2 3 4 5 6 7 8

a$ aa ef fa fe
sa after initial sorting (d = 2): 8 7 1 3 5 6 2 4

1 2 3 4 5 6 7 8

bptr after initial sorting: 5 8 5 8 5 6 2 1

sa after sorting bucket [3,5]: 8 7 5 1 3 6 2 4
1 2 3 4 5 6 7 8

bptr after updating positions 1, 3, 5: 5 8 5 8 3 6 2 1

Figure 1: Example of the refinement procedure after the initial sorting of suffixes concerning prefixes of length
d = 2. The suffix array sa and the table of bucket pointers bptr is shown before and after applying the refinement
steps to the bucket [3, 5] containing suffixes 1, 3, 5 with respect to offset = 2. The sort keys (drawn in bold
face) are sortkey(1) = bptr[1 + 2] = 5, sortkey(3) = bptr[3 + 2] = 5, and sortkey(3) = bptr[5 + 2] = 2. After the
sorting concerning the bucket pointers, the bucket pointers for the suffixes 1, 3, 5 in bucket [3, 5] are updated to
bptr[1] = 5, bptr[3] = 5, and bptr[5] = 3.

The second type of algorithms use the order of
already computed suffixes in the refinement phases.
If suffixes si(t) and sj(t) share a common prefix of
length offset, the order of si(t) and sj(t) can be derived
from the ordering of suffixes si+offset(t) and sj+offset(t).
Many practical algorithms using this techniques also
apply methods of the first type as a fall-back, when the
order of suffixes at offset is not yet available [9, 18, 20].

We further divide the second type in two subtypes,
the push and pull methods. The push method uses the
ordering of already determined groups sharing a leading
character to forward its ordering to undetermined buck-
ets. Representatives are Itoh and Tanaka’s two-stage
algorithm [9], Seward’s copy algorithm [20], and the
deep-shallow algorithm of Manzini and Ferragina [18]
that uses this technique among some others.

Pull methods look up the order of suffixes
si+offset(t) and sj+offset(t) to determine the order of
si(t) and sj(t). This technique is used in many algo-
rithms. Representatives among practical algorithms are
Larsson and Sadakane’s qsufsort [16], Seward’s cache
algorithm [20], and deep-shallow sorting of Manzini
and Ferragina [18]. The difference-cover algorithm by
Burkhardt and Kärkkäinen [3] first sorts a certain sub-
set of suffixes to ensure the existence of a bounded offset
to these already ordered suffixes in the final step.

3.2 The new algorithm. Now, we will describe our
new bucket-pointer refinement (bpr) algorithm. The
algorithm melds the approaches of refining groups with
equal prefix by recursively performing radix steps and
the pull technique.

It mainly consists of two simple phases. Given

a parameter d (usually less than log n), in the first
phase the suffixes are lexicographically sorted, such
that afterwards suffixes with same d-length prefix are
grouped together. Before entering the second phase,
for each suffix with suffix number i a pointer to its
bucket bptr[i] is computed, such that suffixes with
same d-length prefix share the same bucket pointer.
Lexicographically smaller suffixes have smaller bucket
pointer. The position of the rightmost suffix in each
bucket can be used as bucket pointer.

In the second phase, the buckets containing suffixes
with equal prefix are recursively refined. Let [l, r] be
the segment in the suffix array sa forming a bucket B
of suffixes sa[l], sa[l + 1], . . . , sa[r] with equal prefix of
length offset. Then, the refinement procedure works in
the following way. The suffixes in B are sorted according
to the bucket pointer at offset. That is, for each suffix
sa[k] in B, l ≤ k ≤ r, bptr[sa[k] + offset] is used as sort
key.

After sorting the suffixes of B, the sub-buckets
each containing suffixes sharing the same sort key are
determined, and for each suffix sa[k], l ≤ k ≤ r, the
bucket pointer bptr[sa[k]] is updated to point to the new
sub-bucket containing sa[k]. Finally, all sub-buckets are
refined recursively by calling the refinement procedure
with increased offset, offsetnew = offsetold + d. After
termination of the algorithm, sa is the suffix array and
the array bptr reflects the inverse suffix array. An
example of the refinement procedure is given in Figure 1.

Properties. The main improvement of our al-
gorithm, compared to earlier algorithms performing
bucket refinements, is that it benefits from the imme-
diate use of subdivided bucket pointers after each re-



finement step. With increasing number of subdivided
buckets, it becomes more and more likely that different
bucket pointers can be used as sort keys during a re-
finement step, such that the expected recursion depth
decreases for the buckets refined later. The final posi-
tion of a suffix i in the current bucket is reached at the
latest when bptr[i + offset] is unique for the current off-
set, that is, when the suffix i+offset has already reached
its final position.

Another improvement of our algorithm is that in
each recursion step the offset can be increased by d.
Hence, the recursion depth decreases by a factor of d,
compared to algorithms performing characterwise radix
steps.

Note that the algorithm can be applied to arbitrary
ordered alphabets, since it just uses comparisons to
perform suffix sorting.

Analysis. We were so far not able to determine
tight time bounds for our algorithm. The problem is
that the algorithm quite arbitrarily uses the dependence
among suffixes. Hence, we can only state a straight
forward quadratic time complexity for the general worst
case, while a subquadratic upper time bound can be
found for certain periodic strings.

The simple O(n2) upper time bound can be seen
as follows. The first phase of the algorithm can simply
be performed in linear time (see Section 3.3 for more
details). For the second phase, we assume to apply a
sorting procedure in O(n log n) time. On each recursion
level there are at most n suffixes to be sorted in
O(n log n) time. The maximal offset until the end of the
string is reached is n, and the offset is incremented by
d in each recursive call. Hence, the maximal recursion
depth is n

d . Therefore, the worst-case time complexity

of the algorithm is limited by O
(

n2 log n
d

)
. By setting

d = log n, we obtain an upper bound of O(n2) without
taking into account the dependencies among suffixes.

Now, we focus on especially bad instances for
our algorithm, in particular strings maximizing the
recursion depth. Since the recursion depth is limited
by the LCPs of suffixes to be sorted, periodic strings
maximizing the average LCP are especially hard strings
for our algorithm.

A string an consisting of one repeated charac-
ter maximizes the average LCP and is therefore an-
alyzed as a representative for bad input strings. In
the first phase of our algorithm the last d − 1 suffixes
sn+2−d(an), sn+3−d(an), . . . , sn(an) are mapped to sin-
gleton buckets. One large bucket containing all the
other suffixes with leading prefix ad remains to be re-
fined. In each recursive refinement step, the remaining
large bucket is again subdivided into offset singleton

buckets and one larger bucket. In each recursive refine-
ment step the offset is incremented by d, starting with
offset = d in step 1. Hence, in the i-th refinement step
i · d suffixes are subdivided into singleton buckets. The
recursion proceeds until all buckets are singleton, that
is, until a recursion depth recdepth is reached, such that
n ≤ d−1+

∑recdepth
i=1 i ·d = d−1+d · recdepth(recdepth+1)

2 .
Therefore, for the string an the recursion depth recdepth
of our algorithm is Θ

(√
n
d

)
.

Less than n suffixes have to be sorted in each re-
cursive step. Hence, we multiply sorting complexity
and recursion depth recdepth to get the time bound
O

(
n log n

√
n
d

)
of our algorithm for the string an.

By setting d = log n we achieve a running time of
O

(
n log n

√
n

logn

)
= O

(
n

3
2
√

log n
)
. By taking into ac-

count the decreasing number of suffixes to be sorted
with increasing recursion depth, more sophisticated
analysis shows the same time bound. Therefore, this
worst-case time bound seems to be tight for this string.

3.3 Engineering and Implementation. Now, we
give a more detailed description of the phases of the
algorithm and briefly explain enhancements of the basic
algorithm to achieve faster construction times.

Phase 1. We perform the initial sorting concerning the
d-length prefixes of the suffixes by bucket sort, using
coded(i) as the sort key for suffix i, 1 ≤ i ≤ n.

The bucket sorting is done by two scans of the
sequence, thereby successively computing coded(i) for
each suffix using equation (2.1). There are |Σ|d buckets,
one for each possible coded. In the first scan, the size
of each bucket is determined by counting the number of
suffixes for each possible coded. The outcome of this is
used to compute the starting position for each bucket,
stored in table bkt of size |Σ|d. During the second scan,
the suffix numbers are mapped to the buckets, where
suffix number i is mapped to bucket number coded(i).

After the bucket sort, the computation of the bucket
pointer table bptr can be done by another scan of the
sequence. For suffix i, the bucket pointer bptr[i] is
simply the rightmost position of the bucket containing
i, bptr[i] = bkt[coded(i) + 1]− 1.

Phase 2. We now give a more detailed description of
the three steps of the refinement procedure and present
improvements to the basic approach.

Sorting. In the refinement procedure, first the
suffixes are sorted with respect to a certain offset using
the bucket pointer bptr[i + offset] as the sort key for
suffix i. The used sorting algorithms are well known.
Insertion Sort is used for buckets of size up to 15.
For the larger buckets, we apply Quicksort using the



partitioning scheme due to Lomuto [5, Problem 8-2].
The pivot is chosen to be the median of 3 elements
due to Singleton [21]. Further on, we apply a heuristic
for the case that we have many equal bucket pointers:
After a partitioning step, we just extend the partitioning
position as long as the sort key equals the pivot,
such that there is an already sorted region around
this position and the size of the remaining unsorted
partitions decreases. Especially for periodic strings, this
heuristic works very well.

Updating bucket pointers. The update of
bucket pointers can simply be performed by a right-to-
left scan of the current bucket. As long as the sort keys
of consecutive suffixes are equal, they are located in the
same refined bucket, and the bucket pointer is set to
the rightmost position of the refined bucket. Note that
the refined bucket positions are implicitly contained in
the bucket pointer table bptr. The left pointer l of a
bucket is the right pointer of the bucket directly to the
left increased by one, and the right pointer r is sim-
ply the bucket pointer for the suffix sa[l] at position l,
r = bptr[sa[l]], since for each suffix i its bucket pointer
bptr[i] points to the rightmost position of its bucket.

Recursive Refinement. The recursive refinement
procedure is usually called with incremented offset,
offset+d. Note that for a sub-bucket bsub of b containing
each suffix si(t) for which also suffix si+offset(t) with
respect to offset is contained in b, the new offset can
be doubled. This is so because all suffixes contained in
b share a common prefix of length offset, and for each
suffix si(t) in bsub also the suffix si+offset(t) with respect
to offset is in b. Hence, all suffixes contained in bsub

share a prefix of 2 · offset.
Further on, we add an additional heuristic to avoid

the repeated useless sorting of buckets. If we meet a
bucket consisting of suffixes all sharing a common pre-
fix much larger than the current offset, we might per-
form many refinement steps, without actually refining
the bucket, until the offset reaches the length of the
common prefix. Therefore, if a bucket is not refined
during a recursion step, we search for the lowest offset
dividing the bucket. This is performed by just iter-
atively scanning the bucket pointers of the contained
suffixes with respect to offset and incrementing the off-
set by d after each run. As soon as a bucket pointer
different from the others is met, the current offset is
used to call the refinement procedure.

Further improvements. We enhanced our algo-
rithm with the copy method by Seward [20] that was
earlier mentioned by Burrows and Wheeler [4]. If the
buckets consisting of suffixes with leading character p
are determined, they form a level-1 bucket Bp. Let
bc1p, bc2p, . . . bc|Σ|p, ci ∈ Σ, be the level-2 buckets with

second character p. The ordering of suffixes in Bp can
be used to forward the ordering to the specified level-
2 buckets by performing a single path over Bp. If i is
the current suffix number in Bp and c = t[i − 1] is the
previous character, then the suffix i − 1 is written to
the first non-determined position of bucket bcp. Seward
also showed how to derive the positions of suffixes in bpp

using the buckets bcip, p 6= ci ∈ Σ. Hence, the usage of
Seward’s copy technique avoids the comparison based
sorting of more than half of the buckets.

Our program processes the level-1 buckets Bc, c ∈
Σ, in ascending order with respect to the number of
suffixes, |Bc| − |bcc|, to be sorted comparison-based.

4 Experimental Results.

In this section we investigate the practical construction
times of our algorithm for DNA sequences, common
texts, and artificially generated strings with high av-
erage LCP.

We compared the bpr implementation (available
through http://bibiserv.techfak.uni-bielefeld.
de/bpr/) to seven other practical implementations:
deep-shallow by Manzini and Ferragina [18], cache
and copy by Seward [20], qsufsort by Larsson and
Sadakane [16], difference-cover by Burkhardt and
Kärkkäinen [3], divide-and-conquer by Kim et al. [12],
and skew by Kärkkäinen and Sanders [10]. Since the
original skew implementation is working on integer al-
phabets, in all instances we mapped the character string
to an integer array.

The experiments were performed on a computer
with 512 MBytes of main memory and 1.3 GHz Intel
PentiumTMM processor, running the Linux operating
system. All programs were compiled with the gcc-
compiler, respectively g++-compiler, with optimization
options ’-O3 -fomit-frame-pointer -funroll-loops’.

The investigated data files are listed in Table 1,
ordered by average LCP. For the DNA sequences, we
selected genomic DNA from different species: The whole
genome of the bacteria Escherichia coli (E. coli), the
fourth chromosome of the flowering plant Arabidopsis
thaliana (A. thaliana), the first chromosome of the
nematode Caenorhabditis elegans (C. elegans), and the
human chromosome 22. Additionally, we investigated
the construction times for different concatenated DNA
sequences of certain families. We used six Streptococcus
genomes, four genomes of the Chlamydophila family,
and three different E. coli genomes.

For the evaluation of other common real-world
strings, we used the suite of test files given by Manzini
and Ferragina in [18]. The strings are usually concate-
nations of text files, respectively tar -archives. Due to
memory constraints on our test computer, we just took



data set LCP string alphabet description
average maximum length size

E. coli genome 17 2815 4,638,690 4 Escherichia coli genome
A. thaliana chr. 4 58 30,319 12,061,490 7 A. thaliana chromosome 4
Human chr. 22 1979 199,999 34,553,758 5 H. sapiens chromosome 22
C. elegans chr. 1 3,181 110,283 14,188,020 5 C. elegans chromosome 1
6 Streptococci 131 8,091 11,635,882 5 6 Streptococcus genomes
4 Chlamydophila 1,555 23,625 4,856,123 6 4 Chlamydophila genomes
3 E. coli 68,061 1,316,097 14,776,363 5 3 E. coli genomes
bible 13 551 4,047,392 63 King James bible of the Canterbury Corpus
world192 23 559 2,473,400 94 CIA world fact book of Canterbury Corpus
rfc 87 3,445 50,000,000 110 Concatenated texts from the RFC project
sprot34 91 2,665 50,000,000 66 SwissProt database
howto 267 70,720 39,422,105 197 Concatenation of Linux Howto files
reuters 280 24,449 50,000,000 91 Reuters news in XML
w3c 478 29,752 50,000,000 255 Concatenated html files from w3c homepage
jdk13 654 34,557 50,000,000 110 Concatenation of JDK 1.3 doc files
linux 766 136,035 50,000,000 256 tar-archive of the linux kernel source files
etext99 1,845 286,352 50,000,000 120 Concatenated texts from Project Gutenberg
gcc 14,745 856,970 50,000,000 121 tar-archive of gcc 3.0 source files
random 4 9 20,000,000 26 Bernoulli string
period 500,000 9,506,251 19,500,000 20,000,000 26 Repeated Bernoulli string
period 1,000 9,999,001 19,999,000 20,000,000 26 Repeated Bernoulli string
period 20 9,999,981 19,999,980 20,000,000 17 Repeated Bernoulli string
Fibonacci 5,029,840 10,772,535 20,000,000 2 Fibonacci string

Table 1: Description of the data set.

the last 50 million characters of those text files that
exceed the 50 million character limit.

The artificial files have been generated as described
by Burkhardt and Kärkkäinen [3]: a random string
made out of Bernoulli distributed characters and pe-
riodic strings composed of an initial random string, re-
peated until a length of 20 million characters is reached.
We have used initial random strings of length 20, 1,000
and 500,000 to generate the periodic strings. Also, we
investigated a Fibonacci string of length 20 million char-
acters.

The suffix array construction times of the different
algorithms are given in Tables 2–4. Table 2 contains
the construction times for the DNA sequences. Our
bpr algorithm is the fastest suffix array construction
algorithm for most DNA sequences. Only deep-shallow
is about 5% faster for the fourth chromosome of A.
thaliana. But for sequences with higher average LCP,
bpr outperforms all algorithms. For the concatenated
sequence of 3 E. coli genomes with average LCP 68,061,
deep-shallow, the closest competitor of bpr, is 1.72 times
slower.

For common real-world strings the running times of

the investigated algorithms are shown in Table 3. For
the texts with small average LCP, deep-shallow is the
fastest suffix array construction algorithm. Bpr shows
the second best running times. But when the average
LCP exceeds a limit of about 300, our algorithm is the
fastest among all investigated algorithms. For gcc with
average LCP 14,745 it is by far the fastest suffix array
construction algorithm. Deep-shallow is 2.30 times
slower (76.23 vs. 33.19 seconds). The second fastest
algorithm for gcc is qsufsort. It requires 59.44 seconds
and therefore is 1.79 times slower than bpr.

For degenerated strings the construction times are
given in Table 4. We have stopped when an algorithm
used more than 12 hours of computation time, indicated
by a dash in Table 4. For the degenerated strings, bpr
is tremendously faster than deep-shallow, cache, and
copy, which are very fast algorithms for strings with
lower average LCP. Even compared to the algorithms
qsufsort, difference-cover, divide-and-conquer, and skew
with good worst-case time complexity our algorithm
performs very well. For strings with period 1,000
and 500,000, it is by far the fastest among all tested
suffix array construction algorithms. For strings with



DNA sequences construction time (sec.)

bpr deep cache copy qsufsort difference divide skew
shallow cover conquer

E. coli genome 1.46 1.71 3.69 2.89 2.87 4.32 5.81 13.48
A. thaliana chr. 4 5.24 5.01 12.24 9.94 8.42 13.29 16.94 38.30
Human chr. 22 15.92 16.64 40.08 30.04 26.52 44.93 51.31 112.38
C. elegans chr. 1 5.70 6.03 20.79 17.48 13.09 16.94 18.64 41.28
6 Streptococci 5.27 5.97 14.43 10.38 13.16 14.50 16.40 36.24
4 Chlamydophila 2.31 3.43 17.46 14.45 7.49 5.59 6.13 14.13
3 E. coli 8.01 13.75 437.18 1,294.30 32.72 20.57 21.58 47.32

Table 2: Suffix array construction times for different DNA sequences and generalized DNA sequences
by different algorithms, with d = 7 for bpr.

text construction time (sec.)
bpr deep cache copy qsufsort difference divide skew

shallow cover conquer
bible 1.90 1.41 2.91 2.24 3.17 3.74 6.39 11.59
world192 1.05 0.73 1.47 1.24 1.91 2.28 3.57 6.45
rfc 31.16 26.37 57.97 55.21 58.10 71.10 101.57 169.03
sprot34 35.75 29.77 71.95 71.96 60.24 81.76 104.71 169.16
howto 22.10 19.63 39.92 47.27 41.14 48.45 83.32 141.50
reuters 47.32 52.74 111.80 157.63 73.19 108.85 108.84 169.18
w3c2 41.04 61.37 82.46 167.76 69.40 96.02 105.89 163.15
jdk13 40.35 47.23 101.58 263.86 73.75 97.12 98.13 162.39
linux 23.72 23.95 50.93 99.47 61.01 65.66 98.06 173.05
etext99 32.60 33.25 68.84 267.48 61.19 65.31 110.95 190.33
gcc 33.19 76.23 2,894.81 21,836.56 59.44 73.54 83.96 162.06

Table 3: Suffix array construction times for different text by different algorithms, with d = 3 for
bpr.

artificial strings construction time (sec.)

bpr deep cache copy qsufsort difference divide skew
shallow cover conquer

random 8.95 8.31 15.17 10.83 14.83 20.19 37.52 47.25
period 500,000 12.33 710.52 – – 89.52 47.28 31.21 61.04
period 1,000 16.76 1,040.45 – – 86.45 78.87 21.96 52.34
period 20 41.61 – – – 74.74 59.38 10.33 43.24
Fibonacci string 28.00 680.43 – – 82.62 69.63 22.21 38.17

Table 4: Suffix array construction times for artificial strings by different algorithms, with d = 3
for bpr.



period 20 and for the Fibonacci string, just the divide-
and-conquer algorithm with its O(n log log n) worst-case
time complexity is faster.

In summary, one can say that bpr is always among
the two fastest of the investigated algorithms. In most
cases, especially all but one DNA sequences, it is even
the fastest one. For strings with very small average LCP
its running time is comparable to deep-shallow, cache,
and copy. With growing average LCP, bpr is clearly
the fastest algorithm. Even for worst-case strings with
very high average LCP, bpr performs well compared
to algorithms qsufsort, difference-cover, and divide-and-
conquer with good worst-case time complexity, whereas
the construction times for deep-shallow, cache, and copy
escalate.

We believe that the practical speed of our algorithm
is mainly due to the combination of different techniques
with good locality behavior and the employment of
relations among suffixes. The bucket sort in phase 1
has optimal locality of memory access regarding the
input string that is just scanned twice. If the d-
length substrings are uniformly distributed, phase 1
equally divides all suffixes into small buckets. In
phase 2 each bucket is refined recursively until it consists
of singleton sub-buckets. This technique of dividing
suffixes from small to smaller buckets is similar to
Quicksort for original sorting. It has good locality
of memory access. Accordingly, it is fast in practice.
Further on, by using the bucket pointers as sort keys,
our method incorporates information about subdivided
buckets into the bucket refinement process as soon as
this information becomes available. The combination
of these techniques, further heuristics in the refinement
procedure (Section 3.3), and the copy method [20] result
in the final fast practical algorithm.

However, the space requirements of bpr are higher
than the space requirements for deep-shallow, cache, and
copy. It takes 8n bytes for the suffix array and the
bucket pointer table. Additional space is used for the
bucket pointers of the initial bucket sort and for the
recursion stack, though the recursion depth decreases
by a factor of d. However, for certain applications, e.g.
the computation of the Burrows-Wheeler-Transform [4],
the construction of the suffix array is just a byproduct,
such that not the complete suffix array needs to remain
in memory.

Therefore, if one is concerned about space, the deep-
shallow algorithm might be the best choice. If there
are no major space limitations, we believe that the bpr
algorithm is the best practical choice.

5 Conclusion and further work.

We have presented a fast suffix array construction al-
gorithm that performs very well even for worst-case
strings. Due to its simple structure, it is easy to im-
plement. Therefore, we believe that our algorithm can
be widely used in all kinds of suffix array applications.

An open question remains. We were so far un-
able to prove a better worst-case time complexity than
O(n2). For certain periodic strings, we verified an
O

(
n

3
2
√

log n
)

time bound, but for general strings find-
ing a non-trivial upper bound seems to be hard since our
algorithm quite arbitrarily uses the dependence among
suffixes.

Of further interest will be the parallelization of suf-
fix array construction, since the suffix array construc-
tion for very large DNA sequences is usually performed
on servers with more than one CPU.
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