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Abstract. The comparison of genomes with the same gene content re-
lies on our ability to compare permutations, either by measuring how
much they differ, or by measuring how much they are alike. With the
notable exception of the breakpoint distance, which is based on the con-
cept of conserved adjacencies, measures of distance do not generalize
easily to sets of more than two permutations. In this paper, we present
a basic unifying notion, conserved intervals, as a powerful generalization
of adjacencies, and as a key feature of genome rearrangement theories.
We also show that sets of conserved intervals have elegant nesting and
chaining properties that allow the development of compact graphic rep-
resentations, and linear time algorithms to manipulate them.

1 Introduction

Gene order analysis in a set of organisms is a powerful technique for phylogenetic
inference. Current methods are based on notions of distances between genomes,
which are usually defined as the minimum number of such and such operations
needed to transform one genome into the other one. Distance matrices can either
be used directly as data for phylogenetic reconstruction, or in more qualitative
attempts to reconstruct ancestral genomes [9]. All these methods, with the no-
table exception of the breakpoint distance [6], are closely tied to initial choices of
allowable rearrangement operations. They are also pure distances, in the sense
that similarities between genomes are purposefully ignored.

The breakpoint distance is based on the notion of conserved adjacencies.
Compared to other distances, it is easy to compute, but it often fails to capture
more global relations between genomes [17]. Nevertheless, conserved adjacencies
have two highly desirable properties:

1. They can be defined on a set of more than two genomes, allowing for the
identification of similar features in a family of organisms.

2. They are invariant under optimal rearrangement scenarios, in the sense that
it is not necessary to break adjacencies to explain how a genome evolved
from another one [10,15,21].



Fruit Fly {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Mosquito |1 2 3 4 5 6 8 7 9 —10 11 12 13 14 15 16 17
Silkworm (1 2 3 4 5 6 7 8 9 10 11 12 14 13 15 16 17
Locust 1 2 3 5 4 6 7 8 9 10 11 12 13 14 15 16 17
Tick 1 3 4 5 6 7 8 9 10 11 -2 12 13 14 15 16 17
Centipede |1 3 4 5 6 7 8 9 10 11 —2 12 16 13 14 15 17

Table 1. Condensed mitochondrial genomes of six Arthropoda

A first generalization of adjacencies is the notion of common intervals that iden-
tify subsets of genes that appear consecutively in two or more genomes [13, 22].
Common intervals identify more global relations between genomes, but often
lose the invariant property of adjacencies with respect to optimal rearrange-
ment scenarios. For example, all optimal sortings by reversals of the permutation
(1 3 2 5 —4 6) break, in some of the intermediate permutations, the common
interval (2 3).

Are adjacencies the only structures that are invariant under biologically
meaningful rearrangement operations? No. There exists a class of common in-
tervals, called conserved intervals, that may be the best of two worlds. We will
show that these structures capture both local and global properties of genomes;
are invariant under most rearrangement scenarios; and their number and nature
can be computed in linear time.

2 Permutations, Gene Order, and Rearrangements

In the following we will take for granted the simplifying hypothesis that the genes
of an organism are ordered and oriented along linear or circular DNA molecules.
For example the 37 mitochondrial genes of the Fruit Fly are listed in [7], with
minus signs to reflect orientation, as:

coxl, L2, cox2, K, D, atp8, atp6, cox3, G, nad3, A, R, N, S1, E, -F,
-nad5, -H, -nad4, -nad4lL, T, -P, nad6, cob, S2, -nadl, -L1, -rrnL, -V,
-rrnS, UNK, I, -Q, M, nad2, W, -C, -Y

The first gene is arbitrary, since mitochondrial genomes are circular molecules.
When organisms with the same gene content are compared, one of them is chosen
as a base organism, and all identical strips of genes are converted to integers.
By extension, these are also called “genes”. Table 1 presents the result of this
transformation applied to the mitochondrial genomes of six Arthropoda, with
Fruit Fly as base organism. The original 37 genes have been divided in 17 blocks:
some represent isolated genes, and others represent longer strips. For example, 10
stands for S1, and 11 for E, -F, -nad5, -H, -nad4, -nad4L, T, -P, nad6,
cob, S2, -nadl.

Various techniques are then used to compare the resulting permutations. The
distance approaches focus on the differences between two particular genomes.
For example, Fruit Fly differs from Mosquito by the reversal of gene 10, and
the transposition of genes 7 and 8. One can count the minimal number of rever-
sals and/or transpositions necessary to transform each genome into any other,



yielding a distance matrix for the set of species. Explicit rearrangement scenar-
ios, that is, sequences of operations that transform optimally one genome into
another, are also used to reconstruct ancestral genomes.

Another approach, the breakpoint distance, counts the lost adjacencies be-
tween genomes. It does not rely on particular rearrangement operations or an
evolutionary model, and it has an associated measure of similarity: the number
of conserved adjacencies. For example, given the circularity of the genomes, Fruit
Fly and Mosquito have 12 conserved adjacencies, and their breakpoint distance
is 5.

Such a similarity measure extends easily to sets of species. For example, the
first four species of Table 1 share 6 adjacencies: [1,2], [2,3], [11,12], [15, 16],
[16,17], and [17,1]. When comparing all six species, the only left adjacency is
[17,1]: this lack of conserved adjacencies is a direct consequence of how the data
was transformed. Does this mean that losing common adjacencies amounts to
losing all common structures?

A quick glance at Table 1 reveals that the six permutations are very “similar”.
For example, the genes in the interval [1,12] are all the same, with small varia-
tions in their ordering. This is also true for the genes in the intervals [3, 6], [6, 9],
[9,11], and [12,17]. It turns out that such intervals, together with conserved
adjacencies, play a fundamental role in rearrangement and distance theories,
ancestral genome reconstructions, and phylogeny.

The following family portrait gives a representation of the conserved intervals
of the permutations of Table 1:

(1] 2] (2] [adls] Jo] [1[s] [0 17

This representation boxes the elements in rectangles, which can be glued to-
gether to form larger objects. It takes its roots in PQ-trees [8] that are used to
represent sets of permutations. All permutations of Table 1 fit the representa-
tion with the following conventions: (1) free objects within a rectangle can be
reordered, or can change sign, (2) connections between rectangles are fixed. This
representation also captures the features that should be invariant in biologically
plausible rearrangement scenarios within the family.

In order to illustrate this last point, consider the two following rearrange-
ment scenarios that transform Silkworm into Locust using a minimal number
of reversals (operations that reverse the elements of a consecutive block while
changing their signs).

123 456789101112 14 131516 17| (1234 5 6 7 8 9101112141315 16 17
123-4 56789101112 14 131516 17| (123 4-14-12-11-10 -9 -8 -7 -6 -5 13 15 16 17
123-4-56789101112 14 13151617 (1234-14 5 6 7 8 9101112131516 17
123 5 46789101112 14 131516 17| (1234-13-12-11-10 -9 -8 -7 -6 -5 14 15 16 17
123 5 46789101112-14 131516 17| (1235 6 7 8 9 10111213 -4141516 17
123 5 467891011 12-14-131516 17| (1235 4-13-12-11-10 -9 -8 -7 -6 14 15 16 17
123 5 46789101112 13 141516 17| (1235 4 6 7 8 9101112131415 16 17

Those two scenarios are fundamentally different, even if they both use six
reversals. The right one uses much longer reversals than the left one, and the



right one breaks conserved intervals between Silkworm and Locust in intermedi-
ate permutations, namely [3,6], [1,12], and [12,17]. If a rearrangement scenario
is expected to reflect the various intermediate species between Silkworm and
Locust, the right one looks highly suspicious. Recent papers address these prob-
lems in various ways, for example by assigning weights to operations [1], or with
probabilistic studies of the possible scenarios [16].

The two main flaws of the second scenario — long reversals and breaking
conserved intervals — are closely tied: breaking conserved intervals, as we will
show in Sect. 6, often involves long range operations that radically disturb a
genome. In this sense, conserved intervals can be used as an intrinsic measure
that allows to screen out rearrangement scenarios, or phylogenetic hypotheses,
without the need of arbitrary weights or probability measures.

3 Conserved Intervals

This section presents a formalization of the notion of conserved intervals, to-
gether with properties that allow the development of linear time algorithms to
manipulate them.

Definition 1. Let G be a set of signed permutations on n elements. An interval
[a,b] is a conserved interval of the set G if:

1) either a precedes b, or —b precedes —a, in each permutation, and

2) the set of unsigned elements that appear between a and b is the same for
all permutations in G.

An elementary consequence of this definition is the fact that if [a,b] is a
conserved interval, so is [—b, —a]. We will consider these intervals as equivalent.
Table 1 contains several examples of conserved intervals. Their description is
eased by the fact that the identity permutation belongs to the set G. When this
is the case, all conserved intervals can be identified with their positive endpoints
a < b, and the set of elements that appear between a and bis {a+1,...,b—
1}. The following example illustrates a more general case. Consider the two
permutations:
P= 12 3 75 6-438
Q= 17-3-25-6-48
In this example, [1,5] and [2, 3] are conserved intervals, but not [1,6]. The other
conserved intervals of P and @Q are [1,—4], [1,8], [5,—4], [5,8], and [—4, 8]. The
diagram representation of these intervals, with respect to the permutation P, is:

[1] [213][7]]5] [6] [-4]s]

When the identity permutation is not in G, it is always possible to rename
the elements of G such that conserved intervals will be intervals of consecutive
elements. For example, if one composes® the permutations P and Q of the above

3 Here, composition is understood as the standard composition of functions. Dealing
with signed permutations requires the additional axiom that P(—a) = —P(a).



example with the inverse permutation P!, the first permutation becomes the
identity permutation Id = P~! o P. In general, it is elementary to transform a
set of conserved intervals to its equivalent up to renaming. It is a consequence
of the following proposition:

Proposition 1. Let R be a permutation and G a set of permutations, denote by
Rod the set of permutations obtained by composing each permutation in G with
R. The interval [a,b] is conserved in G if and only if the interval [R(a), R(b)] is
conserved in RoG.

Some intervals, such as [1,—4] for the set {P, @} in the above example, are
the union of smaller intervals: [1,—4] = [1,5] U [5, —4]. Intervals that are not
unions are specially useful:

Definition 2. Conserved intervals that are not the union of shorter conserved
intervals are called irreducible.

Sets of conserved intervals can be simply characterized by the corresponding
set of irreducible intervals. Indeed, disjoint irreducible intervals, as highlighted
in the diagram representation, are either chained or nested. The following propo-
sition captures the basic properties of these structures.

Proposition 2 ([5]). Two different irreducible conserved intervals [a,b] and
[c,d] of a set G of permutations, are either:

1) disjoint,

2) nested with different endpoints, or

3) overlapping on one element.

Overlapping irreducible intervals form chains linked by their successive com-
mon elements. A chain of k — 1 intervals [a;, as][az,as]...[ar—1,a] will be de-
noted simply by its k links [a;, a9, as, . .., ax]. For example, [1,5, —4, 8] is a chain
of the set of conserved intervals of P and ). A maximal chain is a chain that
cannot be extended. We have:

Proposition 3. Every irreducible conserved interval belongs to a unique maxi-
mal chain.

One consequence of Proposition 3 is that maximal chains, as sets of links,
together with isolated genes, form a partition of the set of genes. This will reveal
useful to construct data structures to keep track of conserved intervals.

A set of permutations on n elements can have as many as n(n—1)/2 conserved
intervals, but at most n — 1 irreducible intervals. These bounds are achieved with
sets containing only one permutation. A key observation, that will eventually
lead to linear time algorithms to compute the number of conserved intervals, is
the following:

Proposition 4. FEach mazimal chain of k links contributes k(k — 1)/2 to the
total number of conserved intervals.



Finally, we will want to construct sets of conserved intervals for the union of
two sets of permutations. Definition 1 implies that the set of conserved intervals
of a union of two sets of permutations is the intersection of their sets of conserved
intervals. The following proposition, shown in [5], relates these sets to their
respective irreducible intervals when both sets of permutations have at least one
permutation in common.

Proposition 5. Let P be a permutation that is contained in both sets of permu-
tations G1 and Ga. The interval [a,b] is a conserved interval of G = G1 UGy if
and only if there exist two chains of irreducible conserved intervals, with respect
to P, with k>0, m > 0:

[a,21,...,2k,b] in Gy,
[aayla---aymab] mn G2.

The interval [a,b] is irreducible if and only if {x1,...,z} and {y1,...,ym} are
disjoint.

Variable Geometry Genomes. Although the definition of conserved inter-
vals was given for permutations that model genomes composed of single linear
chromosomes, they can be adapted to other types of genomes. For details, see [5].

4 Algorithms

This section discusses three algorithms. The first one is an adaptation of an
existing algorithm that computes the conserved intervals of two permutations.
The second one computes the conserved intervals of a set of permutations. The
third one, finally, computes the conserved intervals of two sets of permutations,
directly from their two individual sets of conserved intervals.

Conserved Intervals of Two Permutations. Conserved intervals between
two permutations are strongly related to the notion of connected components
of the overlap graph of a signed permutation. This graph plays a fundamental
role in the sorting by reversals problem [11], and the sorting by reversals and
translocations problem [12]. In the last few years, linear algorithms to identify
these components have been devised [2]. The following algorithm is adapted
from [4], and identifies all irreducible conserved intervals* [a, b] of a permutation
7w with the identity permutation such that both a and b have positive sign in .
The case of negative endpoints is treated by reversing .
For example, for the permutation

P=0-4-3-258679-110,

Algorithm 1 identifies the positive irreducible conserved intervals [6,7], [5,9],
and [0, 10]. It will identify [2, 3] and [3,4] on the reversed permutation.

* In the original paper, these were called framed common intervals.



Algorithm 1 (Positive irreducible intervals with the identity permutation)
1: stack 0 on S

2: stack n on M

3: Mo+ n

4: fori=1,...,n do

// Computation of M;
unstack from M all elements m smaller than |m;|

M; +—m
stack the element |m;| on M

9:  // Identification of irreducible intervals

10:  unstack from S all indices s such that (|m;| < 75 or |m| > M)
11: if i —s=m —ms and M; = M, then

12: output [ms, ;]

13:  end if

14: if m; is positive then
15: stack the index 7 on S
16: end if

17: end for

The algorithm assumes that the input permutation is in the form 7= =
(0,71,...,Tn—1,n). Define M; to be the nearest unsigned element of the per-
mutation that precedes m; and is greater than |m;|. (Set M; to n, if such an
element does not exist). The following lemma relates the values of M; to con-
served intervals.

Lemma 1. If [rs, 7] is a positive conserved interval of m and the identity per-
mutation, then Mg = M,.

The algorithm uses two stacks: S contains the possible start positions of
conserved intervals; M contains possible candidates for M;. The top of S is
always denoted by s. The top of M is always denoted by m.

Proposition 6 ([4,5]). Algorithm 1 outputs the positive irreducible conserved
intervals of a permutation m with the identity permutation in O(n) time.

Corollary 1. By applying Algorithm 1 both to m = P~! o Q and to the reverse
of w, the irreducible conserved intervals of two permutations P and Q) can be
found in O(n) time.

Conserved Intervals of a Set of Permutations. In order to find the irre-
ducible conserved intervals of a set of permutations, the first step is to compute
the irreducible intervals of each permutation with one particular permutation
from the set, say m, using Algorithm 1, and then merge together the resulting
sets of irreducible intervals. For example, computing the irreducible intervals of
the set:

Id= 0 1 2 345678 9 10
P=0-4-3-258679-110
Q=0 5-7T-689123-410



Algorithm 2 (Irreducible intervals of G; U G, both containing the identity
permutation)

1: stack 0 on S

2: fori=1,...,n do

3:  if there is an interval [z, 4] in I then

4: unstack from S all elements larger than «

5:  end if

6: if there is an interval [z, ] in I> then

7 unstack from S all elements larger than «

8: end if

9: if s and ¢ belong to the same chain both in I; and I> then
10: unstack s from S and output [s, 4]

11:  end if

12: if there is an interval that starts at ¢ in I, and one in I> then
13: stack 7 on S

14: end if

15: end for

would first yield the two sets of maximal chains {[0, 10],[2, 3, 4][5, 9], [6, 7]} (of
P and the identity) and {[0,10],[1,2,3],[5,8,9],[6,7]} (of @ and the identity),
respectively, in graphic representation:

(o] [L)[213]4][5] [e]7][8] [9] [0] [6]7] [8]9]

Assume that each set of irreducible conserved intervals is given by its maximal
chains. Since these form partitions of the genes that are endpoints of conserved
intervals, there exists a data structure with the following properties: (1) For each
index from 1 to n, it is possible to determine in constant time the interval, if any,
that starts and/or ends at this index. (2) It is possible to determine in constant
time if two intervals belong to the same chain.

Let I; and I, be two sets of irreducible conserved intervals of sets of permu-
tations (G; and (G5 that have one permutation 7; in common. For the moment
we will assume that 7 is the identity permutation. Then Algorithm 2 finds all
irreducible conserved intervals of G1 UG». It uses a stack S that contains possible
start positions — or, equivalently, elements of the identity permutation. The top
of the stack S is always denoted by s.

The correctness and time complexity of Algorithm 2 are established by the
following theorem, whose proof can be found in [5].

Theorem 1. Algorithm 2 outputs the irreducible intervals of G = G1 U G2 in
O(n) time, given I, and I, the irreducible intervals of two sets of permutations
G1 and G4 that both contain the identity permutation.

Corollary 2. Let I; and Iy be the irreducible intervals of two sets of permu-
tations G1 and G5 that both contain a permutation P. The irreducible inter-
vals of G = Gy U G2 can be found in O(n) time by applying Algorithm 2 to
I ={[P~"(a),P7'(0)] | [a,b] € I} and I} = {[P~"(a),P~"(b)] | [a,}] € I>}.



Corollary 3. The set of irreducible conserved intervals of a set of permutations
G can be computed in O(|G|n) time and O(n) additional space.

Conserved Intervals of Disjoint Sets. Finally we are interested in computing
the conserved intervals of two sets of permutations Gy = {Py,..., P} and G, =
{@Q1,...,Qm} that not necessarily have a permutation in common, given their
sets of irreducible conserved intervals I; and I, respectively.

This can be done in linear time by properly combining Algorithms 1 and 2.
The idea is to select one permutation from each set, say P; from G; and @,
from G, and compute the conserved intervals of these two by Algorithm 1.
Then observe that the two sets {P;,Q:1} and Gy = {Py,..., P} have a joint
permutation Py, and hence their common irreducible intervals can be computed
by Algorithm 2. Similarly, {Q1, P1,...,Px} and Gs = {Q1,...,Q} contain a
joint permutation ()1, so their common irreducible intervals can also be com-
puted by Algorithm 2.

5 Similarity and Distance

The number of conserved intervals of a set of permutations is a measure of simi-
larity, but it can easily be transformed into a distance between two permutations,
or two sets of permutations. The basic idea is that two sets of conserved intervals
can be compared with the cardinality of their symmetric difference.

Definition 3. Let Gi and G> be two sets of permutations on n elements, with
respectively N1 and Ny conserved intervals. Let N be the number of conserved
intervals in G1 U G5. The interval distance between G1 and G is defined by
d(G1,G3) = Ny + N, —2N.

Note: The interval distance satisfies the fundamental properties of a mathemat-
ical distance since one can prove that the relation is symmetric, reflexive, and
satisfies the triangle inequality: d(G1,G") + d(G',G3) > d(G1,Gs).

A detailed comparison of the interval distance with other rearrangement dis-
tances can be found in [5]. The behavior of the interval distance is a consequence
of the fact that it is affected be the length — or number of genes — involved in a
rearrangement operation: short reversals, for example, are less disturbing than
long ones. In particular, the amount of disruption due to a single rearrangement
operation can readily be computed. For example, we have the following:

Proposition 7. Suppose that P and Q have n elements, then:

1) if P is obtained from Q by reversing k elements, then the interval distance
between P and @ is k(n — k);

2) if P is obtained from @Q by transposing two consecutive blocks of a and b
elements, then the interval distance between P and @ is (a+b)(n— (a+b)) + ab.

Since the interval distance is affected by length, the practice of collapsing
identical strips of genes should be questioned. Indeed, as we saw in the example



of Sect. 2, the integers resulting from such a transformation stand for strips of
genes that vary greatly in length. We believe that whole genome comparison
should use all available information, and that length of segments is relevant to
the study of rearrangement scenarios, as advocated in [19].

6 Links With Rearrangement Theories

In Sect. 2, we gave an example of how conserved intervals could be used to
evaluate optimal reversal scenarios between two genomes. Reversals are one of
the many operations that are currently used to model genome evolution: the
main other ones — among those that do not need to model duplication of genes
— are transpositions, reverse transpositions, translocations, fusions, and fissions.

In this section, we want to characterize the rearrangement operations, or
scenarios, that preserve conserved intervals:

Definition 4. Let P and Q) be two permutations, and p a rearrangement opera-
tion applied to P yielding P'. We say that p preserves the conserved intervals of
P and Q if the conserved intervals of {P,Q} are contained in those of {P',Q}.

Keeping in mind the graphical representation of the conserved intervals, it is
easy to identify the operations that preserve conserved intervals: only rearrange-
ments within blocks are preserving. To be more formal, note that all operations,
except fusions, destroy some adjacencies that existed in the original permutation:
the number and nature of these adjacencies is a key concept.

Definition 5. Let p be a rearrangement operation that transforms P into P'. A
breakpoint of p is a pair of elements that are adjacent in P but not in P'.

In other words, breakpoints are where one has to cut P in order to apply
p. Reversals and translocations have 2 breakpoints, transpositions have 3, and
fissions have 1.

Consider the irreducible intervals of P and P’ with respect to P. Adjacencies
in P either belong to a (smallest) irreducible interval, or are free. For example,
in the diagram

[1] [2]3][4][5] [6] [7[8][o]10]

the adjacency (3,4) belongs to the interval [1, 5], (2, 3) belongs to [2, 3], and (8, 9)
is free. Note that when two or more adjacencies belong to the same irreducible
interval, then none of these adjacencies is conserved between P and P’.

Theorem 2 ([5]). Reversals, transpositions, and reverse transpositions are pre-
serving if and only if all their breakpoints belong to the same irreducible interval,
or are free. Translocations and fissions are preserving if and only if all their
breakpoints are free.



It turns out that most rearrangement operations used in optimal scenarios
are indeed preserving. It is outside the scope of this paper to discuss these results
in detail: they involve the cycle structure of a permutation, which are special
subsets of the breakpoints of a permutation P with respect to a permutation P’.
The following result has been proved in various disguises in recent years [4,11,
14]:

Theorem 3. All the breakpoints of a cycle belong to the same irreducible inter-
val.

In the sorting by reversals theory, a sorting reversal is defined as a reversal
that decreases the reversal distance by 1. It is shown [11,20] that the breakpoints
of sorting reversals, except for one type called component merging, belong to a
single cycle, thus we have:

Corollary 4. All sorting reversals, except component merging, are preserving.

Component mergings are a rare type of reversals in optimal scenarios: they
break at least two irreducible intervals, thus they often involve long reversals.

The theory of translocations, fusions, and fissions [12, 18] relies on the prop-
erties of sorting by reversals, thus most sorting reversals are preserving. Finally,
transpositions are a more delicate matter since sorting transpositions are not
(yet) characterized. Nevertheless, it is known that transpositions that increase
the number of cycles — a desirable property when sorting permutations — have
all their breakpoints in the same cycle [3]. Thus we have:

Corollary 5. All transpositions that create two adjacencies are preserving.

7 Conclusion

We have introduced a new similarity measure for permutations, based on the
concept, of conserved intervals. Conserved intervals have very interesting prop-
erties with respect to preserving the usual genome rearrangement operations.
We believe that conserved intervals are a fundamental concept of rearrangement
theory: they provide the unifying grounds to understand the variety of opera-
tions that are used to model genome evolution. Supported by recent results on
the expected size of rearranged genome segments, one could go as far and claim
that any rearrangement scenario that breaks conserved intervals is mathematical
rambling without connection to evolutionary reality.
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