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Abstract. The Double Cut and Join (DCJ) is a generic operation rep-
resenting many rearrangements that can change the organization of a
genome, but not its content. For comparing two genomes with unequal
contents, in addition to DCJ operations, we have to allow insertions and
deletions of DNA segments. The distance in the so-called general DCJ-
indel model can be exactly computed, but allows circular chromosomes
to be created at intermediate steps, even if the compared genomes are
linear. In this case it is more plausible to consider the restricted DCJ-
indel model, in which the reincorporation of a circular chromosome has to
be done immediately after its creation. This model was studied recently
by da Silva et al. (BMC Bioinformatics 13, Suppl. 19, S14), but only an
upper bound for the restricted DCJ-indel distance was provided. Here
we solve an open problem posed in that paper and present a very simple
proof showing that the distance, that can be computed in linear time,
is always the same for both the general and the restricted DCJ-indel
models. We also present a simpler algorithm for computing an optimal
restricted DCJ-indel sorting scenario in O(n logn) time.

1 Introduction

Genomes can be composed of one or more chromosomes, that can be linear or
circular. A good estimate of evolutionary distance based on whole genome com-
parison can be obtained by asking for the minimum number of rearrangements
that are necessary to transform one genome into another one. In the literature
this transformation has also been referred to as sorting one genome into another
genome. A sequence of rearrangements sorting a genome A into a genome B is
called scenario, that is optimal when its length is minimum. Typical rearrange-
ments that change the organization of genomes are inversions of chromosomal
segments, translocations of the ends of two linear chromosomes, and chromosome
fusions and fissions.

A polynomial algorithm was proposed by Hannenhalli and Pevzner in 1995 to
compute the genomic distance between two genomes with equal contents consid-
ering all mentioned rearrangements. The paper [1], however, relies on the analysis
of many particular cases and is full of technical details, making it susceptible
to errors [2–6]. Later the same set of rearrangements were unified in the simple
Double Cut and Join (DCJ) model [7], which has become very popular over the
last few years due to its general applicability and mathematical elegance [8–12].



Computing the DCJ distance and finding one optimal DCJ sorting scenario
can be done in linear time [8]. However, while sorting a genome into another
by DCJ, circular chromosomes can appear in the intermediate steps [7, 8]. In
the general model many circular chromosomes can coexist in some intermediate
step, even if the compared genomes are composed of linear chromosomes only,
such as eukaryotic nuclear genomes. To account for this fact, a restricted version
of the DCJ model has been considered, where in the start and end genomes all
chromosomes are linear, and whenever in an intermediate step a circular chromo-
some is created, it has to be reincorporated into a linear chromosome in the next
step. These two consecutive DCJ operations, which create and reincorporate a
circular chromosome, mimic a transposition or a block interchange [7, 13].

In Figure 1 we give examples of a general and a restricted DCJ sorting
scenarios. While the general and the restricted DCJ distance are equal and can
be computed in linear time [7,8], the currently best known algorithm to find an
optimal restricted sorting scenario runs in O(n log n) time [13], where n is the
number of common DNA segments between the compared genomes.
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Fig. 1. (i) An optimal sorting sequence in the general DCJ model – many circular
chromosomes can coexist in the intermediate species. (ii) An optimal sorting sequence in
the restricted DCJ model – a circular chromosome is immediately reincorporated after
its excision. The first excision-reincorporation mimics the interchange of segments d
and g, while the second excision-reincorporation mimics the transposition of segment f .

Many variants of the general DCJ model have been proposed, including an
extension to genomes with unequal contents, i.e. where DNA segments may be
present in one, but not in the other genome. In order to transform one such
genome into the other one, insertions and deletions (indels) of segments are
necessary, giving rise to the so-called DCJ-indel model [14, 15], for which both
the distance and one optimal sorting scenario can be obtained in linear time.
However, like in the basic DCJ model, several circular chromosomes may coexist
in intermediate steps.



A restricted version of the DCJ-indel model [16] has also been considered, but
the question whether both the general and the restricted DCJ-indel distances
were the same was not so easy to answer as it was for the general DCJ model. In
fact, the paper by da Silva et al. [16] gives only an upper bound for the restricted
DCJ-indel distance and an algorithm that achieves this bound. Deriving an exact
distance formula and an optimal sorting algorithm were left as open problems.
In Figure 2 we give examples of a general and a restricted DCJ-indel sorting
scenarios.
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Fig. 2. (i) An optimal sorting sequence in the general DCJ-indel model – many circular
chromosomes can coexist in the intermediate species. (ii) An optimal sorting sequence
in the restricted DCJ-indel model – a circular chromosome is immediately reincorpo-
rated after its excision. The first excision-reincorporation mimics the interchange of
segments d and ūg, while the second excision-reincorporation mimics the transposition
of segment f .

In this work we prove that the distance is always the same for both the
general and the restricted DCJ-indel models, as already conjectured in [17]. We
also give a simple algorithm for computing an optimal sorting scenario under
the restricted DCJ-indel model.

This paper is organized as follows. In Section 2 we give definitions and previ-
ous results used in this work. In Section 3 we show how to compute the distance
and one optimal sorting scenario in the restricted DCJ-indel model. Section 4
concludes by relating this work to other genomic distance measures and pointing
out open problems concerning their restricted versions.



2 Preliminaries

Each marker g in a genome is an oriented DNA fragment, represented by the
symbol g, if it is read in direct orientation, or by the symbol ḡ, if it is read in
reverse orientation. Each one of the two extremities of a linear chromosome is
called a telomere, represented by the symbol ◦. Each chromosome in a genome
can then be represented by a string that can be circular, if the chromosome is
circular, or linear and flanked by the symbols ◦, if the chromosome is linear.

We deal with models in which duplicated markers are not allowed. Given
two genomes A and B, possibly with unequal content, let G, A and B be three
disjoint sets, such that G is the set of common markers that occur once in A
and once in B, A is the set of markers that occur only in A and B is the set
of markers that occur only in B. The markers in sets A and B are also called
unique markers.

As an example, consider the linear genomes A = {◦bācūgfev̄d◦} and B =
{◦abxycdefg◦}, that are the top and the bottom genomes represented in both
parts of Figure 2. Here we have G = {a, b, c, d, e, f, g}, A = {u, v} and B = {x, y}.

2.1 DCJ operations

A cut performed on a genome A separates two adjacent markers of A. A double-
cut and join or DCJ applied on a genome A is the operation that performs cuts
in two different positions in A, creating four open ends, and joins these open
ends in a different way. As an example consider the first DCJ applied to genome
A = {◦bācūgfev̄d◦} in Figure 2. This operation cuts before and after bā, creating
the segments ◦•, •bā• and •cūgfev̄d◦, where the symbol • represents the open
ends. If we then join the first with the third and the second with the fourth open
end, we obtain A′ = {◦ab̄cūgfev̄d◦}. This DCJ corresponds to the inversion
of contiguous markers bā. Indeed, a DCJ operation can correspond to several
rearrangements, such as an inversion, a translocation, a fusion or a fission, and
also to circular excisions and reincorporations [7].

Some additional rearrangements correspond to more than one DCJ opera-
tion. A block interchange occurs when two segments exchange their positions.
A particular case is a transposition, in which one of the two segments is empty.
When a block interchange or a transposition affects one single chromosome it
is said to be internal, otherwise external. These rearrangements require at least
three distinct cuts and cannot be represented by a single DCJ operation. In-
stead, they can be obtained by a composition of two DCJ operations. While
external block interchanges and transpositions can always be mimicked by two
consecutive translocations, internal ones can only be mimicked by two DCJs if
the first is a circular excision and the second is a circular reincorporation. We
call such a pair of operations an ER composition (see Figure 3).

2.2 The general DCJ model

In the general DCJ model the genomes have the same content and can be unichro-
mosomal or multichromosomal, linear or circular. Given two genomes A and B
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Fig. 3. (i) External block interchange of markers d and b mimicked by two transloca-
tions. (ii) Internal block interchange of markers d and b mimicked by an ER composi-
tion. (iii) Without a circular excision, the internal block interchange of markers d and
b requires at least three inversions to be mimicked.

with equal contents, the DCJ distance of A and B, denoted by dDCJ(A,B), is
the minimum number of DCJ operations that sort A into B and can be exactly
computed in linear time [8]. Consider a DCJ ρ transforming the genome A into
another genome A′. If dDCJ(A,B) = dDCJ(A′, B)+1, the operation ρ is said to be
optimal. Under the general DCJ model, an optimal sorting scenario, composed
of optimal DCJ operations, can also be obtained in linear time [8].

The restricted DCJ model. In the restricted DCJ model the genomes are linear,
unichromosomal or multichromosomal. Given two linear genomes A and B with
equal contents, the restricted DCJ distance of A and B, denoted by drDCJ(A,B),
is the minimum number of DCJ operations that sort A into B, with the re-
striction that a circular excision has to be immediately followed by a circular
reincorporation, forming an ER composition. After an optimal circular excision,
there is always an optimal circular reincorporation [7]. Such an ER composition
is said to be optimal and guarantees that drDCJ(A,B) = dDCJ(A,B). The best
algorithm to find a restricted DCJ sorting scenario runs in O(n log n) time [13],
where n is the number of markers in A and B, respectively.

2.3 Indels

DCJ operations are able to change only the organization of the genomes, but not
their contents. When the genomes have unequal contents, we need to consider
insertions and deletions of blocks of contiguous markers [14, 18]. We refer to
insertions and deletions as indel operations. Indels have two restrictions: (i)
markers of G cannot be deleted; and (ii) an insertion cannot produce duplicated
markers [15]. At most one chromosome can be entirely deleted or inserted at
once. We illustrate an indel with the following example: the insertion of markers
xy into the genome B′ = {◦abcdefg◦}, that results into B = {◦abxycdefg◦},
as we can see in the last sorting step of both scenarios shown in Figure 2. The
opposite operation would be a deletion.

The triangular inequality problem. Since indels can be applied to blocks of mark-
ers of arbitrary size, the triangular inequality does not hold for genomic distances



that consider this type of operation. Given any three genomes A, B and C and
a distance measure d, consider without loss of generality that d(A,B) ≥ d(A,C)
and d(A,B) ≥ d(B,C). Then the triangular inequality is the property that
guarantees that d(A,B) ≤ d(A,C) + d(B,C).

Although this property holds for the classical models that consider only re-
arrangements, it does not hold for the approaches that allow indels. Consider
for example the genomes A = {◦abcde◦}, B = {◦acd̄be◦} and C = {◦ae◦} [14].
While A and B can be sorted into C with only one indel, the minimum number of
inversions required to sort A into B is three. In this case the triangular inequality
is disrupted. This is a problem if one intends to use this distance to compute the
median of three or more genomes [11] and in phylogenetic reconstructions [19].

2.4 The general DCJ-indel model

In the DCJ-indel model the genomes can be unichromosomal or multichromo-
somal, linear or circular. We assign the cost of 1 to each DCJ operation and a
positive cost w to each indel. Given two genomes A and B, the DCJ-indel dis-
tance of A and B, denoted by dDCJ-id(A,B), is the minimum cost of a sequence
of DCJ and indel operations that sort A into B. If w = 1, the DCJ-indel distance
corresponds exactly to the minimum number of steps required to sort A into B.
For any positive w ≤ 1, the DCJ-indel distance can be exactly computed in
linear time [15,20].

Let S be a rearrangement scenario with DCJ and indel operations, we denote
by ||S|| the cost of S. By definition, ||S|| = nDCJ +w(nins +ndel), where nDCJ is
the number of DCJ operations and nins and ndel are, respectively, the number
of insertions and deletions in S. If S is an optimal scenario sorting A into B,
then ||S|| = dDCJ-id(A,B).

Establishing the triangular inequality. The triangular inequality does not hold for
the DCJ-indel distance, but a correction can be applied a posteriori, as proposed
in [15, 21]. It comprises summing to the distance a surcharge that depends on
the number of unique markers. It has been shown that, given a positive constant
k = (w+1)/2, for any k′ ≥ k the triangular inequality holds for the function
m(A,B) = dDCJ-id(A,B) + k′(|A|+ |B|).

3 Restricted DCJ-indel model

In the restricted DCJ-indel model the genomes are linear, unichromosomal or
multichromosomal. We assign the cost of 1 to each DCJ operation and a positive
cost w ≤ 1 to each indel. Given two such genomes A and B, the restricted DCJ-
indel distance of A and B, denoted by drDCJ-id(A,B), is the minimum cost of a
scenario of DCJ and indel operations that sort A into B, with the restriction that
a circular excision has to be immediately followed by a circular reincorporation,
forming an ER composition.



In this section we first solve an open problem from [16], before we present
a simple algorithm to compute an optimal rearrangement scenario under the
restricted DCJ-indel model.

3.1 Computing the distance

Given two linear genomes A and B without duplicated markers, let S1 be an
optimal DCJ-indel scenario transforming A into B and let nDCJ , nins and ndel

be the number of DCJ operations, insertions and deletions in S1, such that we
have dDCJ-id(A,B) = ||S1|| = nDCJ + w(nins + ndel).

As shown in [16], the scenario S1 can be transformed into another optimal
scenario S2 of the same cost, so that S2 starts with nins insertions, followed by
nDCJ DCJ operations, followed by ndel deletions. We can represent S2 as follows:

S2 = Sins
2 ++SDCJ

2 ++Sdel
2

where Sins
2 is the prefix of S2 with only insertions, Sdel

2 is the suffix of S2 with
only deletions, and SDCJ

2 is the substring of S2 with DCJ operations. The symbol
++ denotes concatenation of rearrangement scenarios.

Let A′ be the linear genome obtained after applying to A the insertions of
Sins
2 and let B′ be the linear genome obtained after applying to A′ the DCJ

operations of SDCJ
2 . Then the distance can be rewritten as

dDCJ-id(A,B) = ||Sins
2 ||+ dDCJ(A′, B′) + ||Sdel

2 ||.

Thus, A′ andB′ are two linear genomes with the same set of markers and DCJ
distance dDCJ(A′, B′) = |SDCJ

2 |, where |SDCJ
2 | denotes the number of operations

in SDCJ
2 . From [7, 13] we know that there exists a restricted DCJ scenario R of

the same cost as SDCJ
2 , sorting A′ into B′. Hence there also exists a restricted

DCJ-indel sorting scenario S3 transforming A into B:

S3 = Sins
2 ++R++Sdel

2 .

Clearly, S3 has the same cost as S2 and thus as S1, being an optimal restricted
DCJ-indel sorting scenario. These observations give rise to the following theorem:

Theorem 1. Given two linear genomes A and B without duplicated markers,
we have

drDCJ-id(A,B) = dDCJ-id(A,B).

Observe that Theorem 1 holds even if we assign the cost of 1 to each DCJ
and a positive cost w ≤ 1 to each indel operation.

Complexity. For any positive indel cost w ≤ 1, the DCJ-indel distance can be
computed in linear time [15, 20], and thus the same is true for the restricted
DCJ-indel distance.



Establishing the triangular inequality. Obviously the correction proposed in [15,
21] to establish the triangular inequality for the DCJ-indel distance also holds
for the restricted DCJ-indel distance.

3.2 Finding an optimal sorting scenario

It can be easily seen that the procedure described in the previous subsection
implies a simple algorithm for finding a restricted DCJ-indel scenario sorting a
linear genome A into a linear genome B (Algorithm 1).

Algorithm 1 Find a restricted DCJ-indel scenario sorting a linear genome A
into a linear genome B

1. Compute an optimal DCJ-indel scenario S1 sorting A into B using the algorithm
from [15,20].

2. Modify S1 by moving the insertions up and the deletions down, as shown in [16],
obtaining a scenario S2 = Sins

2 ++SDCJ
2 ++Sdel

2 .

3. Use Sins
2 to transform A into a linear genome A′.

4. Use SDCJ
2 to transform A′ into a linear genome B′ (A′ and B′ have the same

content G′ = G ∪ A ∪ B).

5. Apply the restricted DCJ algorithm from [13] to obtain a restricted DCJ scenario
R sorting A′ into B′.

6. Concatenate the three parts to obtain the scenario S3 = Sins
2 ++R ++Sdel

2 , that is
a restricted DCJ-indel scenario sorting A into B.

Complexity. In Algorithm 1, steps 1-4 and 6 can be implemented in linear time,
while step 5 takes O(n log n) time, where n = |G′| is the number of markers in A′,
respectively B′. Thus, a restricted DCJ-indel sorting scenario can be computed
in O(n log n) time.

Implementation. While an implementation of the restricted DCJ sorting is avail-
able in [22], to the best of our knowledge there exists no implementation of the
general DCJ-indel sorting algorithm. Given such an implementation would then
make it rather straightforward to also implement the restricted DCJ-indel sort-
ing algorithm.

4 Conclusions and Perspectives

In this paper we have solved an open problem, showing that, even if the indel
cost is distinct from and upper bounded by the DCJ cost, the restricted DCJ-
indel distance is equal to the DCJ-indel distance, that can be computed in linear



time. This allows the correction for establishing the triangular inequality in the
DCJ-indel distance to be automatically extended to the restricted DCJ-indel
distance.

We have also proposed an algorithm to generate an optimal restricted DCJ-
indel sorting scenario in O(n log n) time. The most complicated parts of this
algorithm are: (a) obtaining a general DCJ-indel sorting scenario between two
genomes with unequal contents (step 1 of Algorithm 1) and (b) obtaining a re-
stricted DCJ sorting scenario between genomes with equal contents (step 5 of
Algorithm 1). An implementation of (b) is available in [22], but the implemen-
tation of (a) still has to be developed.

The inversion-indel distance. The inversion-indel is a related model that applies
to unichromosomal (linear or circular) genomes only, and, instead of generic DCJ
operations, allows only inversions of DNA segments, besides indels. An example
is given in Figure 4. In [18] two algorithms were provided for this distance: an
exact one for the case in which only one indel direction is allowed (i.e. when we
have either only insertions or only deletions); and a heuristic for the symmetric
case, in which both insertions and deletions are allowed. Recently, in a joint work
with other authors [23], we proved that, for an important class of instances of
the symmetric case, the inversion-indel distance equals the DCJ-indel distance.
An exact solution for the general symmetric case remains an open problem.

- -� - -� �a x c y b z d

inversion ↓
- -� � � � �a x c b y z d

deletion ↓
- -� � �a x c b d

insertion ↓
- -� � � � -a x c b d v u

↓ deletion

-� � � � -a c b d v u

inversion ↓
-� � � - -a c b u v d

↓ inversion

- - - - - -a u b c v d

Fig. 4. An optimal sorting scenario in the inversion-indel model.

The restricted DCJ-substitution distance. The DCJ-substitution is another re-
lated model that applies to linear genomes, unichromosomal or multichromo-
somal. In this model we have generic DCJ operations, but, instead of indels,
more powerful operations are considered: substitutions allow blocks of contigu-
ous markers to be replaced by other blocks of contiguous markers [24]. In other
words, a deletion and a subsequent insertion that occur at the same position of



the genome can be modeled as a substitution, counting together for one single
step. In the DCJ-substitution model, indels are special cases of substitutions:
if a block of markers is substituted by the empty string, we have a deletion;
analogously, if the empty string is substituted by a block of markers, we have an
insertion.

In the general DCJ-substitution model the results are very similar to the
general DCJ-indel model. For a cost of 1 assigned to DCJ operations and any
positive cost w ≤ 1 assigned to substitutions, there is a formula to efficiently
compute the distance [20, 24]. However, the general and the restricted DCJ-
substitution distances are not the same, as we can see in the example given in
Fig. 5. The restricted version of the DCJ-substitution distance is a complete
open problem that we intend to study in the future.

(i) (ii)

- - - - - -a u c v b d

excision (1) ↓
- - - - - -a b d v u c \

substitution (w) ↓
- - - - - -a b d z x c

reincorporation (1) ↓
- - - - - -a b x c z d

- - - - - -a u c v b d

excision (1) ↓
- - - - - -a b d v u c

reincorporation (1) ↓
- - - - - -a b c v u d

substitution (w) ↓
- - - - -a b c z d

↓ insertion (w)

- - - - - -a b x c z d

Fig. 5. (i) An optimal sorting scenario in the general DCJ-substitution model, with
cost 2+w. (ii) An optimal sorting scenario in the restricted DCJ-substitution model,
with cost 2+2w.
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