
Finding all Common Intervals of k PermutationsSte�en Heber1;2 ? and Jens Stoye1 ??1 Theoretical Bioinformatics (H0300)2 Functional Genome Analysis (H0800)German Cancer Research Center (DKFZ) Heidelberg, Germanyfs.heber,j.stoyeg@dkfz.deAbstract. Given k permutations of n elements, a k-tuple of intervalsof these permutations consisting of the same set of elements is calleda common interval. We present an algorithm that �nds in a family of kpermutations of n elements all K common intervals in optimal O(nk+K)time and O(n) additional space.This extends a result by Uno and Yagiura (Algorithmica 26, 290{309,2000) who present an algorithm to �nd all K common intervals of k = 2permutations in optimal O(n+K) time and O(n) space. To achieve ourresult, we introduce the set of irreducible intervals, a generating subsetof the set of all common intervals of k permutations.1 IntroductionLet � = (�1; : : : ; �k) be a family of k permutations of N = f1; 2; : : : ; ng.A k-tuple of intervals of these permutations consisting of the same set ofelements is called a common interval.Common intervals have applications in di�erent �elds. The consec-utive arrangement problem is de�ned as follows [1, 3, 4]: Given a �niteset X and a collection S of subsets of X, �nd all permutations of Xwhere the members of each subset S 2 S occur consecutively. Finding allcommon intervals of a set of permutations reverses this problem. Somegenetic algorithms using subtour exchange crossover based on common in-tervals have been proposed for sequencing problems such as the travelingsalesman problem or the single machine scheduling problem [2, 5, 7]. In abioinformatical context, common intervals can be used to detect possiblefunctional associations between genes. It is supposed that genes occur-ring in di�erent genomes in each other's neighborhood tend to encode? Present address: Department of Computer Science & Engineering, APM 3132,University of California, San Diego, La Jolla, CA 92093-0114, USA. E-mail:sheber@ucsd.edu?? Present address: Max Planck Institute for Molecular Genetics, Ihnestr. 73, Berlin,Germany. E-mail: stoye@molgen.mpg.de

functionally interacting proteins [8, 6, 9]. If one models genomes as per-mutations of genes, the problem of �nding co-occurring genes translatesinto the problem of �nding common intervals.Recently, Uno and Yagiura [10] presented three algorithms for �ndingall common intervals of k = 2 permutations �1 and �2: two simple O(n2)time algorithms and one more complicated O(n + K) time algorithmwhere K � �n2� is the number of common intervals of �1 and �2. Since thelatter algorithm runs in time proportional to the size of the input plusthe size of the output, it is optimal in the sense of worst case complexity.An obvious extension of this algorithm to �nd all common intervalsof a family � = (�1; : : : ; �k) of k � 2 permutations would be to compare�1 successively with �i for i = 2; : : : ; k and report those intervals thatare common in all comparisons. This yields an O(kn + Pki=2Ki) timealgorithm whereKi is the number of common intervals of �1 and �i for 2 �i � k. The main result of this paper is an improvement of this approachby a non-trivial extension of Uno and Yagiura's algorithm, yielding anoptimal O(kn+K) time and O(n) space algorithm whereK is the numberof common intervals of �. Note that this number can be considerablysmaller than any of the Ki.The approach relies on restricting the set of all common intervals Cto a smaller subset of irreducible intervals I, from which C can be easilyreconstructed. While the number of common intervals can be as large as�n2�, we show that 1 � jIj � n � 1 and present an algorithm to computeI in optimal O(kn) time, i.e., in time proportional to the input size.Knowing I we can reconstruct C in O(K) time, i.e., in time proportionalto the output size. Both algorithms use O(n) additional space and theircombination yields our main result.2 Permutations and Common IntervalsGiven a permutation � of (the elements of) the set N := f1; 2; : : : ; ng, wedenote by �(i) = j that the ith element of � is j. For x; y 2 N , x � y,[x; y] denotes the set fx; x + 1; : : : ; yg � N and �([x; y]) := f�(i) j i 2[x; y]g is called an interval of �. Let � = (�1; : : : ; �k) be a family of kpermutations of N . W.l.o.g. we assume in the following always that �1 =idn := (1; : : : ; n). A k-tuple c = ([l1; u1]; : : : ; [lk; uk]) with 1 � lj < uj � nfor all 1 � j � k is called a common interval of � if and only if�1([l1; u1]) = �2([l2; u2]) = : : : = �k([lk; uk]):

This allows to identify a common interval c with the contained elements,i.e. c � �j([lj ; uj]) for 1 � j � k:Since �1 = idn, the above set equals the index set [l1; u1], and we will referto this as the standard notation of c. The set of all common intervals of� is denoted C� . Note that our de�nition excludes common intervals ofsize one.Example 1. Let N = f1; : : : ; 9g and � = (�1; �2; �3) with �1 = id9,�2 = (9; 8; 4; 5; 6; 7; 1; 2; 3), and �3 = (1; 2; 3; 8; 7; 4; 5; 6; 9). We haveC� = f[1; 2]; [1; 3]; [1; 8]; [1; 9]; [2; 3]; [4; 5]; [4; 6]; [4; 7]; [4; 8]; [4; 9]; [5; 6]g:3 Finding All Common Intervals of Two PermutationsIn order to keep this paper self-contained, here we briey recall the al-gorithm RC (short for Reduce Candidate) of Uno and Yagiura [10] that�nds all K common intervals of k = 2 permutations �1 = idn and �2 ofN in O(n+K) time and O(n) space. For the correctness and analysis ofthe algorithm we refer to [10].An easy test if an interval �2([x; y]), 1 � x < y � n, is a commoninterval of � = (�1; �2) is based on the following functions:l(x; y) := min�2([x; y])u(x; y) := max�2([x; y])f(x; y) := u(x; y)� l(x; y)� (y � x):Since f(x; y) counts the number of elements in [l(x; y); u(x; y)]n�2([x; y]),an interval �2([x; y]) is a common interval of � if and only if f(x; y) = 0.A simple algorithm to �nd C� is to test for each pair of indices (x; y)with 1 � x < y � n if f(x; y) = 0, yielding a naive O(n3) time or,using running minima and maxima, a slightly more involved O(n2) timealgorithm.The main idea of Algorithm RC is to save the time to test f(x; y) = 0for some pairs (x; y) by eliminating wasteful candidates for y.De�nition 1. For a �xed x, a right interval end y > x is called wastefulif it satis�es f(x0; y) > 0 for all x0 � x.In Algorithm RC (Algorithm 1), the common intervals are found usinga data structure Y consisting of a doubly-linked list ylist for indices

of non-wasteful right interval end candidates and, storing intervals ofylist, two further doubly-linked lists llist and ulist that implement thefunctions l and u in order to compute f e�ciently. They are also essentialfor an e�cient update of ylist. In our pseudocode we use the standardlist operations L:head for the �rst element of list L, L:succ(e) for thesuccessor and L:pred(e) for the predecessor of element e in L.Algorithm 1 (Reduce Candidate, RC)Input: A family � = (�1 = idn; �2) of two permutations of N = f1; : : : ; ng.Output: C� in standard notation.1: initialize Y2: for x = n� 1; : : : ; 1 do3: update Y // (see Algorithm 2)4: y x5: while (y ylist:succ(y)) de�ned and f(x; y) = 0 do6: output [l(x; y); u(x; y)]7: end while8: end forIn the �rst step of Algorithm 1, ylist is initialized containing oneelement that stores the index n, and llist and ulist are both initializedwith the one-element interval [n; n] consisting of the last/only element ofylist.Then Y is updated iteratively. A counter x (corresponding to thecurrently investigated left interval end) runs from n � 1 down to 1. Forany �xed x, the elements of llist are maximal intervals of ylist such thatfor an interval [y; y0] we have l(x; y) = l(x; ylist:succ(y)) = � � � = l(x; y0);similar for ulist. For an interval [y; y0] in llist or ulist, we de�ne its valueby val([y; y0]) := �2(y) and its end by end([y; y0]) := y0. Algorithm 2 showsthe update procedure for �2(x) > �2(x+ 1). The case �2(x) < �2(x+ 1)is treated in a symmetric way.First, index x is prepended at the head of ylist and [x; x] is prependedat the head of llist. Then ylist is trimmed by deleting all elements y (> x)that can be concluded to be wasteful (lines 3{12). This is called Trim-ming ylist in [10]. Simultaneously, ulist is trimmed in line 3. Finally,the interval ends of the new head of ulist, u�, are updated.Coming back to Algorithm 1, Uno and Yagiura show that in iterationstep x, after the update of Y , the function f(x; y) is monotonically in-creasing for the elements y remaining in ylist. This allows in lines 5{7 to�nd e�ciently all common intervals with left end x by evaluating f(x; y)

Algorithm 2 (Update of data structure Y in line 3 of Algorithm 1)1: prepend x at the head of ylist2: prepend [x; x] at the head of llist3: while (u� ulist:head) has a successor u and val(u) < �2(x) do4: delete u� from ulist and the corresponding elements from ylist5: end while6: y� end(u�)7: if (~y ylist:succ(y�)) is de�ned then8: while f(x; y�) > f(x; ~y) do9: delete y� from ylist10: y� ylist:pred(~y)11: end while12: end if13: update the left and right end of u� [x; y�]running left-to-right through ylist until an index y is encountered withf(x; y) > 0.4 Irreducible IntervalsIn this section we de�ne the set of irreducible intervals and show howthey can be used to reconstruct all common intervals. We start by char-acterizing the structure of the set of common intervals.Lemma 1. Let � be a family of permutations. For c1; c2 2 C� we havejc1 \ c2j � 2 , c1 \ c2 2 C� ;c1 \ c2 6= ;) c1 [c2 2 C� :Proof. This follows immediately from the de�nition of common intervals.utTwo common intervals c1; c2 2 C� have a non-trivial overlap if c1 \c2 6= ; and they do not include each other. A list p = (c1; : : : ; c`(p)) ofcommon intervals c1; : : : ; c`(p) 2 C� is a chain (of length `(p)) if every twosuccessive intervals in p have a non-trivial overlap. A chain of length oneis called a trivial chain, all other chains are called non-trivial chains. Achain that can not be extended to its left or right is a maximal chain. ByLemma 1, every chain p generates a common interval c = �(p) := Sc02p c0.De�nition 2. A common interval c is called reducible if there is a non-trivial chain that generates c, otherwise it is called irreducible.

This de�nition partitions the set of common intervals C� into theset of reducible intervals and the set of irreducible intervals, denoted I� .Obviously, 1 � jI� j � jC� j � �n2�. For a common interval c 2 C� wecount the number of irreducible intervals that properly contain c and callthis number the nesting level of c.Lemma 2. Let � be a family of permutations, c 2 C� a common in-terval, and (b1; : : : ; b`) a chain of irreducible intervals generating c. Thenesting levels of c and all the bi for i = 1; : : : ; ` are equal.Proof (Sketch). Let nc be the nesting level of c and ni the nesting level ofbi for i = 1; : : : ; `. Since bi � c we have ni � nc for i = 1; : : : ; `. If ni > nc,there exists an irreducible interval c� 6� c with bi � c� and ` > 1. Nowwe distinguish between internal and terminal intervals bi in the chain. Inboth cases one can easily see that c� can be generated by smaller commonintervals, contradicting the assumption that c� is irreducible. utWe can further partition I� into maximal chains. This partitioning isunique. For a maximal chain p = (c1; : : : ; c`(p)) and 1 � i � j � `(p), wecall p[i; j] := (ci; : : : ; cj) a subchain of p.Lemma 3. The set of common intervals that is generated from the sub-chains of the maximal chains of I� equals C� .Proof. This follows directly from the de�nition of the partition. utExample 1 (cont'd). For � = (�1; �2; �3) as above, the irreducible inter-vals are I� = f[1; 2]; [1; 8]; [2; 3]; [4; 5]; [4; 7]; [4; 8]; [4; 9]; [5; 6]g:The reducible intervals are generated as follows:[1; 3] = [1; 2] [[2; 3];[1; 9] = [1; 8] [[4; 9];[4; 6] = [4; 5] [[5; 6]:A sketch of the structure of maximal chains of irreducible intervals andtheir nesting levels is shown in Figure 1.Lemma 4. Given two di�erent maximal chains p1 and p2, exactly oneof the following alternatives is true:{ �(p1) and �(p2) are disjoint,

[5; 6][4; 5]
nesting level 1nesting level 0 [1; 8] [4; 9][2; 3][1; 2]nesting level 2nesting level 3nesting level 4 [4; 8][4; 7]Fig. 1. Visualization of the irreducible intervals in I� and their nesting levels.{ �(p1) is contained in a single element of p2, or{ �(p2) is contained in a single element of p1.Proof. �(p1) and �(p2) are either disjoint or have a non-empty intersec-tion. In the latter case, �(p1) and �(p2) cannot overlap non-trivially, be-cause of the maximality of p1 and p2. Therefore, w.l.o.g. suppose �(p2) ��(p1). No element of p2 can overlap non-trivially with any element ofp1, otherwise one could �nd an element of p1 or p2 that is generated bysmaller intervals, contradicting its irreducibility. This yields the existenceof exactly one irreducible interval c of p1 that includes �(p2) completely,while no other element of p1 overlaps with �(p2). utBased on the above lemmas, we describe a linear time algorithm toreconstruct the set C� of common intervals of a family of permutations� from its set I� of irreducible intervals (Algorithm 3). The algorithmpartitions I� into maximal chains (line 1). This can be done, for exam-ple, by the following three steps. First, I� is partitioned according tothe nesting level. This is possible in O(jI� j) time by applying a sweepline technique to all interval start and end points. Then the intervals inthe resulting classes are sorted by their left end. Using radix sort, thiscan also be done in O(jI� j) time. Finally, the classes are further re�nedat non-overlapping consecutive intervals, yielding the maximal chains ofirreducible intervals. This again takes O(jI� j) time. Using Lemma 3, wecreate C� by generating all subchains of the maximal chains (lines 2{4).This takes O(jC� j) time. Since jI� j � jC� j, Algorithm 3 takes O(jC� j)time in total.The following theorem is the basis for the complexity analysis of ouralgorithm in the following section.

Algorithm 3 (Reconstruct C� from I�)Input: I� in standard notationOutput: C� in standard notation1: partition I� into maximal chains p1; p2; : : :2: for each pm = (b1; : : : ; b`(pm)) do3: output � (pm[i; j]) in standard notation for all 1 � i � j � `(pm)4: end forTheorem 1. Given a family � = (�1; : : : ; �k) of permutations of N =f1; 2; : : : ; ng, we have 1 � jI� j � n� 1:Proof. For each interval [j; j+1], j = 1; : : : ; n�1, of �1 denote by b[j;j+1] 2I� the irreducible interval of smallest cardinality containing [j; j + 1]. Itis easy to see that b[j;j+1] is uniquely de�ned. For any c = [x; y] 2 C� ,a subset of fb[x;x+1]; : : : ; b[y�1;y]g generates c. This yields fb[j;j+1] j j =1; : : : ; n� 1g = I� . utExample 2. The limits given in Theorem 1 are actually achieved. For� = (idn; (1; n2 + 1; 2; n2 + 2; : : : ; n2 ; n)) we have C� = I� = f[1; n]g. For� = (idn; idn) we have C� = f[i; j] j 1 � i < j � ng and I� = f[i; i+1] j1 � i < ng.5 Finding All Irreducible Intervals of k PermutationsIn this section we present our algorithm that �nds all irreducible intervalsof a family � = (�1; �2; : : : ; �k) of k � 2 permutations of N = f1; : : : ; ngin O(kn) time. Together with Algorithm 3 this allows to �nd all K com-mon intervals of � in optimal O(kn+K) time.5.1 Outline of the AlgorithmFor 1 � i � k, set �i := (�1; : : : ; �i). Starting with I�1 = f[j; j + 1] j1 � j < ng, the algorithm successively computes I�i from I�i�1 fori = 2; : : : ; k (see Algorithm 4). To construct I�i from I�i�1 , we de�ne themapping 'i : I�i�1 ! I�iwhere for c 2 I�i�1 , 'i(c) is the smallest common interval c0 2 C�i thatcontains c. Since I�i � C�i � C�i�1 and, by Lemma 3, I�i�1 generatesthe elements of C�i�1 , I�i�1 also generates I�i . One can easily see thatc0 2 I�i and that 'i is surjective, i.e. I�i = f'i(c) j c 2 I�i�1g. Thisimplies the correctness of Algorithm 4. In Section 5.2 we will show how

'i(I�i�1) can be computed in O(n) time and space, yielding the O(kn)time complexity to compute I� (= I�k).Algorithm 4 (Computation of I�k)Input: A family � = (�1 = idn; �2; : : : ; �k) of k permutations of N = f1; : : : ; ng.Output: I� in standard notation.1: I�1 ([1; 2]; [2; 3]; : : : ; [n � 1; n])2: for i = 2; : : : ; k do3: I�i f'i(c) j c 2 I�i�1g // (see Algorithm 5)4: end for5: output I�k in standard notation5.2 Computing I�i from I�i�1For the computation of 'i(I�i�1) we use a modi�ed version of Algo-rithm RC where the data structure Y is supplemented by a data structureS that is derived from I�i�1 . S consists of several doubly-linked lists ofintervals of ylist, one for each maximal chain of I�i�1 .Using �1 and �i, as in Algorithm RC, the ylist of Y allows for a givenx to access all non-wasteful right interval end candidates y of C(�1;�i).The aim of S is to further reduce these candidates to only those indices yfor which simultaneously [x; y] 2 C�i�1 (ensuring [x; y] 2 C�i) and [x; y]contains an interval c 2 I�i�1 that is not contained in any smaller intervalfrom C�i . Together this ensures that exactly the irreducible intervals[x; y] 2 I�i are reported.An outline of our modi�ed version of Algorithm RC is shown in Algo-rithm 5. Since the �rst permutation handed to the algorithm has to be theidentity and S (derived from I�i�1) is compatible only with the index setof �1, we supply the algorithm with idn = ��1i ��i and ��1i ��1 instead of�1(= idn) and �i. (As usual, ��1i denotes the inverse of permutation �i.)This does not change the index set of the computed irreducible intervals.In line 1 of Algorithm 5, Y is initialized as in Algorithm RC. To ini-tialize S, I�i�1 is partitioned into maximal chains of non-trivially over-lapping irreducible intervals as in line 1 of Algorithm 3. For each suchchain, S contains a doubly-linked clist that initially holds the intervals ofthat chain in left-to-right order. Moreover, intervals from di�erent clistswith the same left end are connected by vertical pointers yielding for eachindex x 2 N a doubly-linked vertical list. It is not di�cult to add the ver-tical pointers during the construction of the clists such that the intervals

Algorithm 5 (Extended Algorithm RC)Input: Two permutations �1 = idn and �2 = ��1i of N = f1; : : : ; ng; I�i�1 in standardnotation.Output: I�i in standard notation.1: initialize Y and S2: for x = n� 1; : : : ; 1 do3: update Y and S // (see text)4: while ([x0; y] S :�rst active interval(x)) de�ned and f(x; y) = 0 do5: output [l(x; y); u(x; y)]6: remove [x0; y] from its active sublist // (the interval is satis�ed)7: end while8: end forin each vertical list are ordered by increasing length (decreasing nestinglevel).To describe the update of S in line 3 of the algorithm, we introducethe notion of sleeping, active, and satis�ed intervals. Initially all intervalsof the clists are sleeping. In iteration step x, all intervals with left endx become active and are included at the head of an (initially empty)active sublist of their clist. An interval remains active until it is satis�edor deleted. A clist L and the contained intervals are deleted whenever xbecomes smaller than the left interval end of L:head. It might be that theright end y of an interval [x; y] at the time of activation is already deletedfrom the ylist. In this case, the interval is merged with the successinginterval [x0; y0] in its clist, i.e. the corresponding two elements of clistare replaced by a new one, containing the interval [x; y0]. If no successorexists, the interval [x; y] is deleted.Concerning the function 'i, sleeping or active intervals correspond toirreducible intervals from I�i�1 whose images have not yet been deter-mined. The status changes to satis�ed when the image is known.The update of Y in line 3 is the same as in Algorithm RC, the onlydi�erence being that whenever an element y is removed from ylist andy is the right end of some active or satis�ed interval, this interval ismerged with its successor in its clist if such a successor exists, otherwiseit is deleted. The resulting interval inherits the active status if one ofthe merged intervals was active, otherwise it is satis�ed. (If both mergedintervals are active, this reects the case that 'i maps both intervals ofI�i�1 to the same (larger) interval of I�i .) Note that even though y can bethe right end of many irreducible intervals, at any point of the algorithmy can be the right end of at most one active or satis�ed interval. Thisis due to the fact that no two intervals of a maximal chain can have the

same right end, and whenever two intervals from di�erent chains havethe same right end, the chain of the shorter interval is deleted before thelonger interval is made active (cf. Lemma 4). Hence it su�ces to keep foreach index y > x a pointer to the (only) active or satis�ed interval withright end y. This right end pointer is set when the interval is made activeand is deleted when the interval's clist is deleted.In contrast to the simple traversal of the ylist in Algorithm RC, herethe generation of right interval end candidates in lines 4{7 is slightly morecomplicated. Function S:�rst active interval(x) returns the �rst activeinterval [x0; y] in the clist of the interval at the head of the vertical listat index x. If the right end y of this interval gives rise to a commoninterval [l(x; y); u(x; y)], i.e., if f(x; y) = 0, a common interval of smallestsize containing an active interval is encountered. Hence we have foundan element of 'i(I�i�1) which then is reported in line 5. Therefore [x0; y]becomes satis�ed and is removed from its active sublist in line 6. In casethis interval was the last active interval of its clist, the pointer to the headof the vertical list at index x is redirected to the successor of the currenthead, such that in the next iteration S:�rst active interval(x) returns theleftmost active interval from the clist with the next lower nesting level(if such a list containing an interval with left end x exists).This way we only look at elements of ylist that are candidates forright ends of minimal common intervals with left end x and that containan active interval. S:�rst active interval(x) generates these candidates inleft-to-right order such that, since f(x; y) is monotonically increasing forthe elements y of ylist and hence also for the elements of any sublist ofylist, by evaluating f(x; y) until an index y is encountered with f(x; y) >0, all irreducible intervals from I�i with left end x are found. This impliesthe correctness of our implementation of 'i.The complete data structure S for � = (�1; �2; �3) as in Example 1while processing index x = 4 of permutation �3 is shown in Figure 2.5.3 Analysis of Algorithm 5Since all operations modifying Y are the same as in Algorithm RC, thispart of the analysis carries over from [10], and we can restrict our analysisto the initialization and update of S.The initialization of S in line 1, including the creation of the verticallists, can easily be implemented in linear time in a way similar to the �rststep of Algorithm 3.In line 3, the intervals with left end x are easily found using the verticallists, marked active, and prepended to the active sublists in constant time

[1; 2] [2; 3] [5; 6] [6; 7] [8; 9][4; 8][4; 5][1; 7]clists8>>>><>>>>: 5 6 7 8 94321ylistnFig. 2. Sketch of ylist and the clists while processing element x = 4 of �3 for � =(�1; �2; �3) as in Example 1. Shaded boxes represent sleeping intervals, boxes withthick solid lines represent active intervals, and boxes with thin lines represent satis�edintervals. Thick arrows connect the elements of the active sublists, solid vertical arrowsdenote vertical lists (the vertical pointer of index 5 was deleted after reporting interval[5; 6] in iteration step x = 5), and dotted vertical arrows are the right end pointers.per interval. Since I�i�1 contains O(n) intervals and since each interval isactivated exactly once, this step takes overall O(n) time. Moreover, eachindex y that is deleted from the ylist can cause the merge of two intervals.Since merging two neighbors in a doubly-linked list takes constant time,and since each of the in total n elements of ylist is deleted at most once,this part takes overall O(n) time as well.As in Algorithm RC, the time required for reporting the output isproportional to the size of the output, here jI�i j < n. Using verticallist and active sublist, the �rst active interval is found in constant time.Hence, and since the removal of interval [x0; y] from the active sublist inline 6 is a constant-time operation as well, the loop in lines 4{7 takesoverall O(n) time.Putting things together, Algorithm 5 takes O(n) time and space. Sinceat any point of Algorithm 4 we need to store only two permutations �1and �i and the current I�i , we haveTheorem 2. The irreducible intervals of k permutations of n elementscan be found in optimal O(kn) time and O(n) additional space.Combining this result with Algorithm 3, we getCorollary 1. The K common intervals of k permutations of n elementscan be found in optimal O(kn+K) time and O(n) additional space.

AcknowledgmentsWe wish to thank Richard Desper, Dan Gus�eld, and Christian N. S.Pedersen for helpful comments.References1. K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, intervalgraphs and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci.,13(3):335{379, 1976.2. R. M. Brady. Optimization strategies gleaned from biological evolution. Nature,317:804{806, 1985.3. D. Fulkerson and O. Gross. Incidence matrices with the consecutive 1s property.Bull. Am. Math. Soc., 70:681{684, 1964.4. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,New York, 1980.5. S. Kobayashi, I. Ono, and M. Yamamura. An e�cient genetic algorithm for jobshop scheduling problems. In Proc. of the 6th International Conference on GeneticAlgorithms, pages 506{511. Morgan Kaufmann, 1995.6. E. M. Marcotte, M. Pellegrini, H. L. Ng, D. W. Rice, T. O. Yeates, and D. Eisen-berg. Detecting protein function and protein-protein interactions from genomesequences. Science, 285:751{753, 1999.7. H. M�uhlenbein, M. Gorges-Schleuter, and O. Kr�amer. Evolution algorithms incombinatorial optimization. Parallel Comput., 7:65{85, 1988.8. R. Overbeek, M. Fonstein, M. D'Souza, G. D. Pusch, and N. Maltsev. The use ofgene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA, 96(6):2896{2901, 1999.9. B. Snel, G. Lehmann, P. Bork, and M. A. Huynen. STRING: A web-server toretrieve and display the repeatedly occurring neigbourhood of a gene. NucleicAcids Res., 28(18):3443{3444, 2000.10. T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of twopermutations. Algorithmica, 26(2):290{309, 2000.

