
Reversal distance without hurdles and fortresses

Anne Bergeron1, Julia Mixtacki2, and Jens Stoye3

1 LaCIM, Université du Québec à Montréal, Canada.
2 Fakultät für Mathematik, Universität Bielefeld, Germany.

3 Technische Fakultät, Universität Bielefeld, Germany.

Abstract. This paper presents an elementary proof of the Hannenhalli-
Pevzner theorem on the reversal distance of two signed permutations. It
uses a single PQ-tree to encode the various features of a permutation.
The parameters called hurdles and fortress are replaced by a single one,
whose value is computed by a simple and efficient algorithm.

1 Introduction

Computing the reversal distance of two signed permutations is a delicate task
since some reversals unexpectedly affect deep structures in permutations. In
1995, Hannenhalli and Pevzner proposed the first polynomial-time algorithm to
solve this problem [7], developing along the way a theory of how and why some
permutations were particularly resistant to sorting by reversals.

Hannenhalli and Pevzner relied on several intermediate constructions that
have been subsequently simplified [8], [10], but grasping all the details remained
a challenge. Before [1], all the criteria given for choosing a safe reversal involved
the construction of an associate permutation on 2n points, and the analysis of
cycles and/or connected components of graphs associated to this permutation.

Another puzzling aspect of the Hannenhalli-Pevzner theory is the complex,
but always colorful, classification of hurdles. In this paper, we show that simple
results on trees are at the root of all results on hurdles, either maximal or simple,
super-hurdles, and fortresses. We give an elementary proof of the Hannenhalli-
Pevzner duality theorem in terms of a PQ-tree associated to the permutation,
yielding efficient and simple algorithms to compute the reversal distance.

The next section presents classical material and results in a simpler form,
and describes the tree associated to the permutation. Section 3 gives a new
proof and formula for the Hannenhalli-Pevzner theorem, and Section 4 discusses
the algorithms.

2 Background

A signed permutation is a permutation on the set of integers {0, 1, 2, . . . , n} in
which each element has a sign. We also assume that all permutations begin with
0 and end with n, for example: P1 = (0 −2 −1 4 3 5 −8 6 7 9). A point p·q is
defined by a pair of consecutive elements in the permutation. For example, 0 ·−2



and −2 · −1 are the first two points of P1. When a point is of the form i · i + 1,
or −(i + 1) · −i, it is called an adjacency, otherwise it is called a breakpoint. For
example, P1 has two adjacencies, −2 · −1 and 6 · 7. All other points of P1 are
breakpoints.

We will make an extensive use of intervals of consecutive elements in a per-
mutation. An interval is easily defined by giving its endpoints. The elements of
the interval are the elements between the two endpoints. When the two end-
points are equal, the interval contains no elements. A non-empty interval can
also be specified by giving its first and last element, such as (i..j), called the
bounding elements of the interval.

A reversal of an interval of a signed permutation is the operation that consists
of reversing the order of the elements of the interval, while changing their signs.
The reversal of an interval modifies the points of a signed permutation in various
ways. Points p · q that are inside the interval are transformed to −q · −p, the
endpoints of the interval exchange their flanking elements, and points that are
outside the interval are unaffected.

The reversal distance d(P ) of a permutation P is the minimum number of
reversals needed to transform P into the identity permutation.

2.1 Elementary intervals and cycles

Let P be a signed permutation on the set {0, 1, 2, . . . , n} that begins with 0 and
ends with n. When sign is irrelevant, we will refer to an element as an unsigned
element. The right, or left, point of an element of P is the point immediately to
its right, or left.

Definition 1. For each pair of unsigned elements (k, k + 1), 0 ≤ k < n, de-
fine the elementary interval Ik associated to the pair to be the interval whose
endpoints are:

1) The right point of k, if k is positive, otherwise its left point.
2) The left point of k + 1, if k + 1 is positive, otherwise its right point.

Elements k and k + 1 are called the extremities of the elementary interval.

Note that an elementary interval can contain zero, one, or both of its ex-
tremities. For example, in the following permutation, interval I0 contains one of
its extremities, interval I3 contains both, and interval I5 contains none.

(0 -2 -1 4 3 5 -8 6 7 9)

I0
r r

I1
r

I2
r r

I3
r r

I4
r r I5

r r
I6

r
I7

r r
I8

r r
Note that empty elementary intervals correspond to the adjacencies in the

permutation.
When the extremities of an elementary interval have different signs, the in-

terval is said to be oriented, otherwise it is unoriented. Oriented intervals play a
basic role in the problem of sorting by reversals since they can be used to create
adjacencies. Namely, we have:

2



Proposition 1. Reversing an oriented interval Ik creates, in the resulting per-
mutation, either the adjacency k · k + 1 or the adjacency −(k + 1) · −k.

When a point is the endpoint of two elementary intervals, these are said to
meet at that point. Definition 1 implies that a point is used at most twice as an
endpoint, and since there are as many non-empty elementary intervals as there
are breakpoints, we have:

Proposition 2. Exactly two elementary intervals meet at each breakpoint of a
permutation.

Therefore, starting from an arbitrary point, one can follow elementary inter-
vals on a unique path that eventually comes back to the original point. More
formally:

Definition 2. A cycle is a sequence b1, b2, . . . , bk of points such that two suc-
cessive points are the endpoints of an elementary interval, including bk and b1.

For example, the following permutation has four cycles, two of them are
adjacencies, and the other two contain, respectively, 4 and 3 breakpoints.

(0 -2 -1 4 3 5 -8 6 7 9)

I0
r r

I1
r

I2
r r

I3
r r

I4
r r I5

r r
I6

r
I7

r r
I8

r r
One of the cornerstones of the sorting by reversals problem is to study the

effects of a reversal on elementary intervals and cycles. The following result,
due to [9], quantifies the effect of a reversal on the number of cycles. It is a
consequence of the fact that, for all points except the endpoints of a reversal,
the elementary intervals that meet at those points will meet at the same points
after the reversal.

Proposition 3. A reversal modifies the number of cycles by +1, 0, or −1.

Finally, note that the identity permutation on the set {0, 1, 2, . . . , n} is the
only one with n cycles. Thus, Proposition 3 implies that d(P ) ≥ n− c, where c
is the number of cycles of P .

2.2 Components

Elementary intervals and cycles are organized in higher structures called compo-
nents. These were first identified in [5] as subpermutations since they are intervals
that contain a permutation of a set of consecutive integers.

Definition 3. Let P be a signed permutation on the set {0, 1, 2, . . . , n}. A com-
ponent of P is an interval from i to (i + j) or from −(i + j) to −i, for some
j > 0, whose set of unsigned elements is {i, . . . , i+j}, and that is not the union of
two such intervals. Components with positive – respectively negative – bounding
elements are referred to as direct – respectively reversed – components.

3



For example, consider the permutation:

P2 = (0 −3 1 2 4 6 5 7 −15 −13 −14 −12 −10 −11 −9 8 16).

It has 6 components, one of them being the interval (0..4), which contains all
unsigned elements between 0 and 4; another is the interval (−15.. − 12). Note
that a component, such as the interval (1..2), can contain only two elements.

Components of a permutation can be represented by the following diagram,
in which the bounding elements of each component have been boxed, and the
elements between them are enclosed in a rectangle. Elements which are not
bounding elements of any component are also boxed.

0 -3 1 2 4 6 5 7 -15 -13 -14 -12 -10 -11 -9 8 16

Proposition 4 ([3]). Two different components of a permutation are either
disjoint, nested with different endpoints, or overlapping on one element.

When two components overlap on one element, we say that they are linked.
Successive linked components form a chain. A chain that cannot be extended
to the left or right is called maximal. Note that a maximal chain may consist of
only a single component. If one component of a chain is nested in a component
A, then all other components of the chain are also nested in A.

The nesting and linking relations between components turn out to play a
major role in the sorting by reversal problem. Another way of representing these
relations is in form of the following tree:

Definition 4. Given a permutation P on the set {0, 1, . . . , n} and its compo-
nents, define the tree TP by the following construction:

1) Each component is represented by a round node.
2) Each maximal chain is represented by a square node whose (ordered) children

are the round nodes that represent the components of this chain.
3) A square node is the child of the smallest component that contains this chain.

For example, the tree associated to permutation P2 is:

c(0..4) c(4..7) c(7..16)

c(1..2) c(−15..− 12) c(−12..− 9)

�
���

���

H
HHH

HH

�
�

�
��

Z
Z

Z
ZZ

It is easy to see that, if the permutation begins with 0 and ends with n, the
resulting graph is a single tree with a square node as root. The tree is similar to

4



the PQ-tree used in different context such as the consecutive ones test [4]. The
following properties of paths in TP are elementary consequences of the definition
of TP .

Proposition 5. Let C be a component on the (unique) path joining components
A and B, then C contains either A or B, or both.

1) If C contains both A and B, it is unique.
2) If no component on the path contains both A and B, then A and B are

included in two components that are in the same chain.

Components organize hierarchically the points of a permutation.

Definition 5. A point p ·q belongs to the smallest component that contains both
p and q.

Note that this does not prevent p and q to be contained, separately, in smaller
components, such as 5 and 7 in:

0 2 4 3 5 7 9 8 10 1 6 11

Proposition 6. The endpoints of an elementary interval belong to the same
component, thus all the points of a cycle belong to the same component.

Proof: Consider an elementary interval Ik and any component C of the form

(i..i + j) or (−(i + j)..− i)

such that i ≤ k < i + j. Then both endpoints of Ik are contained in C. This is
obvious if k is different from i and k + 1 is different from i + j, since both k and
k + 1 will be in the interior of the component. If k = i, then k and i have the
same sign, and the first endpoint of Ik belongs to the component. If k+1 = i+j,
then k + 1 and i + j have the same sign, and the second endpoint of Ik belongs
to the component.

Thus endpoints of Ik are either both contained, or not, in any given compo-
nent, and the result follows.

Finally, components can be classified according to the nature of the points
they contain:

Definition 6. The sign of a point p · q is positive if both p and q are positive,
it is negative if both are negative. A component is unoriented if it has one or
more breakpoints and all of them have the same sign. Otherwise the component
is oriented.

All the elementary intervals of an unoriented component are unoriented.
Therefore, it is impossible to sort unoriented components using oriented rever-
sals. In the next section, we discuss the type of reversals that can be used to
create oriented intervals in unoriented components.

5



2.3 Effects of a reversal on components

The next two propositions describe the effects of a reversal whose endpoints
are in the same unoriented component. These are classical results from the
Hannenhalli-Pevzner theory.

Proposition 7. If a component C is unoriented, no reversal with its two end-
points in C can split one of its cycles, or create a new component.

Proposition 8. If a component C is unoriented, the reversal of an elementary
interval whose endpoints belong to C orients C, and leaves the number of cycles
of the permutation unchanged.

Orienting a component as in Proposition 8 is called cutting the component.
Cutting an unoriented component is seldom used in optimal sorting of a per-
mutation since it is possible, with a single reversal, to get rid of more than one
unoriented component. The following proposition describes how to merge several
components, and the relations of this operation to paths in TP .

Proposition 9. If a reversal has its two endpoints in different components A
and B, then only the components on the path from A to B in TP are affected.

1) A component C is destroyed if and only if it contains either A or B, but not
both.

2) If A or B is unoriented, any component C that contains both A and B, and
that is on the path that joins A and B, will be oriented.

3) A new component C is created if and only if A and B are included in two
components that are in the same chain. If either A or B is unoriented, C
will be oriented.

Sketch of proof: 1) One of the bounding elements of C will change sign, but
not the other. 2) By 1), all components between A and C, and all components
between B and C will be destroyed. Suppose that A is unoriented, then reversing
one bounding element of A will introduce, in C, at least one oriented interval.
3) If A is included in A′, and B is included in B′, such that A′ = (a..a′) precedes
B′ = (b..b′) in the same chain, then C = (a..b′) will be a new component.

Proposition 9 thus states that merging two unoriented components destroys
or orients all components on the path, without creating new unoriented compo-
nents.

3 The Hannenhalli-Pevzner theorem

In this section, we develop a formula for computing the reversal distance of
a permutation. There are two basically different problems: the contribution of
oriented components to the total distance is treated in Section 3.1, and the
general formula is given in Section 3.2.

6



3.1 Sorting oriented components

Sorting oriented components is done by choosing oriented reversals that do not
create new unoriented components. Several different criteria for choosing such
reversals exist in the literature, and we give here the simplest one.

Definition 7. The score of a reversal is the number of oriented elementary
intervals in the resulting permutation.

Theorem 1 ([1]). The reversal of an oriented elementary interval of maximal
score does not create new unoriented components.

Corollary 1. If a permutation P on the set {0, . . . , n} has no unoriented com-
ponents and c cycles, then d(P ) = n− c.

Proof: As stated following Proposition 3, we have that d(P ) ≥ n − c since any
reversal adds at most 1 cycle, and the identity permutation has n cycles. Any
oriented reversal adds one cycle, thus Theorem 1 guarantees that there will be
always enough oriented reversals to sort the permutation.

3.2 Computing the reversal distance

Definition 8. A cover C of TP is a collection of paths joining all the unoriented
components of P , such that each terminal node of a path belongs to a unique path.

By Propositions 8 and 9, each cover of TP describes a set of reversals that
orients all the components of P . A path that contains two or more unoriented
components, called a long path, corresponds to merging the two components
at its terminal nodes. A path that contains only one component, a short path,
corresponds to cutting the component.

The cost of a cover is defined to be the sum of the costs of its paths, given
that:

1) The cost of a short path is 1.
2) The cost of a long path is 2.

An optimal cover is a cover of minimal cost. Define t as the cost of any optimal
cover TP .

Theorem 2. If a permutation P on the set {0, . . . , n} has c cycles, and the
associated tree TP has minimal cost t, then

d(P ) = n− c + t.

Proof: We first show that d(P ) ≤ n − c + t. Let C be an optimal cover. Apply
to P the sequence of m merges and q cuts induced by the cover C. Note that
t = 2m+q. By Proposition 6, the resulting permutation P ′ has c−m cycles, since
merging two components always merges two cycles, and cutting components does

7



not change the number of cycles. Thus, by Corollary 1, d(P ′) = n− c+m. Since
m + q reversals were applied to P , we have:

d(P ) ≤ d(P ′) + (m + q) = n− c + 2m + q = n− c + t.

In order to show that d(P ) ≥ n − c + t, consider any sequence of length d
that optimally sorts the permutation. By Proposition 3, d can be written as

d = s + m + q,

where s is the number of reversals that split cycles, m is the number of reversals
that merge cycles, and q is the number of reversals that do not change the
number of cycles. Since the m reversals remove m cycles, and the s reversals add
s cycles, we must have:

c−m + s = n, implying d = n− c + 2m + q.

The sequence of d reversals induces a cover of TP . Indeed, any reversal that
merges a group of components traces a path in TP , of which we keep the shortest
segment that includes all unoriented components of the group. Of these paths,
suppose that m1 are long paths, and m2 are short paths. Clearly, m1 +m2 ≤ m.
The q′ ≤ q remaining unoriented components are all cut. Thus

2m1 + m2 + q′ ≤ 2m + q.

Since t ≤ 2m1 + m2 + q′, we get d ≥ n− c + t.

The last task is to give an explicit formula for t. Let T ′ be the smallest
subtree of TP that contains all unoriented components of P . Formally, T ′ is
obtained by recursively removing from TP all dangling oriented components and
square nodes. All leaves of T ′ will thus be unoriented components, while internal
round nodes may still represent oriented components. For example, the tree T ′

obtained from TP2 contains one oriented and three unoriented components.

�
�

�
��

Z
Z

Z
ZZc(4..7) c(7..16)

�
�

�
��

Z
Z

Z
ZZc(−15..− 12) c(−12..− 9)

Define a branch of a tree as the set of nodes from a leaf up to, but exclud-
ing, the next node of degree ≥ 3. A short branch of T ′ contains 1 unoriented
component, and a long branch contains 2 or more unoriented components. We
have:

8



Theorem 3. Let T ′ be the subtree of TP that contains all the unoriented com-
ponents.

(1) If T ′ has 2k leaves, then t = 2k.
(2) If T ′ has 2k + 1 leaves, one of them on a short branch, then t = 2k + 1.
(3) If T ′ has 2k + 1 leaves, none of them on a short branch, then t = 2k + 2.

Proof: Let C be an optimal cover of T ′, with m long paths and q short ones. By
joining any pair of short paths into a long one, C can be transformed into an
optimal cover with q = 0 or 1.

Any optimal cover has only one path on a given branch, since if there were
two, one could merge the two paths and lower the cost. Thus if a tree has only
long branches, there always exists an optimal cover with q = 0.

Since a long path covers at most two leaves, we have t = 2m + q ≥ l, where
l is the number of leaves of T ′. Thus cases (1) and (2) are lower bounds. But if
q = 0, then t must be even, and case (3) is also a lower bound.

To complete the proof, it is thus sufficient to exhibit a cover achieving these
lower bounds. Suppose that l = 2k. If k = 1, the result is obvious. For k > 1,
suppose T ′ has at least two nodes of degree ≥ 3. Consider any path in T ′ that
contains two of these nodes, and that connects two leaves A and B. The branches
connecting A and B to the tree T ′ are incident to different nodes of T ′. Thus
cutting these two branches yields a tree with 2k − 2 leaves. If the tree T ′ has
only one node of degree ≥ 3, the degree of this node must be at least 4, since
the tree has at least 4 leaves. In this case, cutting any two branches yields a tree
with 2k − 2 leaves.

If l = 2k + 1 and one of the leaves is on a short branch, select this branch as
a short path, and apply the above argument to the rest of the tree. If there is
no short branch, select a long branch as a first (long) path.

4 Algorithms

In this section we present a simple algorithm to compute the reversal distance
of a permutation P based on Theorems 2 and 3. The algorithm consists of two
parts. The components of P are first computed by an algorithm presented in [2],
then the tree TP is created by a simple pass over the components of P .

For completeness, we briefly recall the algorithm from [2], called Algorithm 1
here. The input of the algorithm is a signed permutation P , separated into
an array of unsigned elements π = (π0, π1, . . . , πn) and an array of signs σ =
(σ0, σ1, . . . , σn). The algorithm finds all components of P in linear time. It makes
use of four stacks, two of which (M1 and M2) are used to compute two arrays
M and m, defined as follows:

M [i] is the nearest element of π that precedes πi and is greater than πi,
m[i] is the nearest element of π that precedes πi and is smaller than πi.

The algorithm to find the components uses two stacks S1 and S2 that store
potential start points s of components, which are then tested by the following
criterion: (s..i) is a direct component if and only if:

9



1) both σs and σi are positive,
2) all elements between πs and πi in π are greater than πs and smaller than πi,

the latter being equivalent to the simple test M [i] = M [s], and
3) no element “between” πs and πi is missing, i.e. i− s = πi − πs.

A symmetric criterion allows to find reverse components. For details, see
Algorithm 1. Without much overhead it is also possible to tell whether each
component is oriented or not. Again, details can be found in [2].

Note that Algorithm 1 reports the components in left-to-right order with
respect to their right end. For each index i, 0 ≤ i ≤ n, at most one component
can start at position i and at most one component can end at position i. Hence,
it is possible to create a data structure that tells in constant time if there is a
component beginning or ending at position i and, if so, reports such components.
Given this data structure, it is a simple procedure to construct the tree TP in
one left-to-right scan along the permutation. Initially one square root node and
one round node representing the component with left bounding element 0 are
created. Then, for each additional component, a new round node p is created
as the child of a new or an existing square node q, depending if p is the first
component in a chain or not. For details, see Algorithm 2.

To generate tree T ′ from tree TP , a bottom-up traversal of TP recursively re-
moves all dangling round leaves that represent oriented components, and square
nodes. Given the tree T ′, it is easy to compute the reversal distance: perform
a depth-first traversal of T ′ and count the number of leaves and the number of
long and short branches. Then use the formula from Theorem 3 to obtain t, and
the formula from Theorem 2 to obtain d.

Altogether we have:

Theorem 4. Using Algorithms 1 and 2, the reversal distance d(P ) of a permu-
tation P on the set {0, . . . , n} can be computed in linear time O(n).

5 Conclusion

In this paper, we presented a simpler formula for the Hannenhalli-Pevzner re-
versal distance equation. It captures the notion of hurdles, super-hurdles and
fortresses in a single parameter whose value can be computed with the help of
a PQ-tree. Our next goal is to apply this kind of simplification to the harder
problem of comparing multi-chromosomal genomes, whose treatment currently
involves half a dozen parameters [6].

References

1. A. Bergeron. A very elementary presentation of the Hannenhalli-Pevzner theory.
In CPM 2001 Proceedings, volume 2089 of LNCS, pages 106–117. Springer Verlag,
2001.

10



Algorithm 1 (Find the components of a signed permutation P = (π, σ))
1: M1 and M2 are stacks of integers; initially M1 contains n and M2 contains 0
2: S1 and S2 are stacks of integers; initially S1 contains 0 and S2 contains 0
3: M [0]← n, m[0]← 0
4: for i← 1, . . . , n do

(* Compute the M [i] *)
5: if π[i− 1] > π[i] then
6: push π[i− 1] on M1

7: else
8: pop from M1 all entries that are smaller than π[i]
9: end if

10: M [i]← the top element of M1

(* Find direct components *)
11: pop the top element s from S1 as long as π[s] > π[i] or M [s] < π[i]
12: if σ[i] = + and M [i] = M [s] and i− s = π[i]− π[s] then
13: report the component (s..i)
14: end if

(* Compute the m[i] *)
15: if π[i− 1] < π[i] then
16: push π[i− 1] on M2

17: else
18: pop from M2 all entries that are larger than π[i]
19: end if
20: m[i]← the top element of M2

(* Find reversed components *)
21: pop the top element s from S2 as long as (π[s] < π[i] or m[s] > π[i]) and s > 0
22: if σ[i] = − and m[i] = m[s] and i− s = π[s]− π[i] then
23: report the component (s..i)
24: end if

(* Update stacks *)
25: if σ[i] = + then
26: push i on S1

27: else
28: push i in S2

29: end if

30: end for

11



Algorithm 2 (Construct TP from the components C1, . . . , Ck of P )
1: create a square node q, the root of TP and a round node p as the child of q
2: for i← 1, . . . , n− 1 do
3: if there is a component C starting at position i then
4: if there is no component ending at position i then
5: create a new square node q as a child of p
6: end if
7: create a new round node p (representing C) as a child of q
8: else if there is a component ending at position i then
9: p← parent of q

10: q ← parent of p
11: end if
12: end for

2. A. Bergeron, S. Heber, and J. Stoye. Common intervals and sorting by reversals:
A marriage of necessity. Bioinformatics, 18(Suppl. 2):S54–S63, 2002. (Proceedings
of ECCB 2002).

3. A. Bergeron and J. Stoye. On the similarity of sets of permutations and its ap-
plications to genome comparison. In Proceedings of COCOON 03, volume 2697 of
LNCS, pages 68–79. Springer Verlag, 2003.

4. K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval
graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci.,
13(3):335–379, 1976.

5. S. Hannenhalli. Polynomical algorithm for computing translocation distance be-
tween genomes. Discrete Appl. Math., 71(1-3):137–151, 1996.

6. S. Hannenhalli and P. A. Pevzner. Transforming men into mice (polynomial algo-
rithm for genomic distance problem). In Proceedings of FOCS 1995, pages 581–592.
IEEE Press, 1995.

7. S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: Polynomial
algorithm for sorting signed permutations by reversals. J. ACM, 46(1):1–27, 1999.

8. H. Kaplan, R. Shamir, and R. E. Tarjan. A faster and simpler algorithm for sorting
signed permutations by reversals. SIAM J. Computing, 29(3):880–892, 1999.

9. J. D. Kececioglu and D. Sankoff. Efficient bounds for oriented chromosome inver-
sion distance. In Proceedings of CPM 94, volume 807 of LNCS, pages 307–325.
Springer Verlag, 1994.

10. Berman P. and Hannenhalli S. Fast sorting by reversal. In CPM 1996 Proceedings,
volume 1075 of LNCS, pages 168–185. Springer Verlag, 1996.

12


