
Simple and Flexible Detection of ContiguousRepeats Using a Su�x Tree(Preliminary Version)
Jens Stoye? and Dan Gus�eld??Department of Computer ScienceUniversity of California, DavisDavis, CA 95616

Abstract. We study the problem of detecting all occurrences of (prim-itive) tandem repeats and tandem arrays in a string. We �rst give asimple time- and space- optimal algorithm to �nd all tandem repeats,and then modify it to become a time and space-optimal algorithm for�nding only the primitive tandem repeats. Both of these algorithms arethen extended to handle tandem arrays. The contribution of this paperis both pedagogical and practical, giving simple algorithms and imple-mentations based on a su�x tree, using only standard tree traversaltechniques.
1 IntroductionSu�x trees are a fundamental data structure supporting a wide variety of ef-�cient string searching algorithms. Their \myriad virtues" are well known [1],and more than 30 non-trivial applications have been collected [5, 8]. Althoughalternative algorithms based on other data structures exist for many of theseapplications, it is remarkable that this single data structure allows so many ef-�cient { and often surprisingly simple and elegant { solutions to so many stringsearching and matching problems. In particular, su�x trees are well known to al-low e�cient and simple solutions to many problems concerning the identi�cationand location of repeated substrings, where the substrings are either not requiredto be contiguous, or where the substrings form the two halves of a palindrome(see [8] for a description of several of such problems). For example, the simplemethod described in [8] to enumerate occurrences of all maximal pairs of re-peated substrings in time proportional to their number, has been independentlyfound by several people [9, 11, 17].? Research supported by the German Academic Exchange Service (DAAD). E-mail:stoye@cs.ucdavis.edu?? Research partially supported by grant DBI-9723346 from the National Science Foun-dation, and by grant DE-FG03-90ER60999 from the Department of Energy. E-mail:gusfield@cs.ucdavis.edu

Despite the enormous versatility of su�x trees and their natural applicationto problems concerning non-contiguous repeats and palindromes, problems con-cerning contiguous repeated substrings have not previously had simple, naturalsolutions based on su�x trees. This is both surprising and disappointing, makingit more di�cult to teach e�cient algorithms for a wide range of string problems,and complicating the long-term project (at U.C. Davis) of building practical,easily understood software for many di�erent string tasks, based around a sin-gle resident data structure, the su�x tree. Such tools are being developed forapplications in bio-sequence analysis. The existing literature contains methodsfor locating certain contiguous repeats [3, 13, 14, 12] that are not based on su�xtrees, although the method in [12] uses a su�x tree to solve certain subproblems.There are also two technically impressive papers, [10] and [2], which present time-and space-optimal methods using su�x trees for problems concerning contigu-ous repeated substrings. The methods in both of those papers are quite complex(in algorithmic detail, needed auxiliary data structures, embellishments requiredfor optimal space use, or time and correctness proofs). The �rst of those papersconcerns problems not addressed here, while the second paper does concern thesame problems addressed here. The second paper processes a su�x tree fromthe bottom up and requires considerable auxiliary data structures.In this paper we present simple, time- and space-optimal algorithms for prob-lems of locating certain contiguous repeated substrings in a string S. Our meth-ods only use standard tree traversal techniques, assuming the su�x tree for Sis available. Our methods process a single su�x tree top down with only theaddition of an array the size of the input string. These simple methods haveboth pedagogical and practical value. The algorithms are based on the fact thatsu�x trees allow the e�cient location of what we call branching occurrences oftandem repeats in a string. Once these occurrences are found, almost all otherrepetitive structures of interest can be determined with little additional e�ort.Hence our various algorithms are not only simple, they are all derivatives of asingle, basic algorithm.In Sect. 2 we introduce our terminology and state basic facts about therepeated substrings we will search for. In Sect. 3 we present the basic algorithmand three extensions. In Sect. 4 we sketch a bound on the number of occurrencesof primitive tandem arrays. Section 5 concludes with an open question.
2 Strings, Su�x Trees, and Tandem Arrays2.1 Terminology and Basic FactsWe assume a �nite alphabet � of a �xed size. Throughout this paper, a, b, c, x,and y denote single characters from �; S, w, �, �,
, � denote strings from ��.We �x attention to a string S of length n = jSj; for convenience, we assumeS ends with a character `$' not occurring elsewhere in S. For 1 � i � j � n,S[i::j] denotes the substring of S beginning with the ith and ending with thejth character of S; we say there is an occurrence of S[i::j] at position i in S.

When the substring consists of only one letter we simply write S[i] rather thanS[i::i].A string w is a tandem array if it can be written as w = �k for some k � 2;otherwise w is called primitive. An occurrence of a tandem array w = �k =S[i::i+ kj�j � 1] is represented by a triple (i; �; k). Such an occurrence is calledprimitive if � is primitive; it is called right-maximal if there is no additionaloccurrence of � immediately after w in S; it is called left-maximal if there is noadditional occurrence of � immediately preceding w in S. A tandem repeat (inthe literature also called a square) is a tandem array w = �k with k = 2.An occurrence (i; �; 2) of a tandem repeat is branching if and only if thecharacter in S immediately to the right end of this occurrence, S[i+2j�j], di�ersfrom S[i+ j�j] (which must equal S[i], the �rst character of the repeat). Fig. 1illustrates this de�nition.
a a ww x

i+2|aw|i+|aw|iFig. 1. Occurrences of branching and non-branching tandem repeats (i; aw; 2); whenx = a, the occurrence is non-branching, when x 6= a, the occurrence is branching
String aw is called the left-rotation of string wa.Branching repeats and left-rotations are the keys to the algorithms presentedin this paper. A �rst indication of their importance is contained in the followingfact.

Lemma 1. Any non-branching occurrence (i; aw; 2) of a tandem repeat is theleft-rotation of another tandem repeat, (i + 1; wa; 2), starting one place to itsright. The tandem repeat (i+ 1; wa; 2) may or may not be branching.By repeatedly applying Lemma 1, it follows that every tandem repeat is eitherbranching, or is contained in a chain of tandem repeats created by successive left-rotations starting from a branching tandem repeat. (Recall that string S endswith a termination symbol $). Furthermore, if (i + 1; wa; 2) is an occurrenceof a tandem repeat (branching or not), then we can test in constant time ifthere is a tandem repeat of the same length starting at position i: simply testif S[i] = a. Hence, starting from a branching tandem repeat (i + 1; wa; 2), thechain of tandem repeats with (i+1; wa; 2) at its right end can be determined intime proportional to the length of the chain (see Fig. 2).The basic algorithm we will present in Sect. 3, �rst �nds branching repeats,and then generates any desired non-branching repeats from the branching re-peats. To prepare for that algorithm, we need to connect su�x trees with tandemrepeats.

c b ab a c b a
i+1

c x x y

Fig. 2. Chain of non-branching tandem repeats
2.2 Su�x Trees and Tandem RepeatsWe assume that the reader is familiar with the basic de�nitions of a su�x tree.E�cient, linear time methods are known to construct a su�x tree, e.g. [20, 16,19, 7].We denote by T (S) the su�x tree of S, i.e., the compacted trie of all thesu�xes of S; L(v) denotes the path-label of node v in T (S), i.e., the concatenationof the edge labels along the path from the root to v. D(v) = jL(v)j is the string-depth of v. Each leaf v of T (S) is labelled with index i if and only if L(v) = S[i::n].At an internal node v of T (S), we de�ne a leaf-list of v as a list of the leaf-labelsin the subtree below v. We denote this list by LL(v). Fig. 3 shows an exampleof a su�x tree with its leaf-lists.

[7,4,6,3]

s
s

s

s

12Mississippi$

i

$
i

p
p

8

s
s
i

$
i

p
p

$

[5,2]

i

i
p
p

$

[10,9]

i

$

10

p

i

$

9

p

$

i

p

i

p

$

s
s
i
p
p
i
$

[7,4]
i

s
s

i
p

p
i

$

3

$

p
p
i

[6,3]

[8,5,2,11]

1 11

5

2

7

4

6

Fig. 3. Su�x tree of string Mississippi with leaf-list LL(v) at each internal node
The following key fact about the relationship of tandem repeats and su�xtrees follows easily from the de�nitions, and can be found (explicitly or implic-itly) in [3, 2, 10, 8].Lemma 2. Consider two positions i and j of S, 1 � i < j � n, let l = j � i.Then the following assertions are equivalent:(a) There is an occurrence of a tandem repeat of length 2l starting at position iin S;(b) i and j occur in the same leaf-list of some node v in T (S) with depth D(v) �l.

Lemma 2 is easily extended to characterize branching tandem repeats.Lemma 3. Consider two positions i and j of S, 1 � i < j � n, let l = j � i.Then the following assertions are equivalent:(a) There is an occurrence of a branching tandem repeat of length 2l starting atposition i in S;(b) i and j occur in the same leaf-list of some node v in T (S) with depth D(v) =l, but do not appear in the same leaf-list of any node with depth greater thanl. Equivalently, they do not appear together in the leaf-list of any single childof v.
3 AlgorithmsWe will �nd all occurrences of branching tandem repeats in O(n logn) time, alloccurrences of tandem repeats in O(n logn+ z) time, where z is the number ofoccurrences, and all occurrences of primitive tandem repeats in O(n logn) time.All methods require just O(n) space. With respect to worse case analysis, thesebounds are time- and space optimal. All occurrences of tandem arrays of repeats(primitive or not) will be found in linear space, and in time equal or less thanthese bounds.The basic algorithm and its variations are based on dividing the occur-rences of tandem repeats in S into the two disjoint sets, the branching andnon-branching occurrences. The branching occurrences of tandem repeats arefound �rst, and then the non-branching occurrences are reported by successiveleft-rotations as suggested by Lemma 1.
3.1 The Basic AlgorithmGiven Lemma 3, all occurrences of branching tandem repeats can be found inthe following direct way:
Basic Algorithm. All nodes of T (S) begin unmarked. Step 1 is repeated untilall nodes are marked.1. Select an unmarked internal node v. Mark v and execute steps 2a and 2b fornode v.2a. Collect the leaf-list, LL(v), of v.2b. For each leaf i in LL(v), test whether leaf j = i+D(v) is in LL(v). If so, testwhether S[i] 6= S[i + 2D(v)]. There is a branching tandem repeat of length2D(v) starting at position i if and only if both tests return true. The �rsttest determines if L(v)2 is a tandem repeat and the second test determinesif it is branching.

The leaf-list of v is collected via any linear time traversal of the subtree rootedat v. Assuming (as is standard) a representation of the su�x tree that allowsthe algorithm to move from a node to a child in constant time, that traversaltakes time proportional to the size of LL(v).Given a leaf i in that leaf-list, we can test in constant time if j = i +D(v)is also in LL(v), provided we have preprocessed the su�x tree in the followingstandard way: During a depth-�rst traversal of the su�x tree (starting at theroot), assign successive numbers (called dfs numbers) to the leaves in the orderthat they are encountered, and record these numbers in an array DFS, indexedby the original leaf numbers.1 Additionally, when the depth-�rst traversal �rstvisits an internal node v, record at v the next dfs number which will be given toa leaf, and when the depth-�rst traversal backs up from v, record at v the mostrecent dfs number assigned (see Fig. 4). It is well-known, and easy to establish,that all the leaves in LL(v) are assigned dfs numbers (inclusively) between thetwo dfs numbers recorded at v. Hence to determine if a leaf j = i +D(v) is inLL(v) just check if DFS[j] is between the two dfs numbers recorded at v.
(8,11)

s
s

s

s

12Mississippi$

i

$
i

p
p

2

s
s
i

$
i

p
p

(2,5)

$

(3,4)

i

i
p
p

$

(6,7)

i

$

6

p

i

$

7

p

$

i

p

i

p

$

s
s
i
p
p
i
$

(8,9)
i

s
s

i
p

p
i

$

11

$

p
p
i

(10,11)

51

3

4

8

9

10

Fig. 4. Su�x tree of string Mississippi with dfs numbers at internal nodes
The above basic algorithm �nds all occurrences of branching tandem repeatsin time proportional to the total size of all the leaf-lists. That total size is O(n2).However, a simple modi�cation leads to the desired time bound O(n logn).3.2 Speeding Up the Basic AlgorithmFor each node v, let v0 denote the child of v whose leaf-list is largest over all thechildren of v. Let LL0(v) denote the leaf-list of v minus the leaf-list of v0, i.e.,LL0(v) = LL(v)� LL(v0). By Lemma 3 (part b), if a branching tandem repeatstarting at position i is detected by the basic algorithm during an examinationof node v, then positions i and j = i + D(v) must be in the leaf-lists of two1 As a side remark for those who know about su�x arrays [15], note that the arrayDFS is the inverse of the su�x array of S.

distinct children of v. Hence if one of those positions is in the leaf-list of v0,the other position must be in LL0(v). Therefore, we need execute step 2b of thebasic algorithm only for each position in LL0(v), provided we look both forwardfrom that position (as in the above basic algorithm) and backward from it (aswe will do below). These ideas are formalized in the following optimized basicalgorithm.Optimized Basic Algorithm. All nodes of T (S) begin unmarked. Step 1 isrepeated until all nodes are marked.1. Select an unmarked internal node v. Mark v and execute steps 2a and 2band 2c for node v.2a. Collect the list LL0(v) for v.2b. For each leaf i in LL0(v), test whether leaf j = i + D(v) is in LL(v), theleaf-list of v. If so, test whether S[i] 6= S[i + 2D(v)]. There is a branchingtandem repeat of length 2D(v) starting at that position i if and only if bothtests return true.2c. For each leaf j in LL0(v), test whether leaf i = j �D(v) is in LL(v). If so,test whether S[i] 6= S[i + 2D(v)]. There is a branching tandem repeat oflength 2D(v) starting at that position i if and only if both tests return true.Clearly, LL0(v) can be found by a traversal from v that never visits v0, andthat traversal takes time proportional to the size of LL0(v). Moreover, from thedfs numbers at each node, the size of that node's leaf-list can be obtained (it issimply the di�erence of the dfs numbers plus one), so that the child of any nodev with the largest leaf-list can be easily identi�ed when needed. Hence the timefor the optimized algorithm is proportional toPv LL0(v). It is a well-known factthat this sum is at most n log2 n. To see this, note that if a leaf i is in LL0(v)and is also in LL0(u) for some ancestor u of v, then the size of LL0(v) is at mosthalf the size of LL0(u). Hence, leaf i can be counted inPv LL0(v) at most log2 ntimes. In summary,Theorem 4. All the branching tandem repeats are found in O(n logn) time andO(n) space by the optimized basic algorithm.There are additional obvious ways to improve the running time of the algo-rithm in practice (such as combining traversals from the internal nodes). Butfor simplicity of exposition, and because these improvements don't reduce theworst case running time, we omit a discussion of them.3.3 Finding All Occurrences of Tandem RepeatsFrom the set of branching occurrences of tandem repeats, the non-branchingoccurrences are obtained by a simple enumeration procedure, based on Lemma1. In detail, the following is executed at each occurrence of a branching tandemrepeat discovered by the optimized basic algorithm.

Starting with an occurrence (i; wa; 2) of a branching tandem repeat, test ifS[i�1] = a. If they are equal, (i�1; aw; 2) is reported as a non-branching tandemrepeat. This process, called the rotation procedure, is continued to the left untilan inequality is observed, at which point the procedure stops. It is obvious thatthe additional time used by the rotation procedure is proportional to the totalnumber, z, of occurrences of tandem repeats in S. Hence,Theorem 5. All occurrences of tandem repeats are found in O(n logn+z) time.No additional space is needed since all comparisons can be done directly on thestring S.The same time and space bounds were also obtained for this problem, withoutthe use of su�x trees, in [13, 14, 12].3.4 Primitive Tandem RepeatsA tandem repeat �� is called a primitive tandem repeat if string � is primitive,i.e., � cannot itself be expressed as the repeat of some substring. It is well knownthat there can be at most O(n logn) occurrences of primitive tandem repeats ina string of length n. We will sketch a proof of this fact in Sect. 4. Because the sizeof the output is smaller, and because any tandem repeat can be expressed as anarray of primitive tandem repeats, it is often desirable to only report primitivetandem repeats. Prior algorithms which �nd all occurrences of primitive tandemrepeats in O(n logn) time and linear space appear in [3] and [2].We extend the basic algorithm of the previous section to report only theprimitive tandem repeats. We begin by stating a general property of primitivestrings.Lemma 6. A string wa is primitive if and only if its left-rotation aw is primi-tive. Hence, if (i+ 1; wa; 2) is an occurrence of a primitive tandem repeat, and(i; aw; 2) is also an occurrence of a tandem repeat, then (i; aw; 2) is an occurrenceof a primitive tandem repeat.Proof. If aw is non-primitive then aw = �k for some � and k > 1. That meansthat each of the �rst j�j(k � 1) characters in wa is equal to the character j�jplaces to its right. In particular, character j�j+1 in aw is a. Therefore, wa = �kwhere � consists of the last k� 1 characters of � followed by character a. Hencewa is non-primitive.The converse, that when wa is non-primitive, then aw is also primitive, isproved in essentially the same way. utThe algorithmic importance of Lemma 6 is that when the (optimized) basicalgorithm identi�es a branching tandem repeat associated with a node v, thetandem repeats generated by the rotation procedure at node v will either allbe primitive, or will all be non-primitive. So to exclude all and only the non-primitive tandem repeats, it su�ces to exclude every branching tandem repeatwhich is not primitive. Since branching tandem repeats are identi�ed only at

nodes, it su�ces to identify every node u whose path-label L(u) = �k for somek � 2, where � is primitive. Clearly, such a string � will be the path-label of someancestor node v of u. Moreover, the basic algorithm will identify the primitivebranching tandem repeat L(v)2 = �2 at node v. We will show next that, atthat point in its execution, the basic algorithm can be extended to e�cientlylocate and mark all nodes below node v whose path-labels are L(v)k = �k fork � 2. That extension will also identify some other nodes that may be markedfor exclusion.To exclude all non-primitive tandem repeats (but no primitive tandem re-peats) we �rst modify the (optimized) basic algorithm to process the nodes ina top- down order, so that no node is selected in step 1 until all of its ancestorshave been selected. This ensures that a node with path-label � will be selectedbefore a node with path-label �k for k � 2.Second, we combine the rotation procedure with the (optimized) basic al-gorithm, so that when a branching primitive repeat L(v)2 = �2 is found at anode v, the algorithm next executes a rotation procedure from each branchingoccurrence of �2. Each such execution rotates left through each character in achain of consecutive �'s. As a side-e�ect of this computation, the algorithm candetermine (in essentially no extra time) the largest value of k (call it kv) suchthat �k is a substring of S. Once kv is determined, the algorithm walks from vto the end of the path labeled �kv in the su�x tree. That path exists (and willextend from v) since �kv is a substring in S. Moreover, since the path labeled �ends at a node (v), each string �k, for k < kv, will also end at a node. During thewalk, the algorithm marks each node whose path-label is �k, meaning that thatnode will not be selected in step 1 of the basic algorithm. (Recognizing that thenode has that label is a trivial exercise.) This is a correct action because the pathto any such marked node is either too long to be half of any tandem repeat, or itis the �rst half of a tandem repeat that is not primitive. Note that the numberof steps in the walk from v is bounded by the number of left-rotations done inthe rotation procedure that discovers kv.Clearly, any node corresponding to branching non-primitive tandem repeatwill become marked in such a way, and hence never selected in step 1. Thereforethe algorithm, as modi�ed above, will enumerate all and only occurrences ofprimitive tandem repeats. The number of steps in all the extra walks is boundedby the number of left-rotations, and each left-rotation identi�es a distinct oc-currence of a primitive tandem repeat. Hence, the time for the algorithm isO(n logn + z), where z is the number of occurrences of primitive tandem re-peats. However, it is known that z is O(n logn) in any string of length n. Hence,Theorem 7. The method described above �nds all occurrences of primitive tan-dem repeats in O(n logn) time and O(n) space.The time for the extra walks can be further reduced by using the skip/counttrick that is well-known from su�x tree construction methods. That reduces thenumber of steps for a walk from the number of characters on the walk to thenumber of nodes on the walk, but, in this application, does not improve theworst case running time.

3.5 Primitive Tandem ArraysFinally we extend the algorithm to locate all right-maximal occurrences of prim-itive tandem arrays. The idea is, for each branching primitive tandem repeat(i; �; 2) observed at a node v with L(v) = �, successively test for k = 1; 2; : : :if leaf i � kj�j is also in the subtree below v. (Here it is not necessary to testexplicitly if the tandem array is branching: From the fact that tandem repeat(i; �; 2) is branching, it follows immediately that all tandem arrays we �nd thisway are also branching.) Each successful test corresponds to a branching tandemarray (i� kj�j; �; k + 2). Once the test fails, the procedure stops.To also �nd the non-branching occurrences, the rotation procedure is appliedto each of the branching occurrences (i� kj�j; �; k+2). If we stop the rotationsafter j�j�1 steps, all and only the right-maximal occurrences of primitive tandemarrays will be obtained; otherwise all occurrences of primitive tandem arrays areobtained, and there may be as many as n(n� 1)=2 of these. Hence in the lattercase the procedure runs in time O(n logn+ z) where z is the output size.The procedure can also easily be extended to �nd only those primitive tandemarrays which are simultaneously left- and right-maximal if for each of the chainsof right-maximal primitive tandem repeats, only the last one (when the rotationprocedure stops) is reported. This procedure takes time O(n logn) as well.
4 The Number of Occurrences of Primitive TandemRepeatsIn this section we sketch a proof that there can be at most O(n logn) occurrencesof primitive tandem repeats in a string of length n. This fact is well established[3, 4, 6] (in fact, it is known [18] that the number of occurrences of primitivetandem repeats is bounded by 1:45(n+1) log2 n� 3:3n+5:87). We present herethe O(n logn) bound to make the paper self-contained, and because the proofgiven here is simpler than previously published proofs.We say two positions i and j in the leaf-list LL(v) of some node v, areadjacent in LL(v) if there is no position strictly between i and j that is also inLL(v). The key fact we need is the following:Lemma 8. Assume i < j = i+ l, and that there is an occurrence of a primitivetandem repeat of length 2l starting at position i in S. Then (a) i and j bothoccur in the leaf-list LL(v) of some node v in T (S) with depth D(v) � l, and (b)i and j are adjacent in LL(v).Condition (a) simply repeats the necessary condition from Lemma 2 for anoccurrence of a tandem repeat of length 2l starting at position i. Condition(b) distinguishes a primitive from a non-primitive tandem repeat. The key toproving this lemma is to show that if condition (a) is satis�ed, and yet i and jare not adjacent in LL(v), then the tandem repeat of length 2l starting at i isnot primitive.

Proof (of Lemma 8). Let �� be a tandem repeat of length 2l beginning at po-sition i, and let j = i+ l. Assume condition (a) is satis�ed but (b) is not. Thatmeans there is another position k in LL(v) strictly between i and j. So a copyof � occurs starting at position k < i+ l. That copy of � can be expressed as asu�x, �, of � (from the copy starting at i) followed by a pre�x,
, of � (fromthe copy starting at j). It follows that � = �
 =
�, and by a well-known fact(Lemma 3.2.1 in [8]), � can be expressed as �q for some substring �, and q > 1.Therefore, � is not primitive. ut
A pair (i; j) is said to be an adjacent pair if there is some node v such thati and j are adjacent in LL(v).By Lemma 8, each occurrence of a primitive tandem repeat is associatedwith some adjacent pair. But each adjacent pair (i; j) is associated with at mostone occurrence of a primitive tandem repeat, because that repeat is of length2(j � i) and starts at i. Hence we can bound the number of occurrences ofprimitive tandem repeats in S by the total number of distinct adjacent pairs inall the leaf-lists of T (S). For any node u, let N(u) be the number of adjacentpairs that are in the leaf-list of u but not in the leaf-list of the parent of u.De�ne N(r) = n � 1, for the root r of T (S). Any adjacent pair is adjacent inthe leaf-lists of nodes that form a descending path in T (S) (maybe only a singlenode in length), so the total number of distinct adjacent pairs is PuN(u).Consider an internal node v0 and its parent node v. Assume positions i andj are adjacent in LL(v0) but are not adjacent in LL(v) (see Fig. 5). That meansthat in LL(v) there is some position k strictly between i and j, and that k isnot in LL(v0). So k must be contained in the leaf-list of some other child w ofv. Since for each such pair (i; j) in LL(v0) there is a di�erent such \witness"k, the value of N(v0) can not be larger than the number of entries in the listsLL(w) summed over all children w of v other than v0, so N(v0) �Pw jLL(w)j =jLL(v)j � jLL(v0)j.

v
v0w [:::; i; j; :::][:::; k; :::]

[:::; i; k; j; :::]

Fig. 5. Szenario where (i; j) is an adjacent pair in LL(v0) but not in LL(v)

Now for any internal node v, de�ne (as in Sect. 3.2) v0 to be the child ofv with the largest leaf-list. It follows that PuN(u), and the total number ofoccurrences of tandem repeats, is bounded by (n� 1) +Pv jLL(v)j � jLL(v0)j.That sum is bounded by O(n logn) following the discussion in Sect. 3.2.
5 Summary and an Open QuestionThe time and space bounds for the methods presented here have been obtainedearlier. Therefore, the contribution of this paper is the simplicity of the algo-rithms, which use only standard traversals of a su�x tree. The success of thise�ort must therefore be gauged by comparing the methods in this paper withearlier methods (particularly those in [2]) that use su�x trees to �nd contiguousrepeated substrings.We leave it as an open question whether the use of branching tandem re-peats also allows linear-time solutions for related problems which are solvablewithin that time bound (e.g. the problem of �nding the shortest tandem repeatbeginning at each position of a string, cf. [10]). A positive indication is thatthe number of occurrences of branching tandem repeats in a string of length nseems to be bounded by n: we have experimentally veri�ed this conjecture forall binary strings up to length 30 and for all ternary strings up to length 20.
References1. A. Apostolico. The myriad virtues of subword trees. In A. Apostolico and Z. Galil,editors, Combinatorial Algorithms on Words, volume F12 of NATO ASI Series,pages 85{96. Springer Verlag, 1985.2. A. Apostolico and F. P. Preparata. Optimal o�-line detection of repetitions in astring. Theor. Comput. Sci., 22:297{315, 1983.3. M. Crochemore. An optimal algorithm for computing the repetitions in a word.Inform. Process. Lett., 12(5):244{250, 1981.4. M. Crochemore and W. Rytter. Periodic pre�xes in texts. In R. Capodelli,A. De Santis, and U. Vaccaro, editors, Sequences II, pages 153{165. Springer Ver-lag, 1993.5. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.6. M. Crochemore and W. Rytter. Squares, cubes, and time-space e�cient stringsearching. Algorithmica, 13(5):405{425, 1995.7. M. Farach. Optimal su�x tree construction with large alphabets. In Proc. 38thAnnu. Symp. Found. Comput. Sci., FOCS 97, 1997. IEEE Press.8. D. Gus�eld. Algorithms on Strings, Trees, and Sequences: Computer Science andComputational Biology. Cambridge University Press, New York, NY, 1997.9. R. W. Irving, Personal Communication.10. S. R. Kosaraju. Computation of squares in a string. In M. Crochemore andD. Gus�eld, editors, Combinatorial Pattern Matching: 5th Annual Symposium,CPM 94. Proceedings, number 807 in Lecture Notes in Computer Science, pages146{150, 1994. Springer Verlag.11. G. M. Landau, Personal Communication.

12. G. M. Landau and J. P. Schmidt. An algorithm for approximate tandem repeats.In A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors, CombinatorialPattern Matching: 4th Annual Symposium, CPM 93. Proceedings, number 684 inLecture Notes in Computer Science, pages 120{133, 1993. Springer Verlag.13. M. G. Main and R. J. Lorentz. An O(n logn) algorithm for �nding all repetitionsin a string. J. Algor., 5:422{432, 1984.14. M. G. Main and R. J. Lorentz. Linear time recognition of squarefree strings. InA. Apostolico and Z. Galil, editors, Combinatorial Algorithms on Words, volumeF12 of NATO ASI Series, pages 271{278. Springer Verlag, Berlin, 1985.15. U. Manber and E. W. Myers. Su�x arrays: A new method for on-line search.SIAM J. Computing, 22:935{948, 1993.16. E. M. McCreight. A space-economical su�x tree construction algorithm. Journalof the ACM, 23(2):262{272, 1976.17. J. P. Schmidt, Personal Communication.18. P. F. Stelling. Applications of Combinatorial Analysis to Repetitions in Strings,Phylogeny, and Parallel Multiplier Design. Ph.d. dissertation, Department of Com-puter Science, University of California, Davis, 1995.19. E. Ukkonen. On-line construction of su�x trees. Algorithmica, 14:249{260, 1995.20. P. Weiner. Linear pattern matching algorithms. In IEEE 14th Annual Symposiumon Switching and Automata Theory, pages 1{11. IEEE Press, 1973.

