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Abstract. Ancestral genome reconstruction is an important step in an-
alyzing the evolution of genomes. Recent progress in sequencing ancient
DNA led to the publication of so-called paleogenomes and allows the in-
tegration of this sequencing data in genome evolution analysis. However,
the assembly of ancient genomes is fragmented because of DNA degrada-
tion over time. Integrated phylogenetic assembly addresses the issue of
genome fragmentation in the ancient DNA assembly while improving the
reconstruction of all ancient genomes in the phylogeny. The fragmented
assembly of the ancient genome can be represented as an assembly graph,
indicating contradicting ordering information of contigs.
In this setting, our approach is to compare the ancient data with extant
finished genomes. We generalize a reconstruction approach minimizing
the Single-Cut-or-Join rearrangement distance towards multifurcating
trees and include edge lengths to avoid a sparse reconstruction in prac-
tice. When also including the additional conflicting ancient DNA data,
we can still ensure consistent reconstructed genomes.

1 Introduction

In comparative genomics, one aim is to analyze the diversity of genomes from
present-day species to reconstruct the structure of ancient genomes and shed
light on the dynamics of evolutionary processes underlying the development
of extant genomes. The speciation history leading to the present-day genomes
can be represented as a phylogenetic tree. Genome reconstruction methods aim
to infer genomic features, such as gene order, at internal nodes of the tree by
comparing conserved features in the extant genomes at its leaves, e. g. under
parsimony assumptions. This problem has already been widely studied under
different models and distance formulations [1, 2, 4, 6, 9, 12, 13].

Besides the phylogeny and the genome sequences of extant species, a third
source of data for reconstruction became available recently. Due to the progress
in sequencing technologies, ancient DNA (aDNA) found in conserved remains
can be sequenced. One example is the genome of the ancestor of Yersinia pestis
strains that is understood to be the cause of the Black Death pandemic [3]. How-
ever, enviromental conditions influence sources for paleogenomes and result in



degradation and fragmentation of DNA molecules over time, causing sequencing
to produce very short reads [5]. This entails the assembly of aDNA to be specif-
ically challenging and leads to a fragmented assembly with many short contigs
requiring additional scaffolding. The purpose of the present work is to present a
scaffolding method adapted to such datasets, within a phylogenetic framework.

So far, the only existing method specifically targeted at scaffolding aDNA
contigs is FPSAC [11]. It follows a local approach concentrating on one inter-
nal node representing the ancestor of interest and was able to obtain a single
scaffold from a fragmented assembly of the ancient Yersinia pestis strain. In this
paper, we present a global approach for reconstructing all ancient genomes along
a given phylogeny while also scaffolding the aDNA contigs obtained from a pre-
liminary assembly for one internal node of the phylogeny. Contrary to FPSAC,
our approach is global and can be described as an extension of the exact small
parsimony algorithm minimizing the Single-Cut-or-Join distance described in [6]
to the case of multifurcating phylogenetic trees with edge lengths. We show how
this allows to handle, still with an exact polynomial time algorithm, constraints
from the assembly graph of a sequenced ancestral genome.

2 Background

As a basis of this work, the data representation is described first, before the
small parsimony problem under rearrangement distances is introduced.

2.1 Genome Representation

Both extant and ancient genomes are sets of chromosomes, plasmids or contigs.
Each such component is represented by a sequence of oriented markers corre-
sponding to homologous sequences, while each marker is contained once. Markers
can be defined by alignment of assembled aDNA contigs onto the extant genomes
(see [11] for example). To represent the orientation, any marker a has two ex-
tremities, a head ah and a tail at. The order of markers in the genome can also
be represented by adjacencies, which are unordered pairs of two extremities from
neighboring markers, for example {ah, bt}. When one extremity is contained in
two different adjacencies, these are said to be conflicting. Otherwise the genome
can be written as a set of linear or circular sequences of markers and is consistent.

2.2 Augmented Phylogenetic Tree

The underlying general data structure for our studies, shown in Figure 1, is
a phylogenetic tree T = (VT , ET ) representing the relations between extant
species. Leaves annotated with assembled genome sequences correspond to ex-
tant species, internal nodes represent ancestral species. Edges are labeled with
lengths describing the evolutionary distances in the tree. Furthermore, we as-
sume that one internal node is augmented with an assembly graph A = (VA, EA).
We will refer to this augmented node as the assembly graph node and to the tree
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Fig. 1. Phylogenetic tree annotated with extant genomes at its leaves. One internal
node is augmented with an assembly graph illustrating the fragmented assembly. It
may contain conflicting adjacencies, e. g. (2h, 3h) and (2h, 4t).

together with the assembly graph as an augmented phylogenetic tree. An assem-
bly graph is usually a de Bruijn or string graph connecting contiguous regions in
the read data. Paths in the graph are then possible substrings, while branches
indicate uncertainty about the exact genome sequence. For our purpose it is im-
portant to notice that since branching nodes in the graph connect one extremity
with several others, they induce conflicting adjacencies.

2.3 Small Parsimony Problem under Rearrangement Distances

In order to reconstruct ancient genomes, we are starting from consistent genomes
at the leaves of the considered phylogeny, represented by sets of adjacencies, and
look for an optimal labeling, defined as a labeling minimizing a chosen genomic
distance over the tree. This problem is known as the small parsimony problem.

Definition 1 (Parsimonious labeling). Given a tree T = (VT , ET ) with each
leaf l labeled with a state bl ∈ {0, 1}, a labeling λ : V → {0, 1} with λ(l) = bl for
each leaf l is parsimonious if it minimizes the overall distance d in the tree:

W (λ, T ) =
∑

(u,v)∈E

d(λ(u), λ(v)).

In a simple setting, the distance is 0 if the label does not change along an
edge and it is 1 otherwise. While for most rearrangement distances, the parsi-
monious labeling problem is NP-hard, one exception is the Single-Cut-or-Join
(SCJ) distance introduced by Feijão and Meidanis [6], a set-theoretic rearrange-
ment distance modeling cuts and joins of adjacencies.

Definition 2 (SCJ distance [6]). Given two genomes defined by sets of adja-
cencies A and B, the SCJ distance between these genomes is

dSCJ(A,B) = |A−B|+ |B −A|.



An SCJ minimizing consistent labeling over a given phylogenetic tree can be
computed by the Fitch algorithm [7] in polynomial time using a binary encod-
ing, set to 1 if the adjacency is present in the genome and set to 0 otherwise.
Reconstructed genomes then contain all adjacencies for which the internal node
is labeled 1. Although adjacencies are not independent characters, it has been
shown that the reconstruction of every adjacency separately assigns no conflict-
ing adjacencies, provided that labels at all leaves are consistent and 0 is chosen
in case of ambiguity at the root. The labeling for the rest of the tree is then
unambiguous and provides valid genomes at internal nodes in polynomial time,
minimizing the SCJ distance [6].

However, this reconstruction is sparse as it finds only the most fragmented
under all co-optimal solutions. Some adjacencies will be excluded from the re-
constructed genomes, although they could be included without causing conflicts.
Furthermore, the Fitch algorithm can only handle binary trees and so excludes
phylogenies that are not fully resolved. We will generalize the result of [6] to-
wards multifurcating trees and show how to avoid the sparse approach. Later,
in Section 4, we will show how to integrate the constraints of an assembly graph
at a single ancestral node of the tree.

3 Edge-weighted Parsimony Problem Minimizing SCJ

Like the Fitch algorithm [7], the Hartigan algorithm [8] consists of a bottom-up
and a top-down traversal of the phylogenetic tree. It is a generalization towards
multifurcating trees and finds, in contrast to Fitch, all optimal parsimonious la-
belings. However, this more general algorithm induces ambiguity also at internal
nodes of the tree. For the small parsimony problem with the SCJ distance, it can
easily be shown that choosing 0 whenever possible, also at internal nodes of the
tree, results in a consistent labeling, but this could result in an even sparser so-
lution. Conversely, always including an adjacency in case of ambiguity can result
in complex conflicts and would therefore require a subsequent conflict resolving
step that is mindful of the tree structure. To avoid this, we propose to include
edge lengths in the reconstruction and minimize an edge-weighted SCJ distance.

Definition 3 (Edge-weighted SCJ distance labeling problem). Given a
tree T = (VT , ET ) with each leaf labeled with adjacencies and each edge e ∈ ET
labeled with an edge length `(e), a labeling γ of the internal nodes of T is an
edge-weighted SCJ minimizing consistent labeling if none of the internal nodes
contains a conflict and it minimizes the overall tree distance

D(γ, T ) =
∑

(u,v)∈E

dSCJ(γ(u), γ(v))

`((u, v))
.

3.1 Hartigan Algorithm with Edge Lengths

Consider the reconstruction for one adjacency α in a tree T . A leaf is labeled
according to the absence or presence of α in its extant genome. In the bottom-



up phase, every node x with children C(x) is annotated recursively with two
candidate sets Bα1 and Bα2 . For both states b ∈ {0, 1}, consider all children y ∈
C(x) with b ∈ Bα1 (y) and let kαx (b) =

∑
y∈C(x),
b∈B1(y)

1
`((x,y)) and K = maxb{kαx (b)}.

Then, if e is the edge connecting x to its parent, let

Bα1 (x) = {b | kαx (b) = K}, Bα2 (x) = {b | kαx (b) = K − 1

`(e)
}.

In the top-down phase, the root r is assigned with a state b ∈ Bα1 (r). When
processing node x, let b be the state assigned to it in an optimal labeling. Then
a child y ∈ C(x) is labeled as follows:

Fα(y) =


{b} if b ∈ Bα1 (y)

{b} ∪Bα1 (y) if b ∈ Bα2 (y)

Bα1 (y) otherwise

We note that the set Bα1 is likely to be of cardinality one and the set Bα2 is likely
to be empty in real data sets, where edges are annotated with non-trivial edge
lengths such as rational numbers. Therefore the second case rarely occurs and
there is often no choice in the other cases. Hence in most real instances, there
will be a unique most parsimonious labeling for all adjacencies.

3.2 Reconstructing Consistent Genomes

Following the proof of Lemma 6.1 in [6], we can show that also the edge-weighted
Hartigan algorithm assigns consistent genomes. We still assume a sparse variant
of the algorithm where the label 0 is chosen during the top-down phase any time
there is an ambiguity and call it sparse edge-weighted Hartigan algorithm.

Lemma 1. Given two conflicting adjacencies α and β, for each node x of a
tree T labeled according to the sparse edge-weighted Hartigan algorithm, if Bα1 (x) =

{1}, then Bβ1 (x) = {0} if @ leaf l with both Bα1 (l) = {1} and Bβ1 (l) = {1}.

Proof. The proof is by induction on the height h of a node x in the tree, which
is the maximal length from x to any descendant leaf. For h = 0, the node is a
leaf annotated with a consistent genome, therefore the lemma holds.

When h ≥ 1, we assume that any node with height g < h and therefore
all children of x satisfy the lemma. We denote the sum of edge lengths from
x to all children y ∈ C(x) annotated with Bα1 (y) = {0} with lα0 , to children
annotated with Bα1 (y) = {1} with lα1 and edge lengths to children annotated
with Bα1 (y) = {0, 1} with lα01. For the two states 0 and 1, we sum the weights to
the appropriate children and have kαx (0) = lα0 + lα01 and kαx (1) = lα1 + lα01. Now
we can make some observations about the relation of sets B1 in the children of
x according to the Hartigan algorithm. Bα1 (x) = {1} only if kαx (1) > kαx (0) and
thus lα1 + lα01 > lα0 + lα01 ⇒ lα1 > lα0 .

Next we consider the second adjacency β that is in conflict with α. As by
induction hypothesis any child y satisfies the lemma, at least all children with



Bα1 (y) = {1} have to have Bβ1 (y) = {0} and thus lβ0 ≥ lα1 . On the other hand,

only children with B1(α, y) = {0} can have B1(β, y) = {1}, so lβ1 ≤ lα0 .

Taking these three observations together, we can derive that lβ0 ≥ lα1 > lα0 ≥
lβ1 , therefore lβ0 + lβ01 > lβ1 + lβ01, which is the same as kβx (0) > kβx (1), implying

Bβ1 (x) = {0}. Therefore when Bα1 (x) = {1}, we have Bβ1 (x) = {0}. ut

Lemma 2. Given two conflicting adjacencies α and β, for each node x of a
tree T labeled according to the sparse edge-weighted Hartigan algorithm, if Fα(x) =
{1}, then choosing F β(x) = {0} is always possible.

Proof. As the edge weights are only influencing the bottom-up phase, we do
not have to consider them in the top-down phase. Suppose there are internal
nodes with value 1 assigned to both α and β. Choose such a node with minimal
distance to the root and call it v. We have different possibilities for B1 and
B2 of v according to α and β, summarized in Table 1. Note that by Lemma 1,
Bα1 (v) = Bβ1 (v) = {1} cannot occur. In cases 1–4, choosing 0 for α or β is always

Table 1. Case differentiation for bottom-up sets that fulfill Lemma 1 and could assign
label 1 for both adjacencies α and β.

1 2 3 4 5

Bα1 (v) = {1} Bα1 (v) = {0} Bα1 (v) = {0} Bα1 (v) = {1, 0} Bα1 (v) = {1, 0}
Bα2 (v) = {0} ∨ ∅ Bα2 (v) = {1} Bα2 (v) = {1} Bα2 (v) = ∅ Bα2 (v) = ∅
Bβ1 (v) = {0} Bβ1 (v) = {1} Bβ1 (v) = {0} Bβ1 (v) = {0} Bβ1 (v) = {1, 0}
Bβ2 (v) = {1} Bβ1 (v) = {0} ∨ ∅ Bβ1 (v) = {1} Bβ2 (v) = {1} Bβ2 (v) = ∅

possible independent of the parent assignment. In case 5, the parent assignment
for both α and β has to be 1 in order to also assign 1 to v. This, however,
contradicts the minimality of the depth of v and therefore concludes the proof.

ut

Theorem 1. For a rooted phylogenetic tree T with leaves annotated with consis-
tent genomes containing the same set of markers, the sets Gv = {α : Fα(v) = 1}
assigned to all internal nodes v with the sparse edge-weighted Hartigan algorithm
are consistent genomes and minimize the edge-weighted SCJ distance.

Proof. According to Theorem 6.3 in [6], including the adjacency α in every node
v, where Fα(v) = 1, builds genomes that minimize the SCJ distance over T.
Lemma 2 shows that also with the sparse edge-weighted Hartigan algorithm
no conflicting adjacencies will be assigned to a node v. Therefore the sets Gv
minimize the total sum of SCJ cost per edge length. ut

4 Integrating aDNA Sequencing Information

The assembly graph based on ancient sequencing reads (cf. Figure 1) defines
putative adjacencies between markers on connected contigs. These adjacencies



constrain the reconstruction by providing evidence of the genome structure di-
rectly seen at an internal point in the tree. We include these constraints by
extending the original tree with an additional leaf attached to the assembly
graph node. This leaf will be labeled with the presence or absence of an adja-
cency in the assembly graph, just like the leaves representing extant genomes.
The respective edge length `(e) has to be chosen in regard to the other two
connected edges a and b of the assembly graph node such that the additional
information is relevant at all but not generally dominating. Hence it has to be
chosen such that 1

`(e) is in the interval [( 1
`(a) −

1
`(b) ), (

1
`(a) + 1

`(b) )] for `(a) < `(b),

where a smaller edge length gives the assembly graph more importance.
However the set of adjacencies present in the assembly graph is not neces-

sarily consistent and can cause conflicts. Instead of adding a postprocessing step
that resolves all the conflicts in the tree after the reconstruction, we propose
in Algorithm 1 an approach that integrates the conflicts resolving into the re-
construction process. To resolve conflicts, we rely on the exact polynomial time
MAX-ROW-component-mCi1P algorithm described in [10]. It selects a subset
of adjacencies that form a set of linear and/or circular chromosomes based on a
maximum-weight matching in a graph.

Algorithm 1 Consistent reconstruction integrating aDNA sequencing data

Input: A tree T with edge lengths, extant consistent genomes, aDNA assembly graph
Output: A consistent labeled tree minimizing the edge-weighted SCJ distance.
1: Attach an additional leaf to the assembly graph node v
2: Reroot the tree such that v becomes its root
3: for each adjacency α do
4: for each internal node x in T do
5: Compute Bα1 (x) and Bα2 (x) with the sparse edge-weighted Hartigan algorithm
6: A = {α|1 ∈ Bα1 (v)}
7: Solve MAX-ROW-component-mCi1P for A
8: for each adjacency α do
9: for each internal node x in T do

10: Compute Fα(x) with the sparse edge-weighted Hartigan algorithm

Theorem 2. Given an augmented phylogenetic tree, Algorithm 1 computes a
consistent labeling integrating the assembly graph information and minimizing
the edge-weighted SCJ distance in polynomial time.

Proof. Acoording to Theorem 1, the sparse edge-weighted Hartigan algorithm
assigns consistent, SCJ minimizing genomes when the leaf labels are consistent.
Rerooting the tree will not affect the outcome of the reconstruction. In the
bottom-up phase, the conflicting leaf will only influence the assignment at the
root. All other internal nodes fulfill Lemma 1, as the original leaves are con-
sistently labeled. Therefore they cannot cause a conflicting assignment in the
top-down phase when the parent assignment is consistent. As conflicts can thus



only occur at the root node, they have to be resolved with a minimal increase in
parsimony costs before propagating the assignment down the tree during the top-
down phase. Selecting a maximum cardinality subset of all adjacencies assigned
to the root can be done by solving the MAX-ROW-component-mCi1P [10]. With
a consistent root labeling, the top-down assignment will be consistent according
to Lemma 2.

The traversal of the tree with n leaves and a adjacencies takes O(an) time.
The MAX-ROW-component-mCi1P can be solved in O(a3/2) [10]. Therefore the
overall running time is in O(an+ a3/2). ut

5 Conclusion

We have described a generalization of the exact algorithm solving the small par-
simony problem under the SCJ rearrangement distance. Computing the labeling
of internal nodes with the Hartigan algorithm enables handling multifurcating
trees. Including edge lengths still ensures the reconstruction of valid genomes
and is also expected to provide a unique optimal solution under non-trivial edge
lengths in practice. Building upon this result, we presented an integrated phy-
logenetic assembly approach. It includes aDNA sequencing information in the
reconstruction of other ancient genomes in the phylogeny and also scaffolds the
fragmented assembly while minimizing the SCJ distance.

Among the questions our work raises, it would be interesting to study model
variants that allow to integrate copy numbers or unequal marker content. An-
other question of interest would be to design efficient heuristics or parameterized
algorithms to augment an initial parsimonious consistent labeling with extra ad-
jacencies that preserve both parsimony and consistency.
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