
On the Similarity of Sets of Permutationsand its Appliations to Genome ComparisonAnne Bergeron1 and Jens Stoye21 LaCIM, Universit�e du Qu�ebe �a Montr�eal, Canada,anne�laim.uqam.a2 Tehnishe Fakult�at, Universit�at Bielefeld, Germany,stoye�tehfak.uni-bielefeld.deAbstrat. The omparison of genomes with the same gene ontent re-lies on our ability to ompare permutations, either by measuring howmuh they di�er, or by measuring how muh they are alike. With thenotable exeption of the breakpoint distane, whih is based on the on-ept of onserved adjaenies, measures of distane do not generalizeeasily to sets of more than two permutations. In this paper, we presenta basi unifying notion, onserved intervals, as a powerful generalizationof adjaenies, and as a key feature of genome rearrangement theories.We also show that sets of onserved intervals have elegant nesting andhaining properties that allow the development of ompat graphi rep-resentations, and linear time algorithms to manipulate them.1 IntrodutionGene order analysis in a set of organisms is a powerful tehnique for phylogenetiinferene. Current methods are based on notions of distanes between genomes,whih are usually de�ned as the minimum number of suh and suh operationsneeded to transform one genome into the other one. Distane matries an eitherbe used diretly as data for phylogeneti reonstrution, or in more qualitativeattempts to reonstrut anestral genomes [9℄. All these methods, with the no-table exeption of the breakpoint distane [6℄, are losely tied to initial hoies ofallowable rearrangement operations. They are also pure distanes, in the sensethat similarities between genomes are purposefully ignored.The breakpoint distane is based on the notion of onserved adjaenies.Compared to other distanes, it is easy to ompute, but it often fails to apturemore global relations between genomes [17℄. Nevertheless, onserved adjaenieshave two highly desirable properties:1. They an be de�ned on a set of more than two genomes, allowing for theidenti�ation of similar features in a family of organisms.2. They are invariant under optimal rearrangement senarios, in the sense thatit is not neessary to break adjaenies to explain how a genome evolvedfrom another one [10, 15, 21℄.



Fruit Fly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17Mosquito 1 2 3 4 5 6 8 7 9 �10 11 12 13 14 15 16 17Silkworm 1 2 3 4 5 6 7 8 9 10 11 12 14 13 15 16 17Loust 1 2 3 5 4 6 7 8 9 10 11 12 13 14 15 16 17Tik 1 3 4 5 6 7 8 9 10 11 �2 12 13 14 15 16 17Centipede 1 3 4 5 6 7 8 9 10 11 �2 12 16 13 14 15 17Table 1. Condensed mitohondrial genomes of six ArthropodaA �rst generalization of adjaenies is the notion of ommon intervals that iden-tify subsets of genes that appear onseutively in two or more genomes [13, 22℄.Common intervals identify more global relations between genomes, but oftenlose the invariant property of adjaenies with respet to optimal rearrange-ment senarios. For example, all optimal sortings by reversals of the permutation(1 3 2 5 � 4 6) break, in some of the intermediate permutations, the ommoninterval (2 3).Are adjaenies the only strutures that are invariant under biologiallymeaningful rearrangement operations? No. There exists a lass of ommon in-tervals, alled onserved intervals, that may be the best of two worlds. We willshow that these strutures apture both loal and global properties of genomes;are invariant under most rearrangement senarios; and their number and naturean be omputed in linear time.2 Permutations, Gene Order, and RearrangementsIn the following we will take for granted the simplifying hypothesis that the genesof an organism are ordered and oriented along linear or irular DNA moleules.For example the 37 mitohondrial genes of the Fruit Fly are listed in [7℄, withminus signs to reet orientation, as:ox1, L2, ox2, K, D, atp8, atp6, ox3, G, nad3, A, R, N, S1, E, -F,-nad5, -H, -nad4, -nad4L, T, -P, nad6, ob, S2, -nad1, -L1, -rrnL, -V,-rrnS, UNK, I, -Q, M, nad2, W, -C, -YThe �rst gene is arbitrary, sine mitohondrial genomes are irular moleules.When organisms with the same gene ontent are ompared, one of them is hosenas a base organism, and all idential strips of genes are onverted to integers.By extension, these are also alled \genes". Table 1 presents the result of thistransformation applied to the mitohondrial genomes of six Arthropoda, withFruit Fly as base organism. The original 37 genes have been divided in 17 bloks:some represent isolated genes, and others represent longer strips. For example, 10stands for S1, and 11 for E, -F, -nad5, -H, -nad4, -nad4L, T, -P, nad6,ob, S2, -nad1.Various tehniques are then used to ompare the resulting permutations. Thedistane approahes fous on the di�erenes between two partiular genomes.For example, Fruit Fly di�ers from Mosquito by the reversal of gene 10, andthe transposition of genes 7 and 8. One an ount the minimal number of rever-sals and/or transpositions neessary to transform eah genome into any other,



yielding a distane matrix for the set of speies. Expliit rearrangement senar-ios, that is, sequenes of operations that transform optimally one genome intoanother, are also used to reonstrut anestral genomes.Another approah, the breakpoint distane, ounts the lost adjaenies be-tween genomes. It does not rely on partiular rearrangement operations or anevolutionary model, and it has an assoiated measure of similarity: the numberof onserved adjaenies. For example, given the irularity of the genomes, FruitFly and Mosquito have 12 onserved adjaenies, and their breakpoint distaneis 5.Suh a similarity measure extends easily to sets of speies. For example, the�rst four speies of Table 1 share 6 adjaenies: [1; 2℄, [2; 3℄, [11; 12℄, [15; 16℄,[16; 17℄, and [17; 1℄. When omparing all six speies, the only left adjaeny is[17; 1℄: this lak of onserved adjaenies is a diret onsequene of how the datawas transformed. Does this mean that losing ommon adjaenies amounts tolosing all ommon strutures?A quik glane at Table 1 reveals that the six permutations are very \similar".For example, the genes in the interval [1; 12℄ are all the same, with small varia-tions in their ordering. This is also true for the genes in the intervals [3; 6℄, [6; 9℄,[9; 11℄, and [12; 17℄. It turns out that suh intervals, together with onservedadjaenies, play a fundamental role in rearrangement and distane theories,anestral genome reonstrutions, and phylogeny.The following family portrait gives a representation of the onserved intervalsof the permutations of Table 1:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17This representation boxes the elements in retangles, whih an be glued to-gether to form larger objets. It takes its roots in PQ-trees [8℄ that are used torepresent sets of permutations. All permutations of Table 1 �t the representa-tion with the following onventions: (1) free objets within a retangle an bereordered, or an hange sign, (2) onnetions between retangles are �xed. Thisrepresentation also aptures the features that should be invariant in biologiallyplausible rearrangement senarios within the family.In order to illustrate this last point, onsider the two following rearrange-ment senarios that transform Silkworm into Loust using a minimal numberof reversals (operations that reverse the elements of a onseutive blok whilehanging their signs).1 2 3 4 5 6 7 8 9 10 11 12 14 13 15 16 171 2 3 -4 5 6 7 8 9 10 11 12 14 13 15 16 171 2 3 -4 -5 6 7 8 9 10 11 12 14 13 15 16 171 2 3 5 4 6 7 8 9 10 11 12 14 13 15 16 171 2 3 5 4 6 7 8 9 10 11 12 -14 13 15 16 171 2 3 5 4 6 7 8 9 10 11 12 -14 -13 15 16 171 2 3 5 4 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 14 13 15 16 171 2 3 4 -14 -12 -11 -10 -9 -8 -7 -6 -5 13 15 16 171 2 3 4 -14 5 6 7 8 9 10 11 12 13 15 16 171 2 3 4 -13 -12 -11 -10 -9 -8 -7 -6 -5 14 15 16 171 2 3 5 6 7 8 9 10 11 12 13 -4 14 15 16 171 2 3 5 4 -13 -12 -11 -10 -9 -8 -7 -6 14 15 16 171 2 3 5 4 6 7 8 9 10 11 12 13 14 15 16 17Those two senarios are fundamentally di�erent, even if they both use sixreversals. The right one uses muh longer reversals than the left one, and the



right one breaks onserved intervals between Silkworm and Loust in intermedi-ate permutations, namely [3; 6℄, [1; 12℄, and [12; 17℄. If a rearrangement senariois expeted to reet the various intermediate speies between Silkworm andLoust, the right one looks highly suspiious. Reent papers address these prob-lems in various ways, for example by assigning weights to operations [1℄, or withprobabilisti studies of the possible senarios [16℄.The two main aws of the seond senario { long reversals and breakingonserved intervals { are losely tied: breaking onserved intervals, as we willshow in Set. 6, often involves long range operations that radially disturb agenome. In this sense, onserved intervals an be used as an intrinsi measurethat allows to sreen out rearrangement senarios, or phylogeneti hypotheses,without the need of arbitrary weights or probability measures.3 Conserved IntervalsThis setion presents a formalization of the notion of onserved intervals, to-gether with properties that allow the development of linear time algorithms tomanipulate them.De�nition 1. Let G be a set of signed permutations on n elements. An interval[a; b℄ is a onserved interval of the set G if:1) either a preedes b, or �b preedes �a, in eah permutation, and2) the set of unsigned elements that appear between a and b is the same forall permutations in G.An elementary onsequene of this de�nition is the fat that if [a; b℄ is aonserved interval, so is [�b;�a℄. We will onsider these intervals as equivalent.Table 1 ontains several examples of onserved intervals. Their desription iseased by the fat that the identity permutation belongs to the set G. When thisis the ase, all onserved intervals an be identi�ed with their positive endpointsa < b, and the set of elements that appear between a and b is fa + 1; : : : ; b �1g. The following example illustrates a more general ase. Consider the twopermutations: P = 1 2 3 7 5 6 �4 8Q = 1 7 �3 �2 5 �6 �4 8In this example, [1; 5℄ and [2; 3℄ are onserved intervals, but not [1; 6℄. The otheronserved intervals of P and Q are [1;�4℄, [1; 8℄, [5;�4℄, [5; 8℄, and [�4; 8℄. Thediagram representation of these intervals, with respet to the permutation P , is:1 2 3 7 5 6 -4 8When the identity permutation is not in G, it is always possible to renamethe elements of G suh that onserved intervals will be intervals of onseutiveelements. For example, if one omposes3 the permutations P and Q of the above3 Here, omposition is understood as the standard omposition of funtions. Dealingwith signed permutations requires the additional axiom that P (�a) = �P (a).



example with the inverse permutation P�1, the �rst permutation beomes theidentity permutation Id = P�1 Æ P . In general, it is elementary to transform aset of onserved intervals to its equivalent up to renaming. It is a onsequeneof the following proposition:Proposition 1. Let R be a permutation and G a set of permutations, denote byRÆG the set of permutations obtained by omposing eah permutation in G withR. The interval [a; b℄ is onserved in G if and only if the interval [R(a); R(b)℄ isonserved in R ÆG.Some intervals, suh as [1;�4℄ for the set fP;Qg in the above example, arethe union of smaller intervals: [1;�4℄ = [1; 5℄ [ [5;�4℄. Intervals that are notunions are speially useful:De�nition 2. Conserved intervals that are not the union of shorter onservedintervals are alled irreduible.Sets of onserved intervals an be simply haraterized by the orrespondingset of irreduible intervals. Indeed, disjoint irreduible intervals, as highlightedin the diagram representation, are either hained or nested. The following propo-sition aptures the basi properties of these strutures.Proposition 2 ([5℄). Two di�erent irreduible onserved intervals [a; b℄ and[; d℄ of a set G of permutations, are either:1) disjoint,2) nested with di�erent endpoints, or3) overlapping on one element.Overlapping irreduible intervals form hains linked by their suessive om-mon elements. A hain of k � 1 intervals [a1; a2℄[a2; a3℄ : : : [ak�1; ak℄ will be de-noted simply by its k links [a1; a2; a3; : : : ; ak℄. For example, [1; 5;�4; 8℄ is a hainof the set of onserved intervals of P and Q. A maximal hain is a hain thatannot be extended. We have:Proposition 3. Every irreduible onserved interval belongs to a unique maxi-mal hain.One onsequene of Proposition 3 is that maximal hains, as sets of links,together with isolated genes, form a partition of the set of genes. This will revealuseful to onstrut data strutures to keep trak of onserved intervals.A set of permutations on n elements an have as many as n(n�1)=2 onservedintervals, but at most n�1 irreduible intervals. These bounds are ahieved withsets ontaining only one permutation. A key observation, that will eventuallylead to linear time algorithms to ompute the number of onserved intervals, isthe following:Proposition 4. Eah maximal hain of k links ontributes k(k � 1)=2 to thetotal number of onserved intervals.



Finally, we will want to onstrut sets of onserved intervals for the union oftwo sets of permutations. De�nition 1 implies that the set of onserved intervalsof a union of two sets of permutations is the intersetion of their sets of onservedintervals. The following proposition, shown in [5℄, relates these sets to theirrespetive irreduible intervals when both sets of permutations have at least onepermutation in ommon.Proposition 5. Let P be a permutation that is ontained in both sets of permu-tations G1 and G2. The interval [a; b℄ is a onserved interval of G = G1 [G2 ifand only if there exist two hains of irreduible onserved intervals, with respetto P , with k � 0, m � 0: [a; x1; : : : ; xk; b℄ in G1;[a; y1; : : : ; ym; b℄ in G2:The interval [a; b℄ is irreduible if and only if fx1; : : : ; xkg and fy1; : : : ; ymg aredisjoint.Variable Geometry Genomes. Although the de�nition of onserved inter-vals was given for permutations that model genomes omposed of single linearhromosomes, they an be adapted to other types of genomes. For details, see [5℄.4 AlgorithmsThis setion disusses three algorithms. The �rst one is an adaptation of anexisting algorithm that omputes the onserved intervals of two permutations.The seond one omputes the onserved intervals of a set of permutations. Thethird one, �nally, omputes the onserved intervals of two sets of permutations,diretly from their two individual sets of onserved intervals.Conserved Intervals of Two Permutations. Conserved intervals betweentwo permutations are strongly related to the notion of onneted omponentsof the overlap graph of a signed permutation. This graph plays a fundamentalrole in the sorting by reversals problem [11℄, and the sorting by reversals andtransloations problem [12℄. In the last few years, linear algorithms to identifythese omponents have been devised [2℄. The following algorithm is adaptedfrom [4℄, and identi�es all irreduible onserved intervals4 [a; b℄ of a permutation� with the identity permutation suh that both a and b have positive sign in �.The ase of negative endpoints is treated by reversing �.For example, for the permutationP = 0 �4 �3 �2 5 8 6 7 9 �1 10;Algorithm 1 identi�es the positive irreduible onserved intervals [6; 7℄, [5; 9℄,and [0; 10℄. It will identify [2; 3℄ and [3; 4℄ on the reversed permutation.4 In the original paper, these were alled framed ommon intervals.



Algorithm 1 (Positive irreduible intervals with the identity permutation)1: stak 0 on S2: stak n onM3: M0  n4: for i = 1; : : : ; n do5: // Computation of Mi6: unstak fromM all elements m smaller than j�ij7: Mi  m8: stak the element j�ij onM9: // Identi�ation of irreduible intervals10: unstak from S all indies s suh that (j�ij < �s or j�ij > Ms)11: if i� s = �i � �s and Mi =Ms then12: output [�s; �i℄13: end if14: if �i is positive then15: stak the index i on S16: end if17: end forThe algorithm assumes that the input permutation is in the form � =(0; �1; : : : ; �n�1; n). De�ne Mi to be the nearest unsigned element of the per-mutation that preedes �i and is greater than j�ij. (Set Mi to n, if suh anelement does not exist). The following lemma relates the values of Mi to on-served intervals.Lemma 1. If [�s; �e℄ is a positive onserved interval of � and the identity per-mutation, then Ms =Me.The algorithm uses two staks: S ontains the possible start positions ofonserved intervals; M ontains possible andidates for Mi. The top of S isalways denoted by s. The top of M is always denoted by m.Proposition 6 ([4, 5℄). Algorithm 1 outputs the positive irreduible onservedintervals of a permutation � with the identity permutation in O(n) time.Corollary 1. By applying Algorithm 1 both to � = P�1 ÆQ and to the reverseof �, the irreduible onserved intervals of two permutations P and Q an befound in O(n) time.Conserved Intervals of a Set of Permutations. In order to �nd the irre-duible onserved intervals of a set of permutations, the �rst step is to omputethe irreduible intervals of eah permutation with one partiular permutationfrom the set, say �1, using Algorithm 1, and then merge together the resultingsets of irreduible intervals. For example, omputing the irreduible intervals ofthe set: Id = 0 1 2 3 4 5 6 7 8 9 10P = 0 �4 �3 �2 5 8 6 7 9 �1 10Q = 0 5 �7 �6 8 9 1 2 3 �4 10



Algorithm 2 (Irreduible intervals of G1 [ G2, both ontaining the identitypermutation)1: stak 0 on S2: for i = 1; : : : ; n do3: if there is an interval [x; i℄ in I1 then4: unstak from S all elements larger than x5: end if6: if there is an interval [x; i℄ in I2 then7: unstak from S all elements larger than x8: end if9: if s and i belong to the same hain both in I1 and I2 then10: unstak s from S and output [s; i℄11: end if12: if there is an interval that starts at i in I1, and one in I2 then13: stak i on S14: end if15: end forwould �rst yield the two sets of maximal hains f[0; 10℄; [2; 3; 4℄[5; 9℄; [6; 7℄g (ofP and the identity) and f[0; 10℄; [1; 2; 3℄; [5; 8; 9℄; [6; 7℄g (of Q and the identity),respetively, in graphi representation:0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10Assume that eah set of irreduible onserved intervals is given by its maximalhains. Sine these form partitions of the genes that are endpoints of onservedintervals, there exists a data struture with the following properties: (1) For eahindex from 1 to n, it is possible to determine in onstant time the interval, if any,that starts and/or ends at this index. (2) It is possible to determine in onstanttime if two intervals belong to the same hain.Let I1 and I2 be two sets of irreduible onserved intervals of sets of permu-tations G1 and G2 that have one permutation �1 in ommon. For the momentwe will assume that �1 is the identity permutation. Then Algorithm 2 �nds allirreduible onserved intervals of G1[G2. It uses a stak S that ontains possiblestart positions { or, equivalently, elements of the identity permutation. The topof the stak S is always denoted by s.The orretness and time omplexity of Algorithm 2 are established by thefollowing theorem, whose proof an be found in [5℄.Theorem 1. Algorithm 2 outputs the irreduible intervals of G = G1 [ G2 inO(n) time, given I1 and I2, the irreduible intervals of two sets of permutationsG1 and G2 that both ontain the identity permutation.Corollary 2. Let I1 and I2 be the irreduible intervals of two sets of permu-tations G1 and G2 that both ontain a permutation P . The irreduible inter-vals of G = G1 [ G2 an be found in O(n) time by applying Algorithm 2 toI 01 = f[P�1(a); P�1(b)℄ j [a; b℄ 2 I1g and I 02 = f[P�1(a); P�1(b)℄ j [a; b℄ 2 I2g.



Corollary 3. The set of irreduible onserved intervals of a set of permutationsG an be omputed in O(jGjn) time and O(n) additional spae.Conserved Intervals of Disjoint Sets. Finally we are interested in omputingthe onserved intervals of two sets of permutations G1 = fP1; : : : ; Pkg and G2 =fQ1; : : : ; Qmg that not neessarily have a permutation in ommon, given theirsets of irreduible onserved intervals I1 and I2, respetively.This an be done in linear time by properly ombining Algorithms 1 and 2.The idea is to selet one permutation from eah set, say P1 from G1 and Q1from G2, and ompute the onserved intervals of these two by Algorithm 1.Then observe that the two sets fP1; Q1g and G1 = fP1; : : : ; Pkg have a jointpermutation P1, and hene their ommon irreduible intervals an be omputedby Algorithm 2. Similarly, fQ1; P1; : : : ; Pkg and G2 = fQ1; : : : ; Qmg ontain ajoint permutation Q1, so their ommon irreduible intervals an also be om-puted by Algorithm 2.5 Similarity and DistaneThe number of onserved intervals of a set of permutations is a measure of simi-larity, but it an easily be transformed into a distane between two permutations,or two sets of permutations. The basi idea is that two sets of onserved intervalsan be ompared with the ardinality of their symmetri di�erene.De�nition 3. Let G1 and G2 be two sets of permutations on n elements, withrespetively N1 and N2 onserved intervals. Let N be the number of onservedintervals in G1 [ G2. The interval distane between G1 and G2 is de�ned byd(G1; G2) = N1 +N2 � 2N .Note: The interval distane satis�es the fundamental properties of a mathemat-ial distane sine one an prove that the relation is symmetri, reexive, andsatis�es the triangle inequality: d(G1; G0) + d(G0; G2) � d(G1; G2).A detailed omparison of the interval distane with other rearrangement dis-tanes an be found in [5℄. The behavior of the interval distane is a onsequeneof the fat that it is a�eted be the length { or number of genes { involved in arearrangement operation: short reversals, for example, are less disturbing thanlong ones. In partiular, the amount of disruption due to a single rearrangementoperation an readily be omputed. For example, we have the following:Proposition 7. Suppose that P and Q have n elements, then:1) if P is obtained from Q by reversing k elements, then the interval distanebetween P and Q is k(n� k);2) if P is obtained from Q by transposing two onseutive bloks of a and belements, then the interval distane between P and Q is (a+ b)(n� (a+ b))+ab.Sine the interval distane is a�eted by length, the pratie of ollapsingidential strips of genes should be questioned. Indeed, as we saw in the example



of Set. 2, the integers resulting from suh a transformation stand for strips ofgenes that vary greatly in length. We believe that whole genome omparisonshould use all available information, and that length of segments is relevant tothe study of rearrangement senarios, as advoated in [19℄.6 Links With Rearrangement TheoriesIn Set. 2, we gave an example of how onserved intervals ould be used toevaluate optimal reversal senarios between two genomes. Reversals are one ofthe many operations that are urrently used to model genome evolution: themain other ones { among those that do not need to model dupliation of genes{ are transpositions, reverse transpositions, transloations, fusions, and �ssions.In this setion, we want to haraterize the rearrangement operations, orsenarios, that preserve onserved intervals:De�nition 4. Let P and Q be two permutations, and � a rearrangement opera-tion applied to P yielding P 0. We say that � preserves the onserved intervals ofP and Q if the onserved intervals of fP;Qg are ontained in those of fP 0; Qg.Keeping in mind the graphial representation of the onserved intervals, it iseasy to identify the operations that preserve onserved intervals: only rearrange-ments within bloks are preserving. To be more formal, note that all operations,exept fusions, destroy some adjaenies that existed in the original permutation:the number and nature of these adjaenies is a key onept.De�nition 5. Let � be a rearrangement operation that transforms P into P 0. Abreakpoint of � is a pair of elements that are adjaent in P but not in P 0.In other words, breakpoints are where one has to ut P in order to apply�. Reversals and transloations have 2 breakpoints, transpositions have 3, and�ssions have 1.Consider the irreduible intervals of P and P 0 with respet to P . Adjaeniesin P either belong to a (smallest) irreduible interval, or are free. For example,in the diagram 1 2 3 4 5 6 7 8 9 10the adjaeny (3; 4) belongs to the interval [1; 5℄, (2; 3) belongs to [2; 3℄, and (8; 9)is free. Note that when two or more adjaenies belong to the same irreduibleinterval, then none of these adjaenies is onserved between P and P 0.Theorem 2 ([5℄). Reversals, transpositions, and reverse transpositions are pre-serving if and only if all their breakpoints belong to the same irreduible interval,or are free. Transloations and �ssions are preserving if and only if all theirbreakpoints are free.



It turns out that most rearrangement operations used in optimal senariosare indeed preserving. It is outside the sope of this paper to disuss these resultsin detail: they involve the yle struture of a permutation, whih are speialsubsets of the breakpoints of a permutation P with respet to a permutation P 0.The following result has been proved in various disguises in reent years [4, 11,14℄:Theorem 3. All the breakpoints of a yle belong to the same irreduible inter-val.In the sorting by reversals theory, a sorting reversal is de�ned as a reversalthat dereases the reversal distane by 1. It is shown [11, 20℄ that the breakpointsof sorting reversals, exept for one type alled omponent merging, belong to asingle yle, thus we have:Corollary 4. All sorting reversals, exept omponent merging, are preserving.Component mergings are a rare type of reversals in optimal senarios: theybreak at least two irreduible intervals, thus they often involve long reversals.The theory of transloations, fusions, and �ssions [12, 18℄ relies on the prop-erties of sorting by reversals, thus most sorting reversals are preserving. Finally,transpositions are a more deliate matter sine sorting transpositions are not(yet) haraterized. Nevertheless, it is known that transpositions that inreasethe number of yles { a desirable property when sorting permutations { haveall their breakpoints in the same yle [3℄. Thus we have:Corollary 5. All transpositions that reate two adjaenies are preserving.7 ConlusionWe have introdued a new similarity measure for permutations, based on theonept of onserved intervals. Conserved intervals have very interesting prop-erties with respet to preserving the usual genome rearrangement operations.We believe that onserved intervals are a fundamental onept of rearrangementtheory: they provide the unifying grounds to understand the variety of opera-tions that are used to model genome evolution. Supported by reent results onthe expeted size of rearranged genome segments, one ould go as far and laimthat any rearrangement senario that breaks onserved intervals is mathematialrambling without onnetion to evolutionary reality.Referenes1. Y. Ajana, J.-F. Lefebvre, E. R. M. Tillier, and N. El-Mabrouk. Exploring the set ofall minimal sequenes of reversals { an appliation to test the repliation-diretedreversal hypothesis. In Pro. WABI 2002, volume 2452 of LNCS, pages 300{315.Springer Verlag, 2002.
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