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t. The 
omparison of genomes with the same gene 
ontent re-lies on our ability to 
ompare permutations, either by measuring howmu
h they di�er, or by measuring how mu
h they are alike. With thenotable ex
eption of the breakpoint distan
e, whi
h is based on the 
on-
ept of 
onserved adja
en
ies, measures of distan
e do not generalizeeasily to sets of more than two permutations. In this paper, we presenta basi
 unifying notion, 
onserved intervals, as a powerful generalizationof adja
en
ies, and as a key feature of genome rearrangement theories.We also show that sets of 
onserved intervals have elegant nesting and
haining properties that allow the development of 
ompa
t graphi
 rep-resentations, and linear time algorithms to manipulate them.1 Introdu
tionGene order analysis in a set of organisms is a powerful te
hnique for phylogeneti
inferen
e. Current methods are based on notions of distan
es between genomes,whi
h are usually de�ned as the minimum number of su
h and su
h operationsneeded to transform one genome into the other one. Distan
e matri
es 
an eitherbe used dire
tly as data for phylogeneti
 re
onstru
tion, or in more qualitativeattempts to re
onstru
t an
estral genomes [9℄. All these methods, with the no-table ex
eption of the breakpoint distan
e [6℄, are 
losely tied to initial 
hoi
es ofallowable rearrangement operations. They are also pure distan
es, in the sensethat similarities between genomes are purposefully ignored.The breakpoint distan
e is based on the notion of 
onserved adja
en
ies.Compared to other distan
es, it is easy to 
ompute, but it often fails to 
apturemore global relations between genomes [17℄. Nevertheless, 
onserved adja
en
ieshave two highly desirable properties:1. They 
an be de�ned on a set of more than two genomes, allowing for theidenti�
ation of similar features in a family of organisms.2. They are invariant under optimal rearrangement s
enarios, in the sense thatit is not ne
essary to break adja
en
ies to explain how a genome evolvedfrom another one [10, 15, 21℄.



Fruit Fly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17Mosquito 1 2 3 4 5 6 8 7 9 �10 11 12 13 14 15 16 17Silkworm 1 2 3 4 5 6 7 8 9 10 11 12 14 13 15 16 17Lo
ust 1 2 3 5 4 6 7 8 9 10 11 12 13 14 15 16 17Ti
k 1 3 4 5 6 7 8 9 10 11 �2 12 13 14 15 16 17Centipede 1 3 4 5 6 7 8 9 10 11 �2 12 16 13 14 15 17Table 1. Condensed mito
hondrial genomes of six ArthropodaA �rst generalization of adja
en
ies is the notion of 
ommon intervals that iden-tify subsets of genes that appear 
onse
utively in two or more genomes [13, 22℄.Common intervals identify more global relations between genomes, but oftenlose the invariant property of adja
en
ies with respe
t to optimal rearrange-ment s
enarios. For example, all optimal sortings by reversals of the permutation(1 3 2 5 � 4 6) break, in some of the intermediate permutations, the 
ommoninterval (2 3).Are adja
en
ies the only stru
tures that are invariant under biologi
allymeaningful rearrangement operations? No. There exists a 
lass of 
ommon in-tervals, 
alled 
onserved intervals, that may be the best of two worlds. We willshow that these stru
tures 
apture both lo
al and global properties of genomes;are invariant under most rearrangement s
enarios; and their number and nature
an be 
omputed in linear time.2 Permutations, Gene Order, and RearrangementsIn the following we will take for granted the simplifying hypothesis that the genesof an organism are ordered and oriented along linear or 
ir
ular DNA mole
ules.For example the 37 mito
hondrial genes of the Fruit Fly are listed in [7℄, withminus signs to re
e
t orientation, as:
ox1, L2, 
ox2, K, D, atp8, atp6, 
ox3, G, nad3, A, R, N, S1, E, -F,-nad5, -H, -nad4, -nad4L, T, -P, nad6, 
ob, S2, -nad1, -L1, -rrnL, -V,-rrnS, UNK, I, -Q, M, nad2, W, -C, -YThe �rst gene is arbitrary, sin
e mito
hondrial genomes are 
ir
ular mole
ules.When organisms with the same gene 
ontent are 
ompared, one of them is 
hosenas a base organism, and all identi
al strips of genes are 
onverted to integers.By extension, these are also 
alled \genes". Table 1 presents the result of thistransformation applied to the mito
hondrial genomes of six Arthropoda, withFruit Fly as base organism. The original 37 genes have been divided in 17 blo
ks:some represent isolated genes, and others represent longer strips. For example, 10stands for S1, and 11 for E, -F, -nad5, -H, -nad4, -nad4L, T, -P, nad6,
ob, S2, -nad1.Various te
hniques are then used to 
ompare the resulting permutations. Thedistan
e approa
hes fo
us on the di�eren
es between two parti
ular genomes.For example, Fruit Fly di�ers from Mosquito by the reversal of gene 10, andthe transposition of genes 7 and 8. One 
an 
ount the minimal number of rever-sals and/or transpositions ne
essary to transform ea
h genome into any other,



yielding a distan
e matrix for the set of spe
ies. Expli
it rearrangement s
enar-ios, that is, sequen
es of operations that transform optimally one genome intoanother, are also used to re
onstru
t an
estral genomes.Another approa
h, the breakpoint distan
e, 
ounts the lost adja
en
ies be-tween genomes. It does not rely on parti
ular rearrangement operations or anevolutionary model, and it has an asso
iated measure of similarity: the numberof 
onserved adja
en
ies. For example, given the 
ir
ularity of the genomes, FruitFly and Mosquito have 12 
onserved adja
en
ies, and their breakpoint distan
eis 5.Su
h a similarity measure extends easily to sets of spe
ies. For example, the�rst four spe
ies of Table 1 share 6 adja
en
ies: [1; 2℄, [2; 3℄, [11; 12℄, [15; 16℄,[16; 17℄, and [17; 1℄. When 
omparing all six spe
ies, the only left adja
en
y is[17; 1℄: this la
k of 
onserved adja
en
ies is a dire
t 
onsequen
e of how the datawas transformed. Does this mean that losing 
ommon adja
en
ies amounts tolosing all 
ommon stru
tures?A qui
k glan
e at Table 1 reveals that the six permutations are very \similar".For example, the genes in the interval [1; 12℄ are all the same, with small varia-tions in their ordering. This is also true for the genes in the intervals [3; 6℄, [6; 9℄,[9; 11℄, and [12; 17℄. It turns out that su
h intervals, together with 
onservedadja
en
ies, play a fundamental role in rearrangement and distan
e theories,an
estral genome re
onstru
tions, and phylogeny.The following family portrait gives a representation of the 
onserved intervalsof the permutations of Table 1:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17This representation boxes the elements in re
tangles, whi
h 
an be glued to-gether to form larger obje
ts. It takes its roots in PQ-trees [8℄ that are used torepresent sets of permutations. All permutations of Table 1 �t the representa-tion with the following 
onventions: (1) free obje
ts within a re
tangle 
an bereordered, or 
an 
hange sign, (2) 
onne
tions between re
tangles are �xed. Thisrepresentation also 
aptures the features that should be invariant in biologi
allyplausible rearrangement s
enarios within the family.In order to illustrate this last point, 
onsider the two following rearrange-ment s
enarios that transform Silkworm into Lo
ust using a minimal numberof reversals (operations that reverse the elements of a 
onse
utive blo
k while
hanging their signs).1 2 3 4 5 6 7 8 9 10 11 12 14 13 15 16 171 2 3 -4 5 6 7 8 9 10 11 12 14 13 15 16 171 2 3 -4 -5 6 7 8 9 10 11 12 14 13 15 16 171 2 3 5 4 6 7 8 9 10 11 12 14 13 15 16 171 2 3 5 4 6 7 8 9 10 11 12 -14 13 15 16 171 2 3 5 4 6 7 8 9 10 11 12 -14 -13 15 16 171 2 3 5 4 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 14 13 15 16 171 2 3 4 -14 -12 -11 -10 -9 -8 -7 -6 -5 13 15 16 171 2 3 4 -14 5 6 7 8 9 10 11 12 13 15 16 171 2 3 4 -13 -12 -11 -10 -9 -8 -7 -6 -5 14 15 16 171 2 3 5 6 7 8 9 10 11 12 13 -4 14 15 16 171 2 3 5 4 -13 -12 -11 -10 -9 -8 -7 -6 14 15 16 171 2 3 5 4 6 7 8 9 10 11 12 13 14 15 16 17Those two s
enarios are fundamentally di�erent, even if they both use sixreversals. The right one uses mu
h longer reversals than the left one, and the



right one breaks 
onserved intervals between Silkworm and Lo
ust in intermedi-ate permutations, namely [3; 6℄, [1; 12℄, and [12; 17℄. If a rearrangement s
enariois expe
ted to re
e
t the various intermediate spe
ies between Silkworm andLo
ust, the right one looks highly suspi
ious. Re
ent papers address these prob-lems in various ways, for example by assigning weights to operations [1℄, or withprobabilisti
 studies of the possible s
enarios [16℄.The two main 
aws of the se
ond s
enario { long reversals and breaking
onserved intervals { are 
losely tied: breaking 
onserved intervals, as we willshow in Se
t. 6, often involves long range operations that radi
ally disturb agenome. In this sense, 
onserved intervals 
an be used as an intrinsi
 measurethat allows to s
reen out rearrangement s
enarios, or phylogeneti
 hypotheses,without the need of arbitrary weights or probability measures.3 Conserved IntervalsThis se
tion presents a formalization of the notion of 
onserved intervals, to-gether with properties that allow the development of linear time algorithms tomanipulate them.De�nition 1. Let G be a set of signed permutations on n elements. An interval[a; b℄ is a 
onserved interval of the set G if:1) either a pre
edes b, or �b pre
edes �a, in ea
h permutation, and2) the set of unsigned elements that appear between a and b is the same forall permutations in G.An elementary 
onsequen
e of this de�nition is the fa
t that if [a; b℄ is a
onserved interval, so is [�b;�a℄. We will 
onsider these intervals as equivalent.Table 1 
ontains several examples of 
onserved intervals. Their des
ription iseased by the fa
t that the identity permutation belongs to the set G. When thisis the 
ase, all 
onserved intervals 
an be identi�ed with their positive endpointsa < b, and the set of elements that appear between a and b is fa + 1; : : : ; b �1g. The following example illustrates a more general 
ase. Consider the twopermutations: P = 1 2 3 7 5 6 �4 8Q = 1 7 �3 �2 5 �6 �4 8In this example, [1; 5℄ and [2; 3℄ are 
onserved intervals, but not [1; 6℄. The other
onserved intervals of P and Q are [1;�4℄, [1; 8℄, [5;�4℄, [5; 8℄, and [�4; 8℄. Thediagram representation of these intervals, with respe
t to the permutation P , is:1 2 3 7 5 6 -4 8When the identity permutation is not in G, it is always possible to renamethe elements of G su
h that 
onserved intervals will be intervals of 
onse
utiveelements. For example, if one 
omposes3 the permutations P and Q of the above3 Here, 
omposition is understood as the standard 
omposition of fun
tions. Dealingwith signed permutations requires the additional axiom that P (�a) = �P (a).



example with the inverse permutation P�1, the �rst permutation be
omes theidentity permutation Id = P�1 Æ P . In general, it is elementary to transform aset of 
onserved intervals to its equivalent up to renaming. It is a 
onsequen
eof the following proposition:Proposition 1. Let R be a permutation and G a set of permutations, denote byRÆG the set of permutations obtained by 
omposing ea
h permutation in G withR. The interval [a; b℄ is 
onserved in G if and only if the interval [R(a); R(b)℄ is
onserved in R ÆG.Some intervals, su
h as [1;�4℄ for the set fP;Qg in the above example, arethe union of smaller intervals: [1;�4℄ = [1; 5℄ [ [5;�4℄. Intervals that are notunions are spe
ially useful:De�nition 2. Conserved intervals that are not the union of shorter 
onservedintervals are 
alled irredu
ible.Sets of 
onserved intervals 
an be simply 
hara
terized by the 
orrespondingset of irredu
ible intervals. Indeed, disjoint irredu
ible intervals, as highlightedin the diagram representation, are either 
hained or nested. The following propo-sition 
aptures the basi
 properties of these stru
tures.Proposition 2 ([5℄). Two di�erent irredu
ible 
onserved intervals [a; b℄ and[
; d℄ of a set G of permutations, are either:1) disjoint,2) nested with di�erent endpoints, or3) overlapping on one element.Overlapping irredu
ible intervals form 
hains linked by their su

essive 
om-mon elements. A 
hain of k � 1 intervals [a1; a2℄[a2; a3℄ : : : [ak�1; ak℄ will be de-noted simply by its k links [a1; a2; a3; : : : ; ak℄. For example, [1; 5;�4; 8℄ is a 
hainof the set of 
onserved intervals of P and Q. A maximal 
hain is a 
hain that
annot be extended. We have:Proposition 3. Every irredu
ible 
onserved interval belongs to a unique maxi-mal 
hain.One 
onsequen
e of Proposition 3 is that maximal 
hains, as sets of links,together with isolated genes, form a partition of the set of genes. This will revealuseful to 
onstru
t data stru
tures to keep tra
k of 
onserved intervals.A set of permutations on n elements 
an have as many as n(n�1)=2 
onservedintervals, but at most n�1 irredu
ible intervals. These bounds are a
hieved withsets 
ontaining only one permutation. A key observation, that will eventuallylead to linear time algorithms to 
ompute the number of 
onserved intervals, isthe following:Proposition 4. Ea
h maximal 
hain of k links 
ontributes k(k � 1)=2 to thetotal number of 
onserved intervals.



Finally, we will want to 
onstru
t sets of 
onserved intervals for the union oftwo sets of permutations. De�nition 1 implies that the set of 
onserved intervalsof a union of two sets of permutations is the interse
tion of their sets of 
onservedintervals. The following proposition, shown in [5℄, relates these sets to theirrespe
tive irredu
ible intervals when both sets of permutations have at least onepermutation in 
ommon.Proposition 5. Let P be a permutation that is 
ontained in both sets of permu-tations G1 and G2. The interval [a; b℄ is a 
onserved interval of G = G1 [G2 ifand only if there exist two 
hains of irredu
ible 
onserved intervals, with respe
tto P , with k � 0, m � 0: [a; x1; : : : ; xk; b℄ in G1;[a; y1; : : : ; ym; b℄ in G2:The interval [a; b℄ is irredu
ible if and only if fx1; : : : ; xkg and fy1; : : : ; ymg aredisjoint.Variable Geometry Genomes. Although the de�nition of 
onserved inter-vals was given for permutations that model genomes 
omposed of single linear
hromosomes, they 
an be adapted to other types of genomes. For details, see [5℄.4 AlgorithmsThis se
tion dis
usses three algorithms. The �rst one is an adaptation of anexisting algorithm that 
omputes the 
onserved intervals of two permutations.The se
ond one 
omputes the 
onserved intervals of a set of permutations. Thethird one, �nally, 
omputes the 
onserved intervals of two sets of permutations,dire
tly from their two individual sets of 
onserved intervals.Conserved Intervals of Two Permutations. Conserved intervals betweentwo permutations are strongly related to the notion of 
onne
ted 
omponentsof the overlap graph of a signed permutation. This graph plays a fundamentalrole in the sorting by reversals problem [11℄, and the sorting by reversals andtranslo
ations problem [12℄. In the last few years, linear algorithms to identifythese 
omponents have been devised [2℄. The following algorithm is adaptedfrom [4℄, and identi�es all irredu
ible 
onserved intervals4 [a; b℄ of a permutation� with the identity permutation su
h that both a and b have positive sign in �.The 
ase of negative endpoints is treated by reversing �.For example, for the permutationP = 0 �4 �3 �2 5 8 6 7 9 �1 10;Algorithm 1 identi�es the positive irredu
ible 
onserved intervals [6; 7℄, [5; 9℄,and [0; 10℄. It will identify [2; 3℄ and [3; 4℄ on the reversed permutation.4 In the original paper, these were 
alled framed 
ommon intervals.



Algorithm 1 (Positive irredu
ible intervals with the identity permutation)1: sta
k 0 on S2: sta
k n onM3: M0  n4: for i = 1; : : : ; n do5: // Computation of Mi6: unsta
k fromM all elements m smaller than j�ij7: Mi  m8: sta
k the element j�ij onM9: // Identi�
ation of irredu
ible intervals10: unsta
k from S all indi
es s su
h that (j�ij < �s or j�ij > Ms)11: if i� s = �i � �s and Mi =Ms then12: output [�s; �i℄13: end if14: if �i is positive then15: sta
k the index i on S16: end if17: end forThe algorithm assumes that the input permutation is in the form � =(0; �1; : : : ; �n�1; n). De�ne Mi to be the nearest unsigned element of the per-mutation that pre
edes �i and is greater than j�ij. (Set Mi to n, if su
h anelement does not exist). The following lemma relates the values of Mi to 
on-served intervals.Lemma 1. If [�s; �e℄ is a positive 
onserved interval of � and the identity per-mutation, then Ms =Me.The algorithm uses two sta
ks: S 
ontains the possible start positions of
onserved intervals; M 
ontains possible 
andidates for Mi. The top of S isalways denoted by s. The top of M is always denoted by m.Proposition 6 ([4, 5℄). Algorithm 1 outputs the positive irredu
ible 
onservedintervals of a permutation � with the identity permutation in O(n) time.Corollary 1. By applying Algorithm 1 both to � = P�1 ÆQ and to the reverseof �, the irredu
ible 
onserved intervals of two permutations P and Q 
an befound in O(n) time.Conserved Intervals of a Set of Permutations. In order to �nd the irre-du
ible 
onserved intervals of a set of permutations, the �rst step is to 
omputethe irredu
ible intervals of ea
h permutation with one parti
ular permutationfrom the set, say �1, using Algorithm 1, and then merge together the resultingsets of irredu
ible intervals. For example, 
omputing the irredu
ible intervals ofthe set: Id = 0 1 2 3 4 5 6 7 8 9 10P = 0 �4 �3 �2 5 8 6 7 9 �1 10Q = 0 5 �7 �6 8 9 1 2 3 �4 10



Algorithm 2 (Irredu
ible intervals of G1 [ G2, both 
ontaining the identitypermutation)1: sta
k 0 on S2: for i = 1; : : : ; n do3: if there is an interval [x; i℄ in I1 then4: unsta
k from S all elements larger than x5: end if6: if there is an interval [x; i℄ in I2 then7: unsta
k from S all elements larger than x8: end if9: if s and i belong to the same 
hain both in I1 and I2 then10: unsta
k s from S and output [s; i℄11: end if12: if there is an interval that starts at i in I1, and one in I2 then13: sta
k i on S14: end if15: end forwould �rst yield the two sets of maximal 
hains f[0; 10℄; [2; 3; 4℄[5; 9℄; [6; 7℄g (ofP and the identity) and f[0; 10℄; [1; 2; 3℄; [5; 8; 9℄; [6; 7℄g (of Q and the identity),respe
tively, in graphi
 representation:0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10Assume that ea
h set of irredu
ible 
onserved intervals is given by its maximal
hains. Sin
e these form partitions of the genes that are endpoints of 
onservedintervals, there exists a data stru
ture with the following properties: (1) For ea
hindex from 1 to n, it is possible to determine in 
onstant time the interval, if any,that starts and/or ends at this index. (2) It is possible to determine in 
onstanttime if two intervals belong to the same 
hain.Let I1 and I2 be two sets of irredu
ible 
onserved intervals of sets of permu-tations G1 and G2 that have one permutation �1 in 
ommon. For the momentwe will assume that �1 is the identity permutation. Then Algorithm 2 �nds allirredu
ible 
onserved intervals of G1[G2. It uses a sta
k S that 
ontains possiblestart positions { or, equivalently, elements of the identity permutation. The topof the sta
k S is always denoted by s.The 
orre
tness and time 
omplexity of Algorithm 2 are established by thefollowing theorem, whose proof 
an be found in [5℄.Theorem 1. Algorithm 2 outputs the irredu
ible intervals of G = G1 [ G2 inO(n) time, given I1 and I2, the irredu
ible intervals of two sets of permutationsG1 and G2 that both 
ontain the identity permutation.Corollary 2. Let I1 and I2 be the irredu
ible intervals of two sets of permu-tations G1 and G2 that both 
ontain a permutation P . The irredu
ible inter-vals of G = G1 [ G2 
an be found in O(n) time by applying Algorithm 2 toI 01 = f[P�1(a); P�1(b)℄ j [a; b℄ 2 I1g and I 02 = f[P�1(a); P�1(b)℄ j [a; b℄ 2 I2g.



Corollary 3. The set of irredu
ible 
onserved intervals of a set of permutationsG 
an be 
omputed in O(jGjn) time and O(n) additional spa
e.Conserved Intervals of Disjoint Sets. Finally we are interested in 
omputingthe 
onserved intervals of two sets of permutations G1 = fP1; : : : ; Pkg and G2 =fQ1; : : : ; Qmg that not ne
essarily have a permutation in 
ommon, given theirsets of irredu
ible 
onserved intervals I1 and I2, respe
tively.This 
an be done in linear time by properly 
ombining Algorithms 1 and 2.The idea is to sele
t one permutation from ea
h set, say P1 from G1 and Q1from G2, and 
ompute the 
onserved intervals of these two by Algorithm 1.Then observe that the two sets fP1; Q1g and G1 = fP1; : : : ; Pkg have a jointpermutation P1, and hen
e their 
ommon irredu
ible intervals 
an be 
omputedby Algorithm 2. Similarly, fQ1; P1; : : : ; Pkg and G2 = fQ1; : : : ; Qmg 
ontain ajoint permutation Q1, so their 
ommon irredu
ible intervals 
an also be 
om-puted by Algorithm 2.5 Similarity and Distan
eThe number of 
onserved intervals of a set of permutations is a measure of simi-larity, but it 
an easily be transformed into a distan
e between two permutations,or two sets of permutations. The basi
 idea is that two sets of 
onserved intervals
an be 
ompared with the 
ardinality of their symmetri
 di�eren
e.De�nition 3. Let G1 and G2 be two sets of permutations on n elements, withrespe
tively N1 and N2 
onserved intervals. Let N be the number of 
onservedintervals in G1 [ G2. The interval distan
e between G1 and G2 is de�ned byd(G1; G2) = N1 +N2 � 2N .Note: The interval distan
e satis�es the fundamental properties of a mathemat-i
al distan
e sin
e one 
an prove that the relation is symmetri
, re
exive, andsatis�es the triangle inequality: d(G1; G0) + d(G0; G2) � d(G1; G2).A detailed 
omparison of the interval distan
e with other rearrangement dis-tan
es 
an be found in [5℄. The behavior of the interval distan
e is a 
onsequen
eof the fa
t that it is a�e
ted be the length { or number of genes { involved in arearrangement operation: short reversals, for example, are less disturbing thanlong ones. In parti
ular, the amount of disruption due to a single rearrangementoperation 
an readily be 
omputed. For example, we have the following:Proposition 7. Suppose that P and Q have n elements, then:1) if P is obtained from Q by reversing k elements, then the interval distan
ebetween P and Q is k(n� k);2) if P is obtained from Q by transposing two 
onse
utive blo
ks of a and belements, then the interval distan
e between P and Q is (a+ b)(n� (a+ b))+ab.Sin
e the interval distan
e is a�e
ted by length, the pra
ti
e of 
ollapsingidenti
al strips of genes should be questioned. Indeed, as we saw in the example



of Se
t. 2, the integers resulting from su
h a transformation stand for strips ofgenes that vary greatly in length. We believe that whole genome 
omparisonshould use all available information, and that length of segments is relevant tothe study of rearrangement s
enarios, as advo
ated in [19℄.6 Links With Rearrangement TheoriesIn Se
t. 2, we gave an example of how 
onserved intervals 
ould be used toevaluate optimal reversal s
enarios between two genomes. Reversals are one ofthe many operations that are 
urrently used to model genome evolution: themain other ones { among those that do not need to model dupli
ation of genes{ are transpositions, reverse transpositions, translo
ations, fusions, and �ssions.In this se
tion, we want to 
hara
terize the rearrangement operations, ors
enarios, that preserve 
onserved intervals:De�nition 4. Let P and Q be two permutations, and � a rearrangement opera-tion applied to P yielding P 0. We say that � preserves the 
onserved intervals ofP and Q if the 
onserved intervals of fP;Qg are 
ontained in those of fP 0; Qg.Keeping in mind the graphi
al representation of the 
onserved intervals, it iseasy to identify the operations that preserve 
onserved intervals: only rearrange-ments within blo
ks are preserving. To be more formal, note that all operations,ex
ept fusions, destroy some adja
en
ies that existed in the original permutation:the number and nature of these adja
en
ies is a key 
on
ept.De�nition 5. Let � be a rearrangement operation that transforms P into P 0. Abreakpoint of � is a pair of elements that are adja
ent in P but not in P 0.In other words, breakpoints are where one has to 
ut P in order to apply�. Reversals and translo
ations have 2 breakpoints, transpositions have 3, and�ssions have 1.Consider the irredu
ible intervals of P and P 0 with respe
t to P . Adja
en
iesin P either belong to a (smallest) irredu
ible interval, or are free. For example,in the diagram 1 2 3 4 5 6 7 8 9 10the adja
en
y (3; 4) belongs to the interval [1; 5℄, (2; 3) belongs to [2; 3℄, and (8; 9)is free. Note that when two or more adja
en
ies belong to the same irredu
ibleinterval, then none of these adja
en
ies is 
onserved between P and P 0.Theorem 2 ([5℄). Reversals, transpositions, and reverse transpositions are pre-serving if and only if all their breakpoints belong to the same irredu
ible interval,or are free. Translo
ations and �ssions are preserving if and only if all theirbreakpoints are free.



It turns out that most rearrangement operations used in optimal s
enariosare indeed preserving. It is outside the s
ope of this paper to dis
uss these resultsin detail: they involve the 
y
le stru
ture of a permutation, whi
h are spe
ialsubsets of the breakpoints of a permutation P with respe
t to a permutation P 0.The following result has been proved in various disguises in re
ent years [4, 11,14℄:Theorem 3. All the breakpoints of a 
y
le belong to the same irredu
ible inter-val.In the sorting by reversals theory, a sorting reversal is de�ned as a reversalthat de
reases the reversal distan
e by 1. It is shown [11, 20℄ that the breakpointsof sorting reversals, ex
ept for one type 
alled 
omponent merging, belong to asingle 
y
le, thus we have:Corollary 4. All sorting reversals, ex
ept 
omponent merging, are preserving.Component mergings are a rare type of reversals in optimal s
enarios: theybreak at least two irredu
ible intervals, thus they often involve long reversals.The theory of translo
ations, fusions, and �ssions [12, 18℄ relies on the prop-erties of sorting by reversals, thus most sorting reversals are preserving. Finally,transpositions are a more deli
ate matter sin
e sorting transpositions are not(yet) 
hara
terized. Nevertheless, it is known that transpositions that in
reasethe number of 
y
les { a desirable property when sorting permutations { haveall their breakpoints in the same 
y
le [3℄. Thus we have:Corollary 5. All transpositions that 
reate two adja
en
ies are preserving.7 Con
lusionWe have introdu
ed a new similarity measure for permutations, based on the
on
ept of 
onserved intervals. Conserved intervals have very interesting prop-erties with respe
t to preserving the usual genome rearrangement operations.We believe that 
onserved intervals are a fundamental 
on
ept of rearrangementtheory: they provide the unifying grounds to understand the variety of opera-tions that are used to model genome evolution. Supported by re
ent results onthe expe
ted size of rearranged genome segments, one 
ould go as far and 
laimthat any rearrangement s
enario that breaks 
onserved intervals is mathemati
alrambling without 
onne
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