
Protein Annotation by Secondary Structure

Based Alignments (PASSTA)

Constantin Bannert1 and Jens Stoye1

Technische Fakultät, Universität Bielefeld, Germany.

Abstract. Most software tools in homology recognition on proteins an-
swer only a few specific questions, often leaving not much room for the
interpretation of the results. We develop a software Passta that helps
to decide whether a protein sequence is related to a protein with known
structure. Our approach may indicate rearrangements and duplications,
and it displays information from different sources in an integrated fash-
ion.
Our approach is to first break each sequence of the Protein Data Bank
(PDB) into Secondary Structure Elements (SSEs). Given a query se-
quence, our goal is then to ‘explain’ it by SSE sequences as good as
possible. Therefore, we use the Waterman-Eggert algorithm to compute
pairwise alignments of SSE sequences with the query. In a graph-based
approach, we then select those alignments that reproduce the query in
an optimal way. We discuss two examples to illustrate the potential (and
possible pitfalls) of the method.

1 Introduction

The need to characterize and annotate the enormous amount of gene sequences
emerging from the genome sequencing projects led to the development of many
useful algorithms and tools. A common approach used is homology recognition,
where a query sequence is compared to one or many already characterized se-
quences or structures. If a certain similarity between those can be found, we can
assume the existence of a common ancestor, and hence, homology. Shi et al. [18]
defined four major groups of homology recognition:

1. Methods that do pairwise sequence comparison, usually by computing pair-
wise alignments. They are able to detect closely related homologs, but often
miss remote homologies.

2. Tools in the second group are also based on sequence comparison. However,
they use multiple alignments of related sequences and compute profiles or
probabilistic models from them to improve the detection of remote homologs.

3. The third group of methods uses structure- and sequence information.
4. Homology detection in the fourth group relies on structure information only.

Methods in this group are usually threading methods.

BLAST [1], FASTA [16], and the Smith-Waterman algorithm [20] are well
known examples from the first group of methods. They compute pairwise align-
ments, but are usually used to search a whole sequence database.

PSI-Blast [2] can be seen as an enhanced BLAST. It is better suited to
detect remote homologies, and since it computes and uses profiles of simililar
sequences, it can be assigned to the second group. The same holds for HMM-
based approaches, see [9] and references in [18].

The Jumping Alignment algorithm ‘Jali’ [21] also belongs to the second group
of methods, but the concept already suggests a connection to protein structure.
The query is aligned simultaneously to all sequences in a multiple alignment (usu-
ally derived from a protein family). However, only one sequence in the alignment,
the ‘reference sequence’, contributes to the actual computation of the Jali score.
The algorithm may change (or ‘jump’ between) the sequences, if the properties
of the multiple alignment allow to do so. Structure may play a role, if the aligned
family has modular properties, e.g., divides into two subfamilies. However, tests
in [3] whether the jumps of the algorithm reflected the secondary structure of
some protein families revealed only few examples where this was the case.

All approaches mentioned so far are strictly sequence-based alignment ap-
proaches. Since they process their information sequentially, they are not well
suited for the detection of rearrangements and duplications. When used in a
database search context, the results are usually presented as alignments of the
query to the corresponding database hits. If the hit is only partial, it is not at
once clear whether the unmatched part of the query bears similarities to other
proteins in the database.

This was our motivation to develop a new software, called Passta (Protein
annotation by secondary structure based alignments). Passta is a fragment-based
alignment approach on secondary structure elements (SSEs) or, more precisely,
SSE sequences. SSEs can be seen as the smallest structural entities in a protein,
and we decided to use them, even though their structure is not fixed in vivo,
but depends on the environment and other factors (see, e.g. [5]). Given a query
sequence, the aim of Passta is to show how well it can be represented with SSEs
found in sequences of the PDB. Further information is provided by linking the
SSEs to the SCOP classification database [11, 14], and by showing the position
of the matched SSEs in their chain, which helps to find possible rearrangements
and duplications. Each site in the query can only be aligned with one SSE at a
time, but we display all such alignments simultaneously.

Two methods in the third of the groups listed above also use SSEs, MAP [17]
and SEA [23]. Both use predicted SSEs. MAP derives a secondary structure
‘map’ from the SSEs to find the most likely fold from a database of domains with
known structure. SEA (‘SEgment Alignment’) uses a graph-based approach to
compare two protein sequences. For both proteins, SSEs are predicted with sev-
eral secondary structure prediction methods and represented in two unweighted
graphs. Ye et al. [23] then solve a network matching problem: They search for
a path in each graph/network, such that the corresponding SSEs in both paths
are maximally similar.

The main difference between their and our concept is that we represent
residue-level alignments from many different proteins simultaneously in one
graph and search for those that best explain the query, while Ye et al. use one

graph for each target. Therefore, the SEA approach can not detect similarities
to different database hits at the same time.

Other methods in homology recognition using SSEs are mostly in group
four. They use the three-dimensional coordinates of the SSEs, mostly for vector
representations in protein structure comparison. These methods are basically
out of scope here, however, we would like to mention a recent study by Shih
and Hwang [19] who investigated alternative/permuted alignments by structural
comparison, where the SSEs were not required to be sequential. Their results
indicate that this area is to some degree overlooked, and investigations here will
be useful to improve our understanding of the organization and evolution of
proteins.

We present the basic framework of Passta in Section 2 and illustrate its
performance in Section 3. The first example we give is a plastocyanin sequence
from Oryza sativa (rice), which serves as a proof of concept. The second one is
the CASP6 target ‘T0269’ (see http://predictioncenter.llnl.gov/casp6/

Casp6.html).

2 Material and Methods

Terminology: Based on the atomic coordinates of a structure determination ex-
periment, each amino acid in a protein structure is assigned a secondary structure
state (see e.g., [5], chapter 17). The standard here is the DSSP algorithm [12],
which was also used to assign the secondary structure states to the databases in
Section 2.1. These states can be grouped into classes. The DSSP states G, H,
and I are helical states, B and E are strand states, and the remaining three (T,
S, and blank) are random coil or loop states. A ‘SSE’ is a protein segment where
all amino acid states are equal or at least belong to the same class.

2.1 Database integration

Passta uses a relational database (Passta DB) that integrates information from
three secondary source databases which themselves are all derived from the Pro-
tein Data Bank (PDB) [4].

The Protein Topology Graph Library (PTGL) [13] is based on the
atomic coordinates of PDB proteins satisfying certain quality criteria. These
proteins were decomposed into SSEs of known local structure, and their topology
was stored. The aim of the PTGL is to provide this topology information to the
user, but we currently use only the decomposed SSEs.

The PDBFinder II database (submitted) is an enhanced version of the
PDBfinder database [10]. It provides extensive information for almost all proteins
in the PDB. Most of this information could also be found in other databases as
well, but here it is all in one place. We parse loops and coils from the PDBFinder
II database.

The SCOP database [11, 14] is a classification on protein domains. It de-
fines four hierarchical levels: family, superfamily, common fold, and class. Two

domains in the same family are closely related, indicated by a high percentage
of sequence identity and structural similarity. Domains in the same superfamily
are rather distantly related, but should have a common ancestor. Mostly, this
means low sequence identity, but high structural similarity. Two domains have a
common fold if their secondary structure elements have the same arrangement,
i.e. topology. However, they are not necessarily related. The different folds are
grouped into classes according to their main class of secondary structure. The
ASTRAL database [6, 7] can be seen as bridging the gap between SCOP and
the PDB. Here, we use the ‘SPACI’ score that the ASTRAL consortium as-
signs to each protein domain in SCOP. It summarizes the quality of the struc-
ture determination experiment. We use it to determine a representative among
sequence-identical SSEs and Chains.

Integration. After the integration of the source databases into the Passta DB,
it contains tables and data for most proteins, chains, and SSEs available. Also,
some precomputed information needed in the annotation approach (‘PasstaRun’,
see Section 2.2) was stored.

The PDB and Chain ID fields are common in all of the source databases,
so we used them to cross-index all information before storing it in the Passta
database.

The SSEs with helical or strand conformation were taken from the PTGL.
The coils were parsed from the PDBFinderII, because the PTGL does not pro-
vide them. To ensure consistency, we required the SSE sequences from the PTGL
to map back to the PDBfinder II chain sequence. If this was not possible, we
excluded the whole chain from the database. If more than twenty percent of a
SSE sequence was made up of ‘X’s (amino acid unknown), we excluded this SSE
as well. Some SSEs are not contigous, they contain a chain break, indicated by
a gap character (‘−’). We decided to split those SSEs into two of the same class.
After the integration, the Passta DB contains 21572 proteins, 44048 chains, and
almost 1.5 million SSEs. That is about 90 % of all possible data.

MaxScores. For each SSE in the database, we stored its maximal alignment
(i.e., exact match) score under several substitution matrices. We use these values
as rough estimates of alignment quality (see Section 2.2).

Redundancy. Many chain- and SSE sequences are not unique. Since redundant
sequences slow down the search procedure, we mark them in order to exclude
them from the search process. The procedure is basically the same for chain and
SSE sequences: We select all equal sequences and compare the SPACI scores
of their ‘parent’ proteins. The sequence with the best associated SPACI score
is marked as being the representative, i.e. non-redundant. First, we do this on
the level of chains. Then, we apply it to the SSEs from those chains that were
marked non-redundant right before.

SCOP. We also integrated the SCOP classification into the database. For
most SSEs we now know the structural domain it belongs to.

2.2 PasstaRun - Annotation Strategy

The annotation of the query with PDB SSEs is implemented in two stages. The
first stage (‘Pass One’) is a filtering approach. It selects some candidate chains
for use in the second stage (‘Pass Two’), the annotation process itself. We used
the blosum62 substitution matrix with gap costs of 12 and 2 for initiation and
extension, respectively.

Pass One. Given a query R of length n, Pass One starts by selecting all non-
redundant SSEs of length 6 or more from the database. Each SSE comes with its
associated MaxScore. The Waterman-Eggert algorithm [22] computes pairwise,
local, non-intersecting alignments of two sequences. It starts with the optimal,
i.e. highest scoring alignment, then co- and suboptimal alignments are computed.
We apply the Waterman-Eggert algorithm in Pass One to compute several align-
ments between each SSE sequence and R, until the ratio score/MaxScore drops
below a predefined constant.

Let A be the set of all alignments found in this way. Each alignment α ∈ A
is represented by a 5-tuple (b, e, c, p, s). Elements b and e, 1 ≤ b ≤ e ≤ n, are the
begin and end indices of the aligned SSE w.r.t. the query; c ≥ 1 is a unique chain
identifier; p ≥ 1 is the position of the SSE in its chain; and s is the alignment
score. For a given alignment α = (b, e, c, p, s), we will refer to the individual
components of the 5-tuple as b(α) := b, e(α) := e, c(α) := c, p(α) := p, and
s(α) := s, respectively.

Our goal in Pass One is to find a set of good candidate chains for use in
Pass Two. In fact, we only need to find a set of good alignments, since we know
the chains that an aligned SSE sequence is contained in. We use a graph-based
approach to solve this problem. We define a directed acyclic graph G = (V, E),
where the set of vertices V is made up of representations of all alignments in A,
plus two other vertices; head = (0, 0, 0, 0, 0) and tail = (n+1, n+1, 0, 0, 0), such
that V = A ∪ {head, tail}.

An edge exists between two vertices u, w ∈ V , u 6= w, if and only if

1. u and w do not overlap (and u is before w), i.e. e(u) < b(w), and
2. there is no alignment v between u and w, i.e. 6 ∃ v ∈ V : e(u) < b(v) and

e(v) < b(w).

A path P in G is a sequence of vertices (v1, v2, . . . , vk) such that vi and vi+1

are connected by an edge for all 1 ≤ i < k. Any path from head to tail cor-
responds to a selection of non-overlapping alignments. The weight of a path
P = (v1, v2, . . . , vk) is given by weight(P) :=

∑
k

i=1
s(vi), it indicates the se-

lection quality. So, the problem to find good candidate chains transforms to a
single-source shortest path problem from head to tail, which can be solved easily
and efficiently (see e.g. [8]).

We compute all such optimal paths, i.e. where weight(P) is maximal, and
collect all chain IDs of their vertices for use in Pass Two. However, the SSEs
we use in the alignments are all non-redundant. SSEs with an identical sequence

may also exist in other chains. We identify those and collect their chain IDs as
well.

Pass Two. The goal of the second pass is to annotate the query with the best
selection of SSEs from those chains that passed Pass One. Since the result should
be biologically feasible, we have placed certain constraints on the algorithm.
Otherwise, Pass One and Pass Two are quite similar. We describe changes in
the definitions and the algorithm where applicable. Pass Two first collects for
each chain c in the list all SSEs, regardless of redundancy status or size (i.e.,
the complete chain). Then we recompute the set of alignments A. However, it
makes no sense to align sequences of length one or two to the query. Therefore,
we divided the alignment phase into an align and an extend part.

Align: Let l(S) be the length of an SSE sequence S. If l(S) = 2, we compute
all exact matches between S and the query R and insert the corresponding
alignment(s) into A. If l(S) ≥ 3, we use the Waterman-Eggert algorithm. We
accept an alignment α between S and R whenever its score/MaxScore ratio is
larger than a predefined constant.

Extend : Each time we insert an alignment α into A in the align phase, we
look at the SSEs adjacent to S in its chain. If they exist and their length is less
or equal to 4, we align them to R, allowing neither insertions nor deletions. If the
score is larger than zero, we include the new alignment into A (for an example,
see Fig. 1).

The directed acyclic graph G is built as described in Section 2.2. However,
there are some differences: In Pass Two, we expand the edge definition. There
is now also an edge between two vertices u, w ∈ V , if:

1. c(u) = c(w) i.e., both SSEs come from the same chain,
2. e(u) < b(w) (the no-overlap condition from Pass One), and
3. there is no other alignment v between u and w, where the SSE in v comes

from the same chain as the one in u and w: 6 ∃ v ∈ V : c(u) = c(v) = c(w)
and e(u) < b(v) and e(v) < b(w).

The definition of a path is the same as in Pass One. However, a path P =
(v1, v2, . . . , vk) in Pass Two can contain jumps and rearrangements. If the chains
of two adjacent vertices in P are different, i.e. c(vi) 6= c(vi+1), we call this a jump.
If they are equal but their positions are not consecutive, i.e. c(vi) = c(vi+1) and
p(vi+1) − p(vi) 6= 1, we call this a rearrangement. Let j(P) be the number of
jumps in a path P , and r(P) the number of rearrangements. We penalize jumps
and rearrangements by two parameters, jump cost (jc) and rearrangement cost

(rc). The weight of a path P is now given by

weight(P) =

k∑

i=1

s(vi) − j(P) × jc − r(P) × rc.

This makes the annotation of the query with small chance hits from different
chains highly unlikely, if the jump cost is chosen well. Finally, the alignments in
the optimal path are visualized in a HTML page.

01 60 70 80 |Q|

align

extend

align

extend

align

extend

.. ..Q EVLL GANGGVL V FE PN DFTV K SGE T

FL 4

-2FL

EVLL DFSVGGDDGSL FL

EVLL GGDDGSL

GGDDGSL AEVLL

EVLL GGDDGSL

GGDDGSL PGFLEVLL

PG

FL

EVLL DFSVGGDDGSL FL

////

Iteration 2

Iteration 3

Iteration 1

Fig. 1. Example to illustrate the alignment phase in Pass Two. The example corre-
sponds to the result shown in Fig. 2. Alignments displayed with reduced size are from
an ‘extend’ phase. Iteration 1, align: A local alignment of the SSE sequence ‘GGDDGSLA’
and the query is computed, yielding (‘GGDDGSL’, ‘GANGGVL’). Iteration 1, extend: The
SSE left of ‘GGDDGSLA’ is already aligned, so no extension is performed here. However,
the right SSE is small enough, and we match it (a) at the end position of the local

alignment and (b) at the position where the global alignment would have ended. Only
the latter is accepted here because its score exceeds zero. Iteration 2, align: ‘PG’ is of
length two, and there is no exact match with the query, so it is not aligned. Iteration 2,

extend: No alignment was accepted in the alignment phase, therefore nothing is to be
extended. Iteration 3, align: The SSE sequence ‘DFSV’ is aligned to the query. Iteration
3, extend: Now it is possible to extend with ‘PG’ to the left of ‘DFSV’.

3 Results and Discussion

We present and discuss two examples that we annotated with Passta to illustrate
some application possibilities. The complete and colored versions of the pre-
sented alignments can be found at http://www.cebitec.uni-bielefeld.de/

~bannert/res/filename, where filename is Pcya36-6.htm or T0269-40-5.htm.

3.1 Plastocyanin from rice

In the first example, the query was a plastocyanin (PC) sequence with a length
of 154 amino acids, from rice. We used a jumpcost value of 36. An excerpt of the
resulting file is shown in Fig. 2. Passta aligned two PDB chains to the query, the
raw score of the optimal path is 369. The annotation suggests that the first part
of the alignment is similar to 1fsk C, the heavy chain of an Immunoglobulin (IG)
antibody from Mus musculus (mouse). There are two rearrangements (SSEs not
consecutive) in the order of the SSEs from this chain. The second chain ‘1ag6’ is a
PC, from spinach (Spinacia oleracea). The annotation with ‘1ag6’ is doubtlessly
correct, however, given the high sequence similarity of the query to other PCs
in the PDB, it is not surprising.

What about the IG matched to the first part of the query? It is classified into
another SCOP fold than ‘1ag6’, namely ‘Immunoglobulin-like beta-sandwich’

Fig. 2. Passta alignment of Plastocyanin from rice (excerpt). The upper table shows
the local alignments of the SSE sequences with the query. The lower table displays the
position of the aligned SSEs in their PDB chain. While the SSEs of ‘1ag6’ are con-
secutively aligned, those of ‘1fsk’ are to some degree rearranged and duplicated. Some
query segments and SSEs are shaded. Dark SSE segments are strand SSEs, light ones
are helix SSEs. The intensity of the shaded segments in the query string corresponds
to the score they contribute. The darker, the better the score of the segment.

instead of ‘Cupredoxin’. The query PC in this experiment is 154 amino acids
long. The length of the other PCs in the Passta database is only about 100
residues. A multiple alignment of the query and all non-redundant PCs from the
PDB shows that the first 55 residues of the query are not matched by any other
PC in the DB (see Fig. 3). An alignment of the query against the whole SCOP
family 49504 ‘Plastocyanin/azurin-like’ reveals that the first 20 positions of the
query are unmatched by any other domain in the family, and that the sequence
similarity within the first 50 residues is in general quite low (data not shown).
Therefore, we could not find a close homolog matching this region. The IG is
not even a remote homolog of the query, but according to Russell et al. in [17]
it has a loose structural similarity to PCs.

In SCOP, structural similarities are classified into the same fold. The classi-
fication depends on the topology of the SSEs. Here, it matters whether a beta-
sheet is parallel or antiparallel. The loose similarity observed in our example
rather corresponds to the architecture level as defined in CATH [15]. The ori-
entation of the SSEs is not important at this level. A loose structural similarity
being more informative than a hit with absolutely no relationship to the query,
we consider the annotation with the mouse IG as success.

3.2 CASP target T0269

T0269 (PDB code ‘1vgs’) is a thioredoxin peroxidase from the archaeon Aeropy-

rum pernix, with two domains and a length of 250 residues. In this experiment,
we used a minimum length of 5 (instead of 6) for the non-redundant SSEs that
were aligned in Pass One. The Passta alignment reached a raw score of 191 and
used three chains, ‘1n8j A’, ‘1prx A’, and ‘1uth A’ (see Fig. 4). There are eight
rearrangements altogether, six in the alignment sequence of ‘1prx A’ and two in
‘1uth A’.

PC03 ---ETFTV

PC07 ---ETYTV

PC08 ---ANATV

PC09 ---ANATV

PC16 ---ANATV

PC04 ---QTVAI

PC01 ---ASVQI

PC12 --MIDV

PC14 ---IDV

PC17 ---LEV

PC02 ---VEV

PC13 ---VEV

PC05 ---AEV

PC06 ---AEV

PC18 ---AEV

PLAS_ORYSA MAALSSAAVTIPSMAPSAPGRRRMRSSLVVRASLGKAAGAAAVAVAASAMLAGGAMAQEV

PC19 --DATV

PC10 --AQIV

PC15 --AAIV

PC11 ---AKV

:

PC03 KMGADSGLLQFEPANVTVHPGDTVKWVNNKLPPHNILFDDKQVPG-ASKELADKLSHSQ-

PC07 KLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPA-KSADLAKSLSHKQ-

PC08 KMGSDSGALVFEPSTVTIKAGEEVKWVNNKLSPHNIVFAADGV----DADTAAKLSHKG-

PC09 KMGSDSGALVFEPSTVTIKAGEEVKWVNNKLSPHNIVFAADGV----DADTAAKLSHKG-

PC16 KMGSDSGALVFEPSTVTIKAGEEVKWVNNKLSPHNIVFDADGV----PADTAAKLSHKG-

PC04 KMGADNGMLAFEPSTIEIQAGDTVQWVNNKLAPHNVVVEGQ-----------PELSHKD-

PC01 KMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDKVPAG-----ESAPALSNTK-

PC12 LLGADDGSLAFVPSEFSCSPGCKIVFKNNAGFPHNIVFDEDSIP---SGVDASKISMSEE

PC14 LLGADDGSLAFVPSEFSISPGEKIVFKNNAGFPHNIVFDEDSIP---SGVDASKISMSEE

PC17 LLGSGDGSLVFVPSEFSVPSGEKIVFKNNAGFPHNVVFDEDEIP---AGVDAVKISMPEE

PC02 LLGGDDGSLAFLPGDFSVASGEEIVFKNNAGFPHNVVFDEDEIP---SGVDAAKISMSEE

PC13 LLGGDDGSEAFLPGDFSVASGEEIVFKNNAGFPHNVVFDEDEIP---SGVDAAKISMSEE

PC05 LLGSSDGGLAFVPSDLSIASGEKITFKNNAGFPHNDLFDEDEVP---AGVDVTKISMPEE

PC06 LLGSSDGGLAFVPSDLSIASGEKITFKNNAGFPHNDLFDKKEVP---AGVDVTKISMPEE

PC18 KLGSDDGGLVFSPSSFTVAAGEKITFKNNAGFPHNIVFDEDEVP---AGVNAEKISQPE-

PLAS_ORYSA LLGANGGVLVFEPNDFTVKSGETITFKNNAGFPHNVVFDEDAVP---SGVDVSKISQEE-

PC19 KLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIP---SGVNADAISRDD-

PC10 KLGGDDGSLAFVPSKISVAAGEAIEFVNNAGFPHNIVFDEDAVP---AGVDADAISYDD-

PC15 KLGGDDGSLAFVPNNITVGAGESIEFINNAGFPHNIVFDEDAVP---AGVDADAISAED-

PC11 EVGDEVGNFKFYPDSITVSAGEAVEFTLVGETGHNIVFDIPAGAPGTVASELKAASMDEN

:* : * . .* : : ** :. *

Fig. 3. Excerpt of a ClustalW alignment of the query (‘PLAS ORYSA’) with all other
non-redundant plastocyanins in the PDB.

There is no SCOP classification available for ‘1uth A’, and Fig. 4 shows
that the similarities of this chain to the query are few. Its use is probably due
to a chance hit of SSE number 4. ‘1n8j A’ and ‘1prx A’ are classified into the
same SCOP family (‘Glutathione peroxidase-like’), which contains thioredox-
ins. ‘1n8j A’ is an alkyl hydroperoxide reductase from Salmonella typhimurium,
‘1prx A’ is a human peroxidase. So, both proteins are correctly chosen from the
database.

However, we selected this example because of the interesting sequence of
SSE alignments in ‘1prx A’. There are six rearrangements here, but a closer
look reveals that there are really only three sequences of SSEs. If SSE number
14 was removed between number three and four, the first sequence is (10-16),
the second one (2-6), and the last one (21-25). Of course, since the alignments

Fig. 4. Passta alignment of T0269 from Aeropyrum pernix. The residues 1-32 are un-
matched. Then, five SSEs of ‘1n8j A’ are consecutively aligned to the query (number
6 to 10). From there on, ‘1prx A’ is used to annotate the query. After the alignment
of SSE number 16, a second sequence SSEs is consecutively aligned, from number 2
to 6. However, the sequence is interrupted by number 14, and after number 4 a third
sequence of consecutive SSE-alignments is started.

in the second sequence are very small, this could be just a coincidence. But it
could also indicate some evolutionary event that took place in the past.

4 Conclusion and Outlook

Passta delivers a snapshot that may provide useful information: It shows how well
a query sequence can be represented by PDB sequences, and at which positions.
Since the classes of the chains that the aligned SSEs originate from are also
displayed, some information on the secondary structure composition is available
as well. Finally, the position information given for every aligned SSE w.r.t. its
chain may indicate duplications, repeats or other evolutionary events.

Of course, some problems remain to be solved: Since Passta is presently based
on pairwise sequence alignments, we can not expect it to find remote homologs in
the ‘twilight zone’. We also have to admit that some of the computed alignments
are not very robust. Small variations of the jumpcost parameter can lead to large
variations in the resulting alignment.

We plan to use a set of secondary structure specific substitution matrices
as soon as possible. If the values for gap initiation and gap extension costs are
wisely chosen, this should further improve the annotation quality of Passta.

Acknowledgments

We would like to thank Patrick May, Hans-Michael Kaltenbach, and Klaus-Bernd
Schürmann for many interesting discussions; and the anonymous referee for some
helpful remarks.

References

1. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. J. Mol. Biol., 215:403–410, 1990.

2. S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman. Gapped blast and psi-blast: a new generation of protein database
search programs. Nucleic Acids Res., 25:3389–3402, 1997.

3. C. Bannert. Systematic investigation of jumping alignments. Technical Report,
2003-05, 2003. http://www.cebitec.uni-bielefeld.de/~bannert/pubs.html.

4. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids Res., 28:235–
242, 2000.

5. P. E. Bourne and H. Weissig. Structural Bioinformatics. Wiley Liss, 2003.
6. S. E. Brenner, P. Koehl, and M. Levitt. The astral compendium for protein struc-

ture and sequence analysis. Nucleic Acids Res., 28:254–256, 2000.
7. J. M. Chandonia, N. S. Walker, L. Lo Conte, P. Koehl, M. Levitt, and S. E. Brenner.

Astral compendium enhancements. Nucleic Acids Res., 30:260–263, 2002.
8. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms, 2nd Ed. MIT Press / McGraw-Hill, 2001.
9. S. R. Eddy. Profile hidden Markov models. Bioinformatics, 14:755–763, 1998.

10. R. W. W. Hooft, C. Sander, and G. Vriend. The pdbfinder database: A summary
of pdb, dssp and hssp information with added value. CABIOS, 12:525–529, 1996.

11. T. J. Hubbard, B. Ailey, S. E. Brenner, A. G. Murzin, and C. Chothia. SCOP:
A Structural Classification of Proteins database. Nucleic Acids Res., 27:254–256,
1999.

12. W. Kabsch and C. Sander. Dictionary of protein secondary structure: Pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers, 22:2577–
2637, 1983.

13. P. May, S. Barthel, and I. Koch. Ptgl - a web-based database application for
protein topologies. Bioinformatics, 20:3277–3279, 2004.

14. A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP: A structural
classification of proteins database for the investigation of sequences and structures.
J. Mol. Biol., 247:536–540, 1995.

15. F. M. G. Pearl, D. Lee, J. E. Bray, I. Sillitoe, A. E. Todd, A. P. Harrison, J. M.
Thornton, and C. A. Orengo. Assigning genomic sequences to cath. Nucleic Acids

Res., 28:277–282, 2000.
16. W. R. Pearson. Rapid and sensitive sequence comparison with FASTP and FASTA.

In R. F. Doolittle, editor, Molecular Evolution: Computer Analysis of Protein and

Nucleic Acid Sequences, volume 183 of Meth. Enzymol., chapter 5, pages 63–98.
Academic Press, San Diego, CA, 1990.

17. R. B. Russell, R. R. Copley, and G. J. Barton. Protein fold recognition by mapping
predicted secondary structures. J. Mol. Biol., 259:349–365, 1996.

18. J. Shi, T. L. Blundell, and K. Mizuguchi. FUGUE: Sequence-structure homology
recognition using environment-specific substitution tables and structure-dependent
gap penalties. J. Mol. Biol., 310:243–257, 2001.

19. E. Shih and M.-J. Hwang. Alternative alignments from comparison of protein
structures. Proteins, 56:519–527, 2004.

20. T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. J. Mol. Biol., 147:195–197, 1981.

21. R. Spang, M. Rehmsmeier, and J. Stoye. A novel approach to remote homology
detection: Jumping alignments. J. Comp. Biol., 9:747–760, 2002.

22. M. S. Waterman and M. Eggert. A new algorithm for best subsequence alignments
with application to trna-rrna comparisons. J. Mol. Biol., 197:723–728, 1987.

23. Y. Ye, L. Jaroszewski, W. Li, and A. Godzik. A segment alignment approach to
protein comparison. Bioinformatics, 19:742–749, 2003.

