
Sorting leaf-lists in a treeChristian N. S. Pedersen� Jens Stoyey1 IntroductionLet T be a rooted tree of size n with leaves labelledwith distinct elements from an ordered set. We de-scribe a simple method to obtain the sorted leaf-listsof all nodes one at a time in a depth-�rst fashionin O(n logn) time and O(n) space. Applying themethod to a su�x tree can be used to �nd variouskinds of repeats in a string.2 De�nitionsThe following de�nition divides the nodes in T intosmall and big nodes.De�nition 1 Consider a node with one or morechildren. The child that roots the biggest subtree issaid to be a big node (or a big child), the other chil-dren are said to be small nodes (or small children).Ties are broken arbitrarily. The root is de�ned to bea small node.The fact that each node has exactly one big childmotivates the following de�nition of a big path.De�nition 2 A big path starts at a small node andends at a leaf such that all nodes along the path, ex-cept the small node starting the path, are big nodes.Note that each small node starts exactly one big path,and that each node belongs to exactly one big path.3 Sorting methodLet v1 ! v2 ! � � � ! vk be a big path. If we knowthe sorted leaf-list at the small node v1 then we canget the sorted leaf-list at the big nodes v2; v3; : : : ; vkone by one by the following procedure.�BRICS, Department of Computer Science, University ofAarhus, Denmark. E-mail: cstorm@brics.dk. Work donewhile visiting University of California at Davis.yDepartment of Computer Science, University of Californiaat Davis. E-mail: stoye@cs.ucdavis.edu. Supported by theGerman Academic Exchange Service (DAAD).

1. Marking: Traverse all subtrees rooted by smallchildren of the nodes along the big path. If aleaf with label i is in the subtree rooted by smallchild u then mark element i in the sorted leaf-listat v1 as going to node u.2. Copying: Scan the sorted and marked leaf-list atv1 in sorted order. Append each marked elementto the leaf-list at the node it is marked with.This step creates the sorted leaf-lists at all smallnodes hanging o� the big path.3. Pruning: For each i = 2; 3; : : : ; k the sortedleaf-list at vi is obtained by removing all ele-ments that belong to a leaf-list at a small childof vi�1. This step creates the sorted leaf-lists forthe nodes along the big path one at a time.Since each node belongs to exactly one big path, wecan get the sorted leaf-lists at each node one at a timeby running the above procedure for all big paths. Todo this we must start with the big path starting atthe root. The sorted leaf-list at the root is eitherknown or can be obtained in time O(n logn). Afterhaving processed this big path we can continue withany big path starting at a small node at which thesorted leaf-list is known. Since Step 2 creates thesorted leaf-lists at all small nodes hanging o� the bigpath being processed, and since each small node ishanging o� some big path, we will at some point knowthe sorted leaf-list at any small node. Hence, we areable to run the above procedure for all big paths.The running time is easy to analyze. Each of thethree steps takes time proportional to the size of thesubtree rooted at the small node starting the bigpath. Hence, running the procedure along all bigpaths takes time proportional to the sum of the sizesof all subtrees rooted by small nodes. It is well knownthat this sum is O(n logn). To analyze the requiredspace, we observe that any element at any time is inat most two sorted leaf-lists. This observation follows1



because the elements we copy in Step 2 are removedas the leaf-list is pruned along the big path in Step 3.Hence, running the procedure along all big paths re-quires O(n) space.4 ApplicationsCrochemore [1] describes how to report all primitivetandem repeats in a string in time O(n logn) using apartitioning of the string positions. The partitioningdoes not use the su�x tree of the string but if ex-plained in terms of the su�x tree the partitioning es-sentially constructs the sorted leaf-lists one at a timein a breadth-�rst fashion. Our sorting method con-structs the sorted leaf-lists one at a time in a depth-�rst fashion. All that is needed in order to report allprimitive tandem repeats is simple bookkeeping onthe sorted leaf-lists. The sorting method (along withthe su�x tree) can thus be used to report all primi-tive tandem repeats in a string in time O(n logn).We will now shortly describe how the sortingmethod (along with a su�x tree) also can be usedto detect various other kinds of repeats in a string.De�nition 3 We say that (p; q; �) is a pair in astring S if � = S[p :: p+ j�j � 1] = S[q :: q + j�j � 1]and p < q. The pair is left-maximal (right-maximal)if the characters to the immediate left (right) of twooccurrences of � are di�erent. It is maximal if it isright- and left-maximal. The gap of a pair (p; q; �)is the number of characters q � p � j�j between thetwo occurrences of the substring �. If the gap is non-negative then the pair is non-overlapping.Gus�eld [2, Sect. 7.12.3] describes how to reportall maximal pairs in a string using the su�x treeof the string. We will describe how to report allnon-overlapping maximal pairs as well as all max-imal pairs with a gap at most some constant c intime O(n logn + z), where z is the number of re-ported pairs. We will only describe how to �nd right-maximal pairs. Maximal pairs can be found by anextension similarly to that in [2, Sect. 7.12.3].Observe that (p; q; �) is a right-maximal pair if andonly if p and q are leaves in subtrees rooted by dif-ferent children of the node with path-label �. To re-port all non-overlapping right-maximal pairs (p; q; �)

where � is the path-label of node vi�1 we only haveto extend Step 3 in the sorting procedure.Let L1; L2; : : : ; Lr be the sorted leaf-lists at thesmall children of vi�1. In Step 3 we construct thesorted leaf-list at vi by removing all elements inthese lists from the sorted leaf-list at vi�1. Letfe1; e2; : : : ; elg be what remains of the sorted leaf-list at vi�1 after having removed all elements inL1; L2; : : : ; Lj for some j � r. Using this partiallypruned leaf-list we can report all non-overlappingpairs where one of the occurrences is in Lj .For each p in Lj we report the pairs (e1; p; �);(e2; p; �); : : : ; (es; p; �), where es is the maximum el-ement such that (es; p; �) is non-overlapping, and wereport the pairs (p; el; �); (p; el�1; �); : : : ; (p; el�t; �),where el�t is the minimum element such that(p; el�t; �) is non-overlapping. It is easy to see thatrunning this procedure for each Lj will report allnon-overlapping pairs of � (the path-label of vi�1)and that the running time only increases with a termproportional to the number of reported pairs.To report all pairs with gap at most c wecan use almost the same extension of Step 3as above. For each element p in Lj we �rst�nd the maximum element em in fe1; e2; : : : ; elgwhich is less than p. We then report thepairs (em; p; �); (em�1; p; �); : : : ; (em�s; p; �), whereem�s is the minimum element such that the gapof (em�s; p; �) is less than c, and we reportthe pairs (p; em+1; �); (p; em+2; �); : : : ; (p; em+t; �),where em+t is the maximum element such that thegap of (p; em+t; �) is less than c. The problem of�nding em in constant time can be solved by somesimple bookkeeping while pruning the sorted leaf-listalong the big path.References[1] M. Crochemore. An optimal algorithm for com-puting the repetitions in a word. InformationProcessing Letters, 12(5):244{250, 1981.[2] D. Gus�eld. Algorithms on Strings, Trees andSequences: Computer Science and ComputationalBiology. Cambrigde University Press, 1997.2


