Finding all Common Intervals of k Permutations

Steffen Heber'»? * and Jens Stoye! **

! Theoretical Bioinformatics (H0300)
2 Functional Genome Analysis (H0800)
German Cancer Research Center (DKFZ) Heidelberg, Germany
{s.heber, j.stoye}@dkfz.de

Abstract. Given k permutations of n elements, a k-tuple of intervals
of these permutations consisting of the same set of elements is called
a common interval. We present an algorithm that finds in a family of &k
permutations of n elements all K’ common intervals in optimal O(nk+ K)
time and O(n) additional space.

This extends a result by Uno and Yagiura (Algorithmica 26, 290-309,
2000) who present an algorithm to find all K common intervals of k = 2
permutations in optimal O(n + K) time and O(n) space. To achieve our
result, we introduce the set of irreducible intervals, a generating subset
of the set of all common intervals of k£ permutations.

1 Introduction

Let IT = (my,...,m) be a family of k£ permutations of N = {1,2,...,n}.
A k-tuple of intervals of these permutations consisting of the same set of
elements is called a common interval.

Common intervals have applications in different fields. The consec-
utive arrangement problem is defined as follows [1,3,4]: Given a finite
set X and a collection S of subsets of X, find all permutations of X
where the members of each subset S € § occur consecutively. Finding all
common intervals of a set of permutations reverses this problem. Some
genetic algorithms using subtour exchange crossover based on common in-
tervals have been proposed for sequencing problems such as the traveling
salesman problem or the single machine scheduling problem [2,5,7]. In a
bioinformatical context, common intervals can be used to detect possible
functional associations between genes. It is supposed that genes occur-
ring in different genomes in each other’s neighborhood tend to encode

* Present address: Department of Computer Science & Engineering, APM 3132,
University of California, San Diego, La Jolla, CA 92093-0114, USA. E-mail:
sheberQucsd.edu

** Present address: Max Planck Institute for Molecular Genetics, Thnestr. 73, Berlin,
Germany. E-mail: stoye@molgen.mpg.de

functionally interacting proteins [8,6,9]. If one models genomes as per-
mutations of genes, the problem of finding co-occurring genes translates
into the problem of finding common intervals.

Recently, Uno and Yagiura [10] presented three algorithms for finding
all common intervals of k = 2 permutations 7 and my: two simple O(n?)
time algorithms and one more complicated O(n + K) time algorithm
where K < (Z) is the number of common intervals of m; and 7. Since the
latter algorithm runs in time proportional to the size of the input plus
the size of the output, it is optimal in the sense of worst case complexity.

An obvious extension of this algorithm to find all common intervals
of a family Il = (my,...,m) of kK > 2 permutations would be to compare
m successively with m; for ¢ = 2,...,k and report those intervals that
are common in all comparisons. This yields an O(kn + Y- , K;) time
algorithm where K is the number of common intervals of 71 and m; for 2 <
i < k. The main result of this paper is an improvement of this approach
by a non-trivial extension of Uno and Yagiura’s algorithm, yielding an
optimal O(kn+K) time and O(n) space algorithm where K is the number
of common intervals of II. Note that this number can be considerably
smaller than any of the K;.

The approach relies on restricting the set of all common intervals C
to a smaller subset of irreducible intervals I, from which C can be easily
reconstructed. While the number of common intervals can be as large as
(g), we show that 1 < |I| < n —1 and present an algorithm to compute
I in optimal O(kn) time, i.e., in time proportional to the input size.
Knowing I we can reconstruct C' in O(K) time, i.e., in time proportional
to the output size. Both algorithms use O(n) additional space and their
combination yields our main result.

2 Permutations and Common Intervals

Given a permutation 7 of (the elements of) the set N := {1,2,...,n}, we
denote by 7 (i) = j that the ith element of 7 is j. For z,y € N, z < y,
[z,y] denotes the set {z,z + 1,...,y} C N and n([z,y]) := {n(i) | i €

[z,y]} is called an interval of m. Let II = (my,...,m) be a family of k
permutations of N. W.lLo.g. we assume in the following always that 7, =
idp = (1,...,n). A k-tuple ¢ = ([l1,w1], ..., [lg, ug]) with 1 <1; <u; <n

for all 1 < j <k is called a common interval of II if and only if

7r1([l1,u1]) = 7r2([l2,uQ]) = ... = Wk([lk,’u,k]).

This allows to identify a common interval ¢ with the contained elements,
ie.
c = mi([lj,u;]) for 1<j<k.

Since 71 = id,,, the above set equals the index set [I1, u1], and we will refer
to this as the standard notation of c. The set of all common intervals of
II is denoted Cj7. Note that our definition excludes common intervals of
size one.

Ezample 1. Let N = {1,...,9} and II = (m,m9,m3) with m = idy,
m = (9,8,4,5,6, 7,1,2,3), and m3 = (1,2,3,8,7,4,5,6,9). We have

Cn = {[1,2},[1,3], 1, 8], [1,9],[2,3],[4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [5, 6]}

3 Finding All Common Intervals of Two Permutations

In order to keep this paper self-contained, here we briefly recall the al-
gorithm RC (short for Reduce Candidate) of Uno and Yagiura [10] that
finds all K common intervals of & = 2 permutations 71 = id,, and w9 of
N in O(n + K) time and O(n) space. For the correctness and analysis of
the algorithm we refer to [10].

An easy test if an interval mo([z,y]), 1 < z < y < n, is a common
interval of IT = (7, m2) is based on the following functions:

l(z,y) := minme([z,y])

u(z,y) = maxmy([z,y])
fz,y) = ulz,y) —l(z,y) — (y —).

Since f(z,y) counts the number of elements in [I(z,y), u(z, y)] \ m2([z,y]),
an interval mo([z,y]) is a common interval of IT if and only if f(z,y) = 0.
A simple algorithm to find Cpr is to test for each pair of indices (z,y)
with 1 < 7 < y < n if f(z,y) = 0, yielding a naive O(n?®) time or,
using running minima and maxima, a slightly more involved O(n?) time
algorithm.

The main idea of Algorithm RC is to save the time to test f(z,y) =0
for some pairs (z,y) by eliminating wasteful candidates for y.

Definition 1. For a fized x, a right interval end y > x is called wasteful
if it satisfies f(z',y) > 0 for all ' < x.

In Algorithm RC (Algorithm 1), the common intervals are found using
a data structure Y consisting of a doubly-linked list ylist for indices

of non-wasteful right interval end candidates and, storing intervals of
ylist, two further doubly-linked lists [list and ulist that implement the
functions [and u in order to compute f efficiently. They are also essential
for an efficient update of ylist. In our pseudocode we use the standard
list operations L.head for the first element of list L, L.succ(e) for the
successor and L.pred(e) for the predecessor of element e in L.

Algorithm 1 (Reduce Candidate, RC)

Input: A family IT = (71 = idn,m2) of two permutations of N = {1,...,n}.
Output: Cp in standard notation.

1: initialize Y

2: forx=n—-1,...,1do

3: updateY // (see Algorithm 2)

4: y<<«x

5: while (y + ylist.succ(y)) defined and f(z,y) =0 do
6: output [I(z,y), u(z,y)]

7: end while

8: end for

In the first step of Algorithm 1, ylist is initialized containing one
element that stores the index n, and [list and wulist are both initialized
with the one-element interval [n,n] consisting of the last/only element of
ylist.

Then Y is updated iteratively. A counter x (corresponding to the
currently investigated left interval end) runs from n — 1 down to 1. For
any fixed z, the elements of [list are maximal intervals of ylist such that
for an interval [y, y'] we have l(z,y) = l(z,ylist.succ(y)) = -+ = l(z,y');
similar for ulist. For an interval [y, '] in llist or ulist, we define its value
by val([y,y']) := m2(y) and its end by end([y,y']) := y'. Algorithm 2 shows
the update procedure for ma(x) > mo(z + 1). The case my(z) < mo(z + 1)
is treated in a symmetric way.

First, index z is prepended at the head of ylist and [z, z] is prepended
at the head of [list. Then ylist is trimmed by deleting all elements y (> z)
that can be concluded to be wasteful (lines 3-12). This is called TRIM-
MING_YLIST in [10]. Simultaneously, ulist is trimmed in line 3. Finally,
the interval ends of the new head of wlist, u*, are updated.

Coming back to Algorithm 1, Uno and Yagiura show that in iteration
step z, after the update of Y, the function f(z,y) is monotonically in-
creasing for the elements y remaining in ylést. This allows in lines 5-7 to
find efficiently all common intervals with left end z by evaluating f(z,y)

Algorithm 2 (Update of data structure Y in line 3 of Algorithm 1)

prepend z at the head of ylist
prepend [z, z] at the head of llist
while (u” « ulist.head) has a successor v and val(u) < m2(z) do
delete u* from wulist and the corresponding elements from ylist
end while
y* « end(u”™)
if (g < ylist.succ(y™)) is defined then
while f(z,y") > f(z,7y) do
delete y* from ylist
y* < ylist.pred(y)
end while
: end if
: update the left and right end of u* + [z, y"]

== e
W o0

running left-to-right through ylist until an index y is encountered with
fz,y) > 0.

4 Irreducible Intervals

In this section we define the set of irreducible intervals and show how
they can be used to reconstruct all common intervals. We start by char-
acterizing the structure of the set of common intervals.

Lemma 1. Let II be a family of permutations. For c1,ce € Cir we have

|61 ﬂCQ| >2 & cNe ey,
ClﬂCQ#@ = cUc €’

Proof. This follows immediately from the definition of common intervals.
g

Two common intervals ci,co € Ci; have a non-trivial overlap if ¢y N
c2 # § and they do not include each other. A list p = (c1,...,¢qp)) of
common intervals ci, . .., ¢y € Crr is a chain (of length £(p)) if every two
successive intervals in p have a non-trivial overlap. A chain of length one
is called a trivial chain, all other chains are called non-trivial chains. A
chain that can not be extended to its left or right is a mazimal chain. By
Lemma 1, every chain p generates a common interval ¢ = 7(p) := Uy, d.

Definition 2. A common interval c is called reducible if there is a non-
trivial chain that generates c, otherwise it is called irreducible.

This definition partitions the set of common intervals C'; into the
set of reducible intervals and the set of irreducible intervals, denoted I;;.
Obviously, 1 < |I7] < |Cp| < (3). For a common interval ¢ € Cpr we
count the number of irreducible intervals that properly contain ¢ and call

this number the nesting level of c.

Lemma 2. Let II be a family of permutations, ¢ € Cir a common in-
terval, and (by,...,by) a chain of irreducible intervals generating c. The
nesting levels of ¢ and all the b; for i =1,...,£ are equal.

Proof (Sketch). Let n. be the nesting level of ¢ and n; the nesting level of
b fori=1,...,¢. Since b; C c we have n; > n.fori=1,...,¢4. If n; > n,
there exists an irreducible interval ¢* 2 ¢ with b; C ¢* and £ > 1. Now
we distinguish between internal and terminal intervals b; in the chain. In
both cases one can easily see that ¢* can be generated by smaller common
intervals, contradicting the assumption that ¢* is irreducible. O

We can further partition Ij7 into maximal chains. This partitioning is
unique. For a maximal chain p = (c1,...,¢pp) and 1 <4 < j < £(p), we
call p[i, 7] := (ci, ..., ¢j) a subchain of p.

Lemma 3. The set of common intervals that is generated from the sub-
chains of the mazimal chains of I equals Chy.

Proof. This follows directly from the definition of the partition. O

Ezample 1 (cont’d). For I = (mwy,my,m3) as above, the irreducible inter-
vals are

Im = {[1,2],[1,8],[2,3],[4,5],[4,7],[4,8],[4,9], [5, 6]}
The reducible intervals are generated as follows:
[1,3] = [1,2]U[2,3],

[1,9] = [1,8] U[4,9],
[4,6] = [4,5]U[5,6].

A sketch of the structure of maximal chains of irreducible intervals and
their nesting levels is shown in Figure 1.

Lemma 4. Given two different mazimal chains p; and po, exactly one
of the following alternatives is true:

— 7(p1) and 7(p2) are disjoint,

nesting level 0 | [1,8] [! [4,9] |

nesting level 1 m

nesting level 2 | [4,8] |
nesting level 3 | [4,7] |
nesting level 4 m

Fig. 1. Visualization of the irreducible intervals in I;7 and their nesting levels.

— 7(p1) is contained in a single element of pa, or
— 7(p2) is contained in a single element of p;.

Proof. 7(p1) and 7(p2) are either disjoint or have a non-empty intersec-
tion. In the latter case, 7(p1) and 7(p2) cannot overlap non-trivially, be-
cause of the maximality of p; and py. Therefore, w.l.0.g. suppose 7(p2) C
7(p1). No element of py can overlap non-trivially with any element of
p1, otherwise one could find an element of p; or po that is generated by
smaller intervals, contradicting its irreducibility. This yields the existence
of exactly one irreducible interval ¢ of p; that includes 7(p2) completely,
while no other element of p; overlaps with 7(p2). O

Based on the above lemmas, we describe a linear time algorithm to
reconstruct the set Cj; of common intervals of a family of permutations
II from its set Iy of irreducible intervals (Algorithm 3). The algorithm
partitions ;7 into maximal chains (line 1). This can be done, for exam-
ple, by the following three steps. First, I;; is partitioned according to
the nesting level. This is possible in O(|I]) time by applying a sweep
line technique to all interval start and end points. Then the intervals in
the resulting classes are sorted by their left end. Using radix sort, this
can also be done in O(|Ij7|) time. Finally, the classes are further refined
at non-overlapping consecutive intervals, yielding the maximal chains of
irreducible intervals. This again takes O(|Ij7]) time. Using Lemma 3, we
create Cr by generating all subchains of the maximal chains (lines 2-4).
This takes O(|Cpz|) time. Since |I;7] < |Cpr|, Algorithm 3 takes O(|Cr)
time in total.

The following theorem is the basis for the complexity analysis of our
algorithm in the following section.

Algorithm 3 (Reconstruct Cy; from I;7)

Input: I in standard notation

Output: Cp in standard notation

1: partition I;7 into maximal chains pi,po,...

2: for each p,, = (b1,...,byy,,)) do

3: output 7(pm[¢, j]) in standard notation for all 1 <i < j < (pm)
4: end for

Theorem 1. Given a family II = (7y,...,m) of permutations of N =
{L,2,...,n}, we have 1 < |Iy| <n—1.

Proof. For each interval [j, j+1], j = 1,...,n—1, of m1 denote by bj; ;1) €
I7 the irreducible interval of smallest cardinality containing [j,7 + 1]. It
is easy to see that by; ;) is uniquely defined. For any ¢ = [z,y] € Cpp,
a subset of {bj; y11],---,b—1,} generates c. This yields {bf; 1] | J =
1,....,n—1} = Ir. 0

Ezample 2. The limits given in Theorem 1 are actually achieved. For
II = (idy,, (1,5 +1,2,5 +2,...,5,n)) we have Cy = Iy = {[1,n]}. For
II = (idy,,idy,) we have Cip = {[i,j] | 1 <i<j <n}and Iy = {[i,s +1] |
1 <i<n}.

5 Finding All Irreducible Intervals of £ Permutations

In this section we present our algorithm that finds all irreducible intervals
of a family II = (m,ma,...,m) of kK > 2 permutations of N = {1,...,n}
in O(kn) time. Together with Algorithm 3 this allows to find all K com-
mon intervals of II in optimal O(kn + K) time.

5.1 Outline of the Algorithm

For 1 < i <k, set II; := (my,...,m;). Starting with Iy, = {[j,7 + 1] |
1 < j < n}, the algorithm successively computes Iy, from Iy, , for
i =2,...,k (see Algorithm 4). To construct I, from Iy, ,, we define the
mapping

i A, = I,

where for ¢ € Iyj,_,, pi(c) is the smallest common interval ¢’ € Cpy, that
contains c. Since Iy, C Cp; € Cpy, , and, by Lemma 3, I, | generates
the elements of C'y7,_,, Iy7,_, also generates Ij7;. One can easily see that
¢ € Iy, and that ; is surjective, i.e. Iy, = {pi(c) | ¢ € Iy, ,}. This
implies the correctness of Algorithm 4. In Section 5.2 we will show how

©i(Ir7,_,) can be computed in O(n) time and space, yielding the O(kn)
time complexity to compute I (= If,).

Algorithm 4 (Computation of I,)

Input: A family IT = (7, = idy, 2, ...,) of k permutations of N = {1,...,n}.
Output: Iy in standard notation.
1: IHl — ([1: 2]: [2: 3]7) [n - 1: 'IL])
fori=2,...,k do
I, « {pi(c)|c€In,_,}]/ (see Algorithm 5)
end for
output I, in standard notation

5.2 Computing If; from I

For the computation of ¢;(Ij;,_,) we use a modified version of Algo-
rithm RC where the data structure Y is supplemented by a data structure
S that is derived from Iy, ,. S consists of several doubly-linked lists of
intervals of ylist, one for each maximal chain of I, .

Using w1 and 7;, as in Algorithm RC, the ylist of Y allows for a given
z to access all non-wasteful right interval end candidates y of C;,).
The aim of S is to further reduce these candidates to only those indices y
for which simultaneously [z,y] € Cp, , (ensuring [z,y] € Cp,) and [z,y]
contains an interval ¢ € Iy, , that is not contained in any smaller interval
from Cfpz;. Together this ensures that exactly the irreducible intervals
[,y] € I, are reported.

An outline of our modified version of Algorithm RC is shown in Algo-
rithm 5. Since the first permutation handed to the algorithm has to be the
identity and S (derived from Iy,) is compatible only with the index set
of 1, we supply the algorithm with id,, = ;" Lom; and s Yo7 instead of
71 (= id,) and 7;. (As usual, 7; * denotes the inverse of permutation 7;.)
This does not change the index set of the computed irreducible intervals.

In line 1 of Algorithm 5, Y is initialized as in Algorithm RC. To ini-
tialize S, Iy7,_, is partitioned into maximal chains of non-trivially over-
lapping irreducible intervals as in line 1 of Algorithm 3. For each such
chain, S contains a doubly-linked clist that initially holds the intervals of
that chain in left-to-right order. Moreover, intervals from different clists
with the same left end are connected by vertical pointers yielding for each
index x € N a doubly-linked vertical list. It is not difficult to add the ver-
tical pointers during the construction of the clists such that the intervals

Algorithm 5 (Extended Algorithm RC)

Input: Two permutations m = id, and 72 = n" of N = {1,...,n}; Iz, , instandard
notation.
Output: I, in standard notation.
1: initialize Y and S
2: forr=n—-1,...,1do
3: updateY and S // (see text)

4: while ([2',y] « S.first_active_interval(x)) defined and f(z,y) =0 do
5: output [I(z,y), u(z,y)]

6: remove [z, y] from its active sublist // (the interval is satisfied)
7: end while

8: end for

in each vertical list are ordered by increasing length (decreasing nesting
level).

To describe the update of S in line 3 of the algorithm, we introduce
the notion of sleeping, active, and satisfied intervals. Initially all intervals
of the clists are sleeping. In iteration step z, all intervals with left end
x become active and are included at the head of an (initially empty)
active sublist of their clist. An interval remains active until it is satisfied
or deleted. A clist L and the contained intervals are deleted whenever x
becomes smaller than the left interval end of L.head. It might be that the
right end y of an interval [z, y] at the time of activation is already deleted
from the ylist. In this case, the interval is merged with the successing
interval [z',¢'] in its clist, i.e. the corresponding two elements of clist
are replaced by a new one, containing the interval [z,y']. If no successor
exists, the interval [z, y] is deleted.

Concerning the function ¢;, sleeping or active intervals correspond to
irreducible intervals from Iy, , whose images have not yet been deter-
mined. The status changes to satisfied when the image is known.

The update of Y in line 3 is the same as in Algorithm RC, the only
difference being that whenever an element y is removed from ylist and
y is the right end of some active or satisfied interval, this interval is
merged with its successor in its clist if such a successor exists, otherwise
it is deleted. The resulting interval inherits the active status if one of
the merged intervals was active, otherwise it is satisfied. (If both merged
intervals are active, this reflects the case that ¢; maps both intervals of
Iy, | to the same (larger) interval of I77,.) Note that even though y can be
the right end of many irreducible intervals, at any point of the algorithm
y can be the right end of at most one active or satisfied interval. This
is due to the fact that no two intervals of a maximal chain can have the

same right end, and whenever two intervals from different chains have
the same right end, the chain of the shorter interval is deleted before the
longer interval is made active (cf. Lemma 4). Hence it suffices to keep for
each index y > x a pointer to the (only) active or satisfied interval with
right end y. This right end pointer is set when the interval is made active
and is deleted when the interval’s clist is deleted.

In contrast to the simple traversal of the ylist in Algorithm RC, here
the generation of right interval end candidates in lines 4-7 is slightly more
complicated. Function S.first_active_interval(z) returns the first active
interval [z',y] in the clist of the interval at the head of the vertical list
at index z. If the right end y of this interval gives rise to a common
interval [I(z,y),u(z,y)], i.e., if f(z,y) =0, a common interval of smallest
size containing an active interval is encountered. Hence we have found
an element of ¢;(Iy7,_,) which then is reported in line 5. Therefore [z',]
becomes satisfied and is removed from its active sublist in line 6. In case
this interval was the last active interval of its clist, the pointer to the head
of the vertical list at index x is redirected to the successor of the current
head, such that in the next iteration S.first_active_interval(x) returns the
leftmost active interval from the clist with the next lower nesting level
(if such a list containing an interval with left end z exists).

This way we only look at elements of ylist that are candidates for
right ends of minimal common intervals with left end and that contain
an active interval. S.first_active_interval(z) generates these candidates in
left-to-right order such that, since f(z,y) is monotonically increasing for
the elements y of ylist and hence also for the elements of any sublist of
ylist, by evaluating f(z,y) until an index y is encountered with f(z,y) >
0, all irreducible intervals from I, with left end = are found. This implies
the correctness of our implementation of ;.

The complete data structure S for IT = (w1, 79, m3) as in Example 1
while processing index z = 4 of permutation 73 is shown in Figure 2.

5.3 Analysis of Algorithm 5

Since all operations modifying Y are the same as in Algorithm RC, this
part of the analysis carries over from [10], and we can restrict our analysis
to the initialization and update of S.

The initialization of S in line 1, including the creation of the vertical
lists, can easily be implemented in linear time in a way similar to the first
step of Algorithm 3.

In line 3, the intervals with left end = are easily found using the vertical
lists, marked active, and prepended to the active sublists in constant time

—

1,7 s [159

clists o

[1,2] (2,3] 4, 5] 115,6] [6,7]

R

Fig. 2. Sketch of ylist and the clists while processing element x = 4 of w3 for I =
(m1, 2, m3) as in Example 1. Shaded boxes represent sleeping intervals, boxes with
thick solid lines represent active intervals, and boxes with thin lines represent satisfied
intervals. Thick arrows connect the elements of the active sublists, solid vertical arrows
denote vertical lists (the vertical pointer of index 5 was deleted after reporting interval
[5,6] in iteration step « = 5), and dotted vertical arrows are the right end pointers.

per interval. Since I77, | contains O(n) intervals and since each interval is
activated exactly once, this step takes overall O(n) time. Moreover, each
index y that is deleted from the ylist can cause the merge of two intervals.
Since merging two neighbors in a doubly-linked list takes constant time,
and since each of the in total n elements of ylist is deleted at most once,
this part takes overall O(n) time as well.

As in Algorithm RC, the time required for reporting the output is
proportional to the size of the output, here |I;;| < n. Using vertical
list and active sublist, the first active interval is found in constant time.
Hence, and since the removal of interval [z, y] from the active sublist in
line 6 is a constant-time operation as well, the loop in lines 4-7 takes
overall O(n) time.

Putting things together, Algorithm 5 takes O(n) time and space. Since
at any point of Algorithm 4 we need to store only two permutations
and m; and the current I77;, we have

Theorem 2. The irreducible intervals of k permutations of n elements
can be found in optimal O(kn) time and O(n) additional space.

Combining this result with Algorithm 3, we get

Corollary 1. The K common intervals of k permutations of n elements
can be found in optimal O(kn + K) time and O(n) additional space.

Acknowledgments

We wish to thank Richard Desper, Dan Gusfield, and Christian N. S.
Pedersen for helpful comments.

References

1.

10.

K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval
graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci.,
13(3):335-379, 1976.

. R. M. Brady. Optimization strategies gleaned from biological evolution. Nature,

317:804-806, 1985.
D. Fulkerson and O. Gross. Incidence matrices with the consecutive 1s property.
Bull. Am. Math. Soc., 70:681-684, 1964.

. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,

New York, 1980.

S. Kobayashi, I. Ono, and M. Yamamura. An efficient genetic algorithm for job
shop scheduling problems. In Proc. of the 6th International Conference on Genetic
Algorithms, pages 506-511. Morgan Kaufmann, 1995.

E. M. Marcotte, M. Pellegrini, H. L. Ng, D. W. Rice, T. O. Yeates, and D. Eisen-
berg. Detecting protein function and protein-protein interactions from genome
sequences. Science, 285:751-753, 1999.

H. Mihlenbein, M. Gorges-Schleuter, and O. Kramer. Evolution algorithms in
combinatorial optimization. Parallel Comput., 7:65-85, 1988.

R. Overbeek, M. Fonstein, M. D’Souza, G. D. Pusch, and N. Maltsev. The use of
gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA, 96(6):2896—
2901, 1999.

B. Snel, G. Lehmann, P. Bork, and M. A. Huynen. STRING: A web-server to
retrieve and display the repeatedly occurring neigbourhood of a gene. Nucleic
Acids Res., 28(18):3443-3444, 2000.

T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two
permutations. Algorithmica, 26(2):290-309, 2000.

