
HP Distance via Double Cut and Join Distance

Anne Bergeron1, Julia Mixtacki2, and Jens Stoye3

1 Dépt. d’informatique, Université du Québec à Montréal, Canada.
bergeron.anne@uqam.ca

2 International NRW Graduate School in Bioinformatics and Genome Research,
Universität Bielefeld, Germany. julia.mixtacki@uni-bielefeld.de

3 Technische Fakultät, Universität Bielefeld, Germany.
stoye@techfak.uni-bielefeld.de

Abstract. The genomic distance problem in the Hannenhalli-Pevzner
theory is the following: Given two genomes whose chromosomes are lin-
ear, calculate the minimum number of inversions and translocations that
transform one genome into the other. This paper presents a new distance
formula based on a simple tree structure that captures all the delicate
features of this problem in a unifying way.

1 Introduction

The first solution to the genomic distance problem was given by Hannenhalli and
Pevzner [6] in 1995. Their distance formula, called the general HP distance, re-
quires preprocessing steps such as capping and concatenation and involves seven
parameters. In the last decade, different authors pointed to problems in the
original formula and in the algorithm given by Hannenhalli and Pevzner. Their
algorithm was first corrected by Tesler [9]. In 2003, Ozery-Flato and Shamir [8]
found a counter-example and modified one of the parameters of the distance for-
mula. Very recently, another correction was presented by Jean and Nikolski [7].
Unfortunately, the last two recent results have not resulted in simpler presenta-
tions of the material, nor are they implemented in software tools yet. The only
available tool is GRIMM implemented by Glenn Tesler [10].

In contrast to this rather complicated distance measure, Yancopoulos et al. [11]
presented a general genome model that includes linear and circular chromosomes
and introduced a new operation called double cut and join (or shortly DCJ) op-
eration. In addition to inversions and translocations, the DCJ operation also
models transpositions and block-interchanges. Beside the simple distance com-
putation, the sorting algorithm is also basic and efficient [4].

In this paper we will show how the rearrangement model considered in the
HP theory can be integrated in the more general DCJ model. Specifically, the
HP distance can be expressed as

dHP = dDCJ + t

where t represents the extra cost of not resorting to unoriented DCJ operations.
The extra cost can easily be computed by a tree data structure associated to a
genome.



The next section recalls the results on the DCJ distance. In Section 3, we
establish the conditions under which the two distances are equal. The general
case is treated in Section 4, where we introduce the basic concepts and the tree
needed for the computation of the HP distance, and we give a new proof and
formula for the Hannenhalli-Pevzner theorem. Section 5 presents the conclusion.

2 The Double Cut and Join (DCJ) Model

Let A and B be two linear multi-chromosomal genomes on the same set of N
genes. A linear chromosome will be represented by an ordered sequence of signed
genes, flanked by two unsigned telomere markers:

(◦, g1, . . . , gn, ◦).

An interval (l, . . . , r) in a genome is a set of consecutive genes or telomere markers
within a chromosome; the set {l,−r} is the set of extremities of the interval –
note that ◦ = −◦. An adjacency is an interval of length 2, an adjacency that
contains a telomere marker is called a telomere. Each gene g is the extremity
of two adjacencies, one as +g, and one as −g, in both genomes A and B. This
remark yields the following basic construct:

Definition 1. The adjacency graph AG(A,B) is a graph whose vertices are the
adjacencies of genomes A and B. Each gene g defines two edges, one connecting
the two adjacencies of genome A and B in which g appears as extremity +g, and
one connecting the two adjacencies in which g appears as extremity −g.

Since adjacencies that are telomeres have only one gene, the vertices of
the adjacency graph will have degree one or two, thus the graph is a union
of paths and cycles. Paths of odd length, called odd paths, connect telomeres
of different genomes, and paths of even length, the even paths, connect telom-
eres of the same genome. For example, the adjacency graph of the genomes
A = {(◦, 3, 2, 1, 4, ◦), (◦, 6, 5, ◦)} and B = {(◦, 1, 2, 3, 4, ◦), (◦, 5, 6, ◦)} has two
odd paths, one cycle and two even paths:

s s s s s s s s{◦,−3} {3,−2} {2,−1} {1,−4} {4,−◦} {◦,−6} {6,−5} {5,−◦}

s s s s s s s s
{◦,−1} {1,−2} {2,−3} {3,−4} {4,−◦} {◦,−5} {5,−6} {6,−◦}

�
�

�
�

�
��

�
�

�
�

�
��

Q
Q

Q
Q

Q
QQ

Q
Q

Q
Q

Q
QQ

�
�

�
��

�
�

�
��

S
S

S
SS

S
S

S
SS

A DCJ operation applied to two adjacencies of the same genome disconnects
the incident edges of the adjacency graph, and reconnects them in one of the
possible other ways. The DCJ distance between genomes A and B, dDCJ(A,B),
is the minimum number of DCJ operations necessary to transform genome A
into genome B. We have:

2



Theorem 1 ([4]). Let A and B be two genomes defined on the same set of N
genes, then we have

dDCJ(A,B) = N − (C + I/2)

where C is the number of cycles and I the number of odd paths in AG(A,B).
An optimal sorting sequence can be found in O(N) time.

A DCJ operation that reduces the DCJ distance by 1 is called DCJ-sorting.
Using Theorem 1, we have the following property of DCJ-sorting operations,
using the fact that a DCJ operation acts on at most two paths or cycles, and
produces at most one new path or cycle:

Corollary 1. A DCJ-sorting operation acts on a single path or cycle, or on two
even paths of the adjacency graph.

Some DCJ operations can create intermediate circular chromosomes, even
if both genomes A and B are linear, and we will want to avoid them in the
HP model. The following definition is a generalization of a classical concept in
rearrangement theory, oriented operations:

Definition 2. A DCJ-sorting operation is oriented if it does not create circular
chromosomes.

For two linear genomes, oriented operations are necessarily inversions, translo-
cations, fusions or fissions. These operations are also called HP operations, and
the HP distance between two genomes dHP (A,B) is the minimum number of HP
operations needed to transform genome A into genome B. Since DCJ operations
are more general than HP operations, we always have the following lower bound:

Proposition 1. For two linear genomes A and B, we have that dDCJ(A,B) ≤
dHP (A,B).

3 Components and Oriented Sorting

In this section, we introduce the notion of components. They roughly correspond
to the classical concept of components, but in the context of adjacency graphs,
we prove that they are unions of paths and cycles.

3.1 Basic Definitions

Definition 3. Given two genomes A and B, an interval (l, . . . , r) of genome A
is a component relative to genome B if there exists an interval in genome B:

a) with the same extremities,
b) with the same set of genes, and
c) that is not the union of two such intervals.

3



Example 1. Let

A = {(◦, 2, 1, 3, 5, 4, ◦), (◦, 6, 7,−11,−9,−10,−8, 12, 16, ◦), (◦, 15, 14,−13, 17, ◦)},
B = {(◦, 1, 2, 3, 4, 5, ◦), (◦, 6, 7, 8, 9, 10, 11, 12◦), (◦, 13, 14, 15, ◦), (◦, 16, 17, ◦)}.

The components of genome A relative to genome B are: (◦, 2, 1, 3), (3, 5, 4, ◦),
(◦, 6), (6, 7), (−11,−9,−10,−8), (7,−11,−9,−10,−8, 12), (◦, 15, 14,−13) and
(17, ◦).
Note that components of length 2 are the same adjacencies in both genomes,
possibly up to flipping of a chromosome. These are called trivial components.

Two components are nested if one is included in the other and their extrem-
ities are different. As the following lemma shows, two components cannot share
a telomere:

Lemma 1. If (◦, . . . , r1) and (◦, . . . , r1, . . . , r2) are two components, then r1 =
r2, and if (l1, . . . , l2, . . . , ◦) and (l2, . . . , ◦) are two components then l1 = l2.

Proof. Suppose that (◦, . . . , r1) and (◦, . . . , r1, . . . , r2) are two components. Since
the corresponding intervals in genome B, (◦, . . . , r1) and (◦, . . . , r2), share the
same gene content, the interval (r1, . . . , r2) shares the same gene content in both
genomes, thus (r1, . . . , r2) is a component, and (◦, . . . , r1, . . . , r2) is the union of
two components, a contradiction. The other statement has a similar proof. ut

It is further known that two components can not properly overlap on two or
more elements. We thus have the following generalization of a statement from [5]:

Proposition 2. Two components are either disjoint, nested, or overlap on ex-
actly one gene.

Proposition 2 implies that components can be partially ordered by inclu-
sion, and that overlapping components will have the same parent. An adjacency
properly belongs to the smallest component that contains it.

Definition 4. The adjacency graph of a component C is the subgraph of the
adjacency graph of genomes A and B induced by the adjacencies that properly
belong to C.

An important property of the adjacency graph is the following:

Proposition 3. The adjacency graph of a component is a union of paths and
cycles of the adjacency graph of genomes A and B.

Proof. Let C = (l, . . . , r) be a component. Since it has the same gene content
and the same extremities as the corresponding interval in genome B, all edges
of the adjacency graph that are within the interval (l, . . . , r) in genome A will
also be within the interval (l, . . . , r) in genome A. Thus all these edges form a
union of paths and cycles of the adjacency graph of genomes A and B.

Each component that is nested in C is also a union of paths and cycles of the
adjacency graph of genomes A and B, and none of them contains an adjacency
that properly belongs to C. We can thus remove them without compromising the
connectivity of the adjacency graph of C. ut

4



3.2 Oriented Sorting

Since orientation of genes is relative, we can always assume that all genes in
a chromosome of genome B are positive and in increasing order. The proper
adjacencies of a component C = (l, . . . , r) induce a block partition in the cor-
responding chromosomes of genomes A and B. If we label the blocks in the
chromosome of genome B with numbers from 1 to k, the corresponding blocks
of the chromosome in genome A will be a signed permutation (p1, . . . , pk) of
these integers {1, . . . , k}. We will call this permutation – or it reverse – the
permutation associated to the component C.

Consider for example the following two genomes

A = {(◦ 5, 1, 3,−2, 4, 6,−10, 9, 8,−7, 11 ◦)}
B = {(◦ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ◦)}

The associated components can easily be seen in the following diagram:

5 1 3 -2 4 6 -10 9 8 -7 11

The component (◦, . . . , 6) consists of three blocks: the gene 5, the block (1, . . . , 4)
and the gene 6. Thus, the permutation associated to the component (◦, . . . , 6) is
(2, 1, 3). For the other three non-trivial components, the associated permutations
are (1, 3,−2, 4), (−4, 3, 2,−1) and (1,−2, 3).

When the permutation associated to a component has both positive and
negative signs, then it is well known from the sorting by inversion theory that
the component can be optimally sorted by DCJ-sorting inversions. Components
whose associated permutations have only positive elements can sometimes be
optimally sorted by DCJ-sorting inversions. For example, consider the pair of
genomes:

A = (◦, 4, 3, 2, 1, ◦) and B = (◦, 1, 2, 3, 4, ◦),

whose associated permutation is (4, 3, 2, 1). Its DCJ distance is 4, and it can be
optimally sorted by inverting each of the four genes. However, we have:

Lemma 2. If all elements of the permutation associated to a component have
the same sign, then no inversion acting on one of its paths or cycles can create
a new cycle.

Proof. By eventually flipping the chromosome, we can assume that all the ele-
ments of the permutation are positive. Suppose that an inversion is applied to
two adjacencies (+i,+j) and (+k,+l) in a single path or cycle of the compo-
nent, and that this creates a new cycle. The new adjacencies will be (+i,−k)
and (−j,+l), where at most one of +i and +l can be a telomere. If both of
these new adjacencies belong to the same path or cycle, there was no creation
of a new cycle. Suppose that the adjacency (+i,−k) belongs to the new cycle,
then all other adjacencies of this cycle existed in the original component, and are
composed of positive elements. This, however, is impossible by the construction
of the adjacency graph. ut

5



Definition 5. A component is oriented if there exists an oriented DCJ-sorting
operation that acts on vertices of its adjacency graph, otherwise it is unoriented.

Oriented components are characterized by the following:

Proposition 4. A component is oriented if and only if either its associated
permutation has positive and negative elements, or its adjacency graph has two
even paths.

Proof. If the associated permutation has positive and negative elements, then
there is at least one change of signs between blocks labeled by consecutive in-
tegers. There thus exists an inversion that creates an adjacency in genome B,
thus a new cycle, and the inversion is DCJ-sorting. If there are two even paths,
then one must be a path from genome A to genome A, and the other must be a
path from genome B to genome B. An inversion in genome A that acts on one
adjacency in each path creates two odd paths, thus is DCJ-sorting.

In order to show the converse, suppose that all elements of the associated
permutation are positive, and all paths are odd. By Corollary 1, a DCJ-sorting
operation must act on a single path or cycle. This operation cannot be a translo-
cation or a fusion since all paths and cycles of a component are within a chro-
mosome. This operation cannot be an inversion, since inversions that create new
cycles are ruled out by Lemma 2, inversions acting on a single odd path cannot
augment the number of odd paths, and inversions acting on cycles never create
paths. Finally, this operation cannot be a fission: a fission acting on a cycle cre-
ates an even path; and a fission acting on an odd path must circularize one of
the chromosome parts in order to be DCJ-sorting, otherwise it would be split
into an even path and an odd path. ut

Proposition 4 implies that, in the presence of unoriented components, we
have dDCJ(A,B) < dHP (A,B), since all DCJ-sorting operations will create cir-
cular chromosomes. On the other hand, well known results from the Hannehalli-
Pevzner theory show that, when all components admit a sorting inversion, then
it is possible to create a new cycle at each step of the sorting process with HP
operations, without creating unoriented components. The same type of result
can be obtained in this context, and we give it in the Appendix. Thus we have:

Theorem 2. Given two linear genomes A and B, dHP (A,B) = dDCJ(A,B) if
and only if there are no unoriented components.

4 Computing the General HP Distance

In this section we will show that, given the DCJ distance dDCJ , one can express
the Hannenhalli-Pevzner distance dHP in the form

dHP = dDCJ + t,

where t represents the additional cost of not resorting to unoriented DCJ oper-
ations. First, we describe how to destroy unoriented components in Section 4.1
and after that, in Section 4.2, we compute the additional cost from the inclusion
and linking tree of the unoriented components.

6



4.1 Destroying Unoriented Components

Destroying unoriented components is done by applying a DCJ operation either
on one component in order to orient it, or on two components in order to merge
them, and possibly others, into a single oriented component. By using the nesting
and linking relationship between components, one can minimize the number of
operations necessary to destroy unoriented components.

When two components overlap on one element, we say that they are linked.
Successive linked components form a chain. A chain that cannot be extended to
the left or right is called maximal. We represent the nesting and linking relations
between components of a chromosome in the following way:

Definition 6. Given a chromosome X of genome A and its components relative
to genome B, define the forest FX by the following construction:

1. Each non-trivial component is represented by a round node.
2. Each maximal chain that contains non-trivial components is represented by

a square node whose (ordered) children are the round nodes that represent
the non-trivial components of this chain.

3. A square node is the child of the smallest component that contains this chain.

Now, we define a tree associated to the components of a genome by combining
the forests of all chromosomes into one rooted tree:

Definition 7. Suppose genome A consists of chromosomes {X1, X2, . . . , XK}.
The tree T associated to the components of genome A relative to genome B is
given by the following construction:

1. The root is a round node.
2. All trees of the set of forests {FX1 , FX2 , . . . , FXK

} are children of the root.

The round nodes of T are painted according to the following classification:

1. The root and all nodes corresponding to oriented components are painted
black.

2. Nodes corresponding to unoriented components that do not contain telom-
eres are painted white.

3. Nodes corresponding to unoriented components that contain one or two
telomeres are painted grey.

The tree associated to the components of the genomes A and B of Example
1 is shown in Fig. 1. Note that grey nodes are always children of the root.

The following two propositions are general remarks on components and are
useful to show how to destroy unoriented components.

Proposition 5. A translocation acting on two (unoriented) components cannot
create new (unoriented) components.

Proposition 6. An inversion acting on two (unoriented) components A and
B creates a new component D if and only if A and B are included in linked
components.

7



s
�

���
��

H
HHH

HH
���c×

(◦, . . . , 3)

HHHc×
(3, . . . , ◦)

s(7, . . . , 12)

c(−11, . . . ,−8)

s(◦, . . . ,−13)

Fig. 1. The tree T associated to the genomes A and B of Example 1 has two grey
leaves, one white leaf and one black leaf.

Now, we have all necessary results to get rid of unoriented components. The
following two propositions are straightforward generalizations of well-known re-
sults from the inversion theory [2]. We will start by looking at one single unori-
ented component.

Proposition 7. If a component C is unoriented, any inversion between adja-
cencies of the same cycle or the same path of C orients C, and leaves the number
of cycles and paths of the adjacency graph of C unchanged.

Orienting a component as in Proposition 7 is called cutting the component.
Note that this operation leaves the DCJ distance unchanged, and does not create
new components.

It is possible to destroy more than one unoriented component with a DCJ
operation acting on two unoriented components. The following proposition de-
scribes how to merge several components, and the relations of this operation to
paths in the tree T .

Proposition 8. A DCJ operation acting on adjacencies of two different unori-
ented components A and B destroys, or orients, all components on the path from
A to B in the tree T , without creating new unoriented components.

If the DCJ operation acts on two odd paths, thus on grey components, then
merging the two components can be done without changing the number of odd
paths, and the DCJ distance is unchanged. If the DCJ operation involves at least
one cycle, then merging two components decreases the number of cycles by one,
and the DCJ distance will increase by 1 in the resulting pair of genomes.

4.2 Unoriented Sorting

Let T be the tree associated to the components of genome A relative to genome
B, and let T ′ be the smallest subtree of T ′ that contains all the unoriented
components, that is, the white and grey nodes.

Definition 8. A cover of T ′ is a collection of paths joining all the unoriented
components, such that each terminal node of a path belongs to a unique path.

8



A path that contains two or more white or grey components, or one white
and one grey component, is called a long path. A path that contains only one
white or one grey component, is a short path.

The cost of a cover is defined to be the sum of the costs of its paths, where the
cost of path is the increase in DCJ distance caused by destroying the unoriented
components along the path. Using the remarks following Propositions 7 and 8,
we have:

1. The cost of a short path is 1.
2. The cost of a long path with just two grey components is 1.
3. The cost of all other long paths is 2.

An optimal cover is a cover of minimal cost. Define t as the cost of any optimal
cover of T ′. We first establish that t is the difference between the two distances,
using the following terminology:

Definition 9. Given genomes A and B, we call a DCJ operation applied to
genome A

– proper, if it decreases dDCJ(A,B) by one, i.e. ∆(C + I/2) = 1,
– improper, if dDCJ(A,B) remains unchanged, i.e. ∆(C + I/2) = 0, and
– bad, if it increases dDCJ(A,B) by one, i.e. ∆(C + I/2) = −1.

Theorem 3. If t is the cost of an optimal cover of T ′, the smallest subtree of
T that contains all the unoriented components of genome A relative to genome
B, then:

dHP (A,B) = dDCJ(A,B) + t.

Proof. First, we will show that dHP (A,B) ≤ dDCJ(A,B)+t. Consider any cover
of the tree T ′. Let

– ww be the number of long paths with only white components,
– wg be the number of long paths with white and grey components,
– gg be the number of long paths with only grey components,
– w be the number of short paths with one white component,
– g be the number of short paths with one grey component.

Clearly, we have that the cost t′ of this cover is t′ = 2ww + 2wg + gg + w + g.
Suppose that the adjacency graph AG(A,B) has C cycles and I odd paths.

Applying ww+wg bad DCJ operations and gg+w+g improper DCJ operations
yields a genome A′. Since each bad DCJ operation merges two cycles or one cycle
and a path, the number of cycles in AG(A′, B) is C − ww − wg. Note that the
number of odd paths remains unchanged. Therefore, by Theorem 2, we have that

dHP (A,B) ≤ dHP (A′, B) + ww + wg + gg + w + g

= N − (C +
I

2
) + 2ww + 2wg + gg + w + g

= dDCJ(A,B) + t′.

9



Thus, since the above equation is true for any cover, we have: dHP (A,B) ≤
dHP (A,B) + t.

The fact that dHP (A,B) ≥ dHP (A,B) + t is a consequence of the fact that
an optimal sorting with HP operation necessarily induces a cover of T ′ since all
unoriented components are eventually destroyed. ut

It remains to establish a closed formula for t. A first easy but significant
result on the size of t is the following lower bound. Let w be the number of
white leaves and g be the number of grey leaves in T ′. Since destroying a white
leaf costs at least 1 and destroying a grey leaf costs at least 1/2, and t is an
integer, we have:

w +
⌈g

2

⌉
≤ t.

It is quite remarkable, as was observed in the original paper on HP distance [6],
that this bound is at most within one rearrangement operation from the optimal
solution.

A branch in a tree is called a long branch if it has two or more unoriented
components. A tree is called a fortress if it has an odd number of leaves, all of
them on long branches. A standard theorem of the sorting by inversion theory
states that the minimal cost to cover a tree that is not a fortress is `, the number
of leaves of the tree, and ` + 1 in the case of a fortress [2].

We have first:

Theorem 4. Let w be the number of white leaves and g be the number of grey
leaves in T ′, the smallest subtree of T that contains all the unoriented components
of genome A relative to genome B. If the root of T ′ has more than one child
with white leaves, then the minimal cost of a cover of T ′ is:

t = w + d g
2e if the smallest subtree T ′′ that contains all the white leaves

of T ′ is not a fortress, or g is odd,
t = w + d g

2e+ 1 otherwise.

Proof. If the subtree T ′′ is not a fortress then it admits a cover of cost w, and
pairing the maximum number of grey nodes yields a cover of T ′ costing w+ d g

2e.
If the subtree T ′′ is a fortress, then one of its white leaves is not paired with
another leaf since the number of leaves is odd. A cover of T ′ can be obtained by
pairing this white leaf with a grey leaf, which exists if g is odd. The resulting
cost will be again w + d g

2e which equals the lower bound and thus the cover is
optimal.

If the subtree is a fortress and g is even, we can construct a cover costing
(w+1)+g/2, using the cover of the fortress and pairing the grey nodes. To show
that this cost is minimal, suppose that k grey nodes are paired with k white
nodes, the remaining white and grey paired separately. If k is even, then the cost
of such a cover would be (w−k+1)+(g−k)/2+2k, which is greater than or equal
to (w+1)+g/2. If k is odd, then the cost of this cover is (w−k)+(g−k+1)/2+2k,
which is again greater than or equal to (w + 1) + g/2. ut

10



When all the white leaves belong to a single child of the root, the situation
is more delicate. Define a junior fortress as a tree with an odd number of white
leaves, all of them on long branches, except one that is alone on its branch, called
the top of the fortress. We have the following:

Theorem 5. Let w > 0 be the number of white leaves and g > 0 be the number
of grey leaves in T ′, the smallest subtree of T that contains all the unoriented
components of genome A relative to genome B. If the root of T ′ has only one
child c with white leaves then the minimal cost of a cover of T ′ is:

t = w + d g
2e if g is odd and the subtree Tc that is rooted at c

is neither a fortress nor a junior fortress,
t = w + d g

2e+ 1 otherwise.

Proof. Suppose first that g = 1, then the only grey leaf either belongs to Tc or
not. In the first case, this grey leaf must be the child c implying that Tc is not
a junior fortress. If Tc is not a fortress, then there exists a cover with minimal
cost equal to the number of leaves of Tc, which is given by w + d g

2e, since g = 1.
If Tc is a fortress, then the minimal cost of a cover is w + d g

2e+ 1.
In the other case, i.e. the grey leaf does not belong to Tc, then if Tc is a

fortress or a junior fortress, the whole tree T ′ is a fortress with w + d g
2e leaves,

yielding a cost of w + d g
2e+ 1. Otherwise, if Tc is neither a fortress nor a junior

fortress, then T ′ can not be a fortress, and hence can be destroyed with cost
w + 1 = w + d g

2e.
The same argumentation holds for any g > 1 if g is odd.
Now, we consider the case g = 2. If Tc is a fortress, two of the white leaves in

Tc can be paired with the two grey leaves outside Tc at cost 4. This eliminates
the two grey leaves, two of the long white branches, and the branch containing
c. The remaining w − 2 long branches are paired at cost w − 2. Together, this
gives a cover of cost 4 + w − 2 = w + d g

2e+ 1. This is optimal since the cost of
T ′ is the same as for Tc. If Tc is not a fortress, we do not need to pair white and
grey leaves. Tc can be covered with cost w + 1 and the g grey leaves are paired
with cost d g

2e, giving again a total cost of w + d g
2e+ 1.

If g > 2 and g is even, it is always possible to pair the grey leaves, as long
as there are more than two left, and then apply the case g = 2. This gives the
same cost w + d g

2e+ 1. ut
For example, the genomes A and B of Example 1 have N = 17 genes. The

adjacency graph AG(A,B) has C = 3 cycles and I = 6 odd paths. After removing
the dangling black leaf, the tree T ′ has g = 2 grey leaves and w = 1 white leaf
(see Fig. 1). Therefore, by Theorem 5, we have t = 2 and thus

dHP (A,B) = N − (C +
I

2
) + t = 17− (3 + 3) + 2 = 13.

5 Conclusion

In this paper, we have given a simpler formula for the Hannenhalli-Pevzner
genomic distance equation. It requires only a few parameters that can easily be

11



computed directly from the genomes and from simple graph structures derived
from the genomes. Traditionally used concepts that were sometimes hard to
access, like weak-fortresses-of-semi-real-knots, are bypassed.

References

1. A. Bergeron. A very elementary presentation of the hannenhalli-pevzner theory. In
Proceedings of CPM 2001, volume 2089 of LNCS, pages 106–117. Springer Verlag,
2001.

2. A. Bergeron, J. Mixtacki, and J. Stoye. Reversal distance without hurdles and
fortresses. In Proceedings of CPM 2004, volume 3109 of LNCS, pages 388–399.
Springer Verlag, 2004.

3. A. Bergeron, J. Mixtacki, and J. Stoye. On sorting by translocations. J. Comput.
Biol., 13(2):567–578, 2006.

4. A. Bergeron, J. Mixtacki, and J. Stoye. A unifying view of genome rearrangements.
In Proceedings of WABI 2006, volume 4175 of LNBI, pages 163–173. Springer
Verlag, 2006.

5. A. Bergeron and J. Stoye. On the similarity of sets of permutations and its appli-
cations to genome comparison. In T. Warnow and B. Zhu, editors, Proceedings of
COCOON 2003, volume 2697 of LNCS, pages 68–79. Springer Verlag, 2003.

6. S. Hannenhalli and P. A. Pevzner. Transforming men into mice (polynomial algo-
rithm for genomic distance problem). In Proceedings of FOCS 1995, pages 581–592.
IEEE Press, 1995.

7. G. Jean and M. Nikolski. Genome rearrangements: a correct algorithm for optimal
capping. Inf. Process. Lett., 104:14–20, 2007.

8. M. Ozery-Flato and R. Shamir. Two notes on genome rearrangements. J. Bioinf.
Comput. Biol., 1(1):71–94, 2003.

9. G. Tesler. Efficient algorithms for multichromosomal genome rearrangements. J.
Comput. Syst. Sci., 65(3):587–609, 2002.

10. G. Tesler. GRIMM: Genome rearrangements web server. Bioinformatics,
18(3):492–493, 2002.

11. S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic per-
mutations by translocation, inversion and block interchange. Bioinformatics,
21(16):3340–3346, 2005.

A Proof of Theorem 2

Components whose both extremities are genes, often called real components, are
well studied in the context of sorting a single chromosome with the same flanking
genes [1]. We have the following:

Proposition 9 ([1]). An oriented real component has an oriented DCJ-sorting
operation that does not create new unoriented components.

Components that contain one or two telomere are called semi-real.

Proposition 10. An oriented semi-real component whose associated permuta-
tion is oriented can be sorted with oriented DCJ-sorting operations.

12



Proof. We will show that such components can be embedded in oriented real
components with the same DCJ distance. Then, we can sort the component
with oriented DCJ-sorting operations. The basic idea is the following: if the
component has one telomere, add an extra gene 0 or k to the associated permu-
tation. This transforms the – only – odd path into a cycle and preserves the DCJ
distance. If the component has two telomeres – it spans a whole chromosome –
flip the chromosome as necessary in order to “close” each odd path into a cycle.
It is then easy to show that the DCJ distance is preserved. ut

Proposition 11. A semi-real component whose adjacency graph has even paths
can be sorted with oriented DCJ-sorting operations.

Proof. First, note that the semi-real component C = (l, . . . , r) has two even
paths. Consider the permutation (p1, . . . , pk) associated to component C. If the
permutation is oriented, then it is possible to sort the component with oriented
DCJ-sorting operations by Proposition 10.

Now, if the permutation is unoriented, then all genes p1 to pk have the same
sign. There exist two possible fissions: fission F1 creating telomere (k, ◦) and
fission F2 creating (◦, 1). It can be shown that one of these two fissions does not
create new unoriented components. ut

Definition 10. A DCJ operation creating the adjacency (a, b) of B, where a and
b are genes, is called interchromosomal, if (a, x) and (y, b) belong to different
chromosomes in A.

1. If x 6= ◦ and y 6= ◦, the DCJ operation is a translocation.
2. If x = ◦ or y = ◦, the DCJ operation is a semi-translocation.
3. If x = ◦ and y = ◦, the DCJ operation is a fusion.

The next proposition is the key, it says that for any interchromosomal DCJ
operation that creates an unoriented component there always exists an alter-
native interchromosomal DCJ-sorting operation that does not. This statement,
already proven in the context of sorting by translocations in [3], can be shown
similarly for the general case.

Proposition 12. Given two linear genomes A and B, if an interchromosomal
DCJ operation creates an unoriented component, then there exists another in-
terchromosomal DCJ-sorting operation that does not.

Theorem 2. Given two linear genomes A and B, dHP (A,B) = dDCJ(A,B) if
and only if there are no unoriented components.

Proof. The “if” part comes from the fact that we can sort a genome without
unoriented components with DCJ-sorting operations (Propositions 10, 11, 12),
adding the fact that semi-real components whose graphs have even paths can
be “destroyed” by fissions. The “only if” part comes from the fact that if there
are unoriented components, then dDCJ(A,B) < dHP (A,B), since we showed in
Proposition 4 that all DCJ-sorting operations create circular chromosomes in
these cases. ut

13


