Sorting leaf-lists in a tree
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1 Introduction

Let T be a rooted tree of size n with leaves labelled
with distinct elements from an ordered set. We de-
scribe a simple method to obtain the sorted leaf-lists
of all nodes one at a time in a depth-first fashion
in O(nlogn) time and O(n) space. Applying the
method to a suffix tree can be used to find various
kinds of repeats in a string.

2 Definitions

The following definition divides the nodes in T into
small and big nodes.

Definition 1 Consider a node with one or more
children. The child that roots the biggest subtree is
said to be a big node (or a big child), the other chil-
dren are said to be small nodes (or small children).
Ties are broken arbitrarily. The root is defined to be
a small node.

The fact that each node has exactly one big child
motivates the following definition of a big path.

Definition 2 A big path starts at a small node and
ends at a leaf such that all nodes along the path, ex-
cept the small node starting the path, are big nodes.

Note that each small node starts exactly one big path,
and that each node belongs to exactly one big path.

3 Sorting method

Let v1 = v2 — -+ — v be a big path. If we know
the sorted leaf-list at the small node v; then we can
get the sorted leaf-list at the big nodes vy, vs, ... ,vg
one by one by the following procedure.
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1. Marking: Traverse all subtrees rooted by small
children of the nodes along the big path. If a
leaf with label 7 is in the subtree rooted by small
child « then mark element 7 in the sorted leaf-list
at v, as going to node u.

2. Copying: Scan the sorted and marked leaf-list at
v1 in sorted order. Append each marked element
to the leaf-list at the node it is marked with.
This step creates the sorted leaf-lists at all small
nodes hanging off the big path.

3. Pruning: For each i = 2,3,...,k the sorted
leaf-list at v; is obtained by removing all ele-
ments that belong to a leaf-list at a small child
of v;_1. This step creates the sorted leaf-lists for
the nodes along the big path one at a time.

Since each node belongs to exactly one big path, we
can get the sorted leaf-lists at each node one at a time
by running the above procedure for all big paths. To
do this we must start with the big path starting at
the root. The sorted leaf-list at the root is either
known or can be obtained in time O(nlogn). After
having processed this big path we can continue with
any big path starting at a small node at which the
sorted leaf-list is known. Since Step 2 creates the
sorted leaf-lists at all small nodes hanging off the big
path being processed, and since each small node is
hanging off some big path, we will at some point know
the sorted leaf-list at any small node. Hence, we are
able to run the above procedure for all big paths.
The running time is easy to analyze. Each of the
three steps takes time proportional to the size of the
subtree rooted at the small node starting the big
path. Hence, running the procedure along all big
paths takes time proportional to the sum of the sizes
of all subtrees rooted by small nodes. It is well known
that this sum is O(nlogn). To analyze the required
space, we observe that any element at any time is in
at most two sorted leaf-lists. This observation follows



because the elements we copy in Step 2 are removed
as the leaf-list is pruned along the big path in Step 3.
Hence, running the procedure along all big paths re-
quires O(n) space.

4 Applications

Crochemore [1] describes how to report all primitive
tandem repeats in a string in time O(nlogn) using a
partitioning of the string positions. The partitioning
does not use the suffix tree of the string but if ex-
plained in terms of the suffix tree the partitioning es-
sentially constructs the sorted leaf-lists one at a time
in a breadth-first fashion. Our sorting method con-
structs the sorted leaf-lists one at a time in a depth-
first fashion. All that is needed in order to report all
primitive tandem repeats is simple bookkeeping on
the sorted leaf-lists. The sorting method (along with
the suffix tree) can thus be used to report all primi-
tive tandem repeats in a string in time O(nlogn).
We will now shortly describe how the sorting
method (along with a suffix tree) also can be used
to detect various other kinds of repeats in a string.

Definition 3 We say that (p,q,«) is a pair in a
string S ifa = Slp..p+|a| — 1] = Slg..q + |a] — 1]
and p < q. The pair is left-mazimal (right-mazimal)
if the characters to the immediate left (right) of two
occurrences of «a are different. It is maximal if it is
right- and left-mazimal. The gap of a pair (p,q, )
is the number of characters q — p — |a| between the
two occurrences of the substring a. If the gap is non-
negative then the pair is non-overlapping.

Gusfield [2, Sect. 7.12.3] describes how to report
all maximal pairs in a string using the suffix tree
of the string. We will describe how to report all
non-overlapping maximal pairs as well as all max-
imal pairs with a gap at most some constant ¢ in
time O(nlogn + z), where z is the number of re-
ported pairs. We will only describe how to find right-
maximal pairs. Maximal pairs can be found by an
extension similarly to that in [2, Sect. 7.12.3].
Observe that (p, g, @) is a right-maximal pair if and
only if p and ¢ are leaves in subtrees rooted by dif-
ferent children of the node with path-label a. To re-
port all non-overlapping right-maximal pairs (p, ¢, )

where « is the path-label of node v; _; we only have
to extend Step 3 in the sorting procedure.

Let Lq,Lo,...,L, be the sorted leaf-lists at the
small children of v;_;. In Step 3 we construct the
sorted leaf-list at v; by removing all elements in
these lists from the sorted leaf-list at v;—;. Let
{e1,ea,... e} be what remains of the sorted leaf-
list at w;—; after having removed all elements in
Li,Ls,...,L; for some j < r. Using this partially
pruned leaf-list we can report all non-overlapping
pairs where one of the occurrences is in Lj;.

For each p in L; we report the pairs (e1,p,a),
(e2,p,a),...,(es,p,a), where e, is the maximum el-
ement such that (es, p, ) is non-overlapping, and we
report the pairs (p, e, ), (p, e1-1,Q), ..., (p, e1—¢, ),
where e;_; is the minimum element such that
(p,e1—t, ) is non-overlapping. It is easy to see that
running this procedure for each L; will report all
non-overlapping pairs of « (the path-label of v;_1)
and that the running time only increases with a term
proportional to the number of reported pairs.

To report all pairs with gap at most ¢ we
can use almost the same extension of Step 3
as above. For each element p in L; we first
find the maximum element e, in {e;,e2,..., e}
which is less than p. We then report the
pairs (€m7p7 Oé), (€m,1,p, Ol), ter (emfsapv a)? where
em—s 1S the minimum element such that the gap
of (em—s,p,a) is less than ¢, and we report
the pairs (p,emi1,Q), (D, em+2,a),- .., (D, €m+t, ),
where e;,+¢ is the maximum element such that the
gap of (p,em+t,a) is less than ¢. The problem of
finding e, in constant time can be solved by some
simple bookkeeping while pruning the sorted leaf-list
along the big path.
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