The genesis of the DCJ formula

Anne Bergeron! and Jens Stoye?

! Lacim, Université du Québec & Montréal, Montréal, Canada
2 Technische Fakultét, Universitit Bielefeld, Bielefeld, Germany

Abstract. The formula N —(C+1/2) to compute the number of Double-
Cut-and-Join operations needed to transform one genome into another
is both simple and easy to prove. When it was published, in 2006, we
omitted all details on how it was constructed. In this chapter, we will
give an elementary treatment on the intuitions and methods underlying
the formula, showing that simplicity is sometimes difficult to achieve.
We will also prove that this formula is one among an infinite number
of candidates, and that the techniques can be applied to other genomic
distances.

1 Introduction

In May 2005, the authors attended the Recomb meeting in Boston, Mass. They
had an accepted paper on a tamed variant of the genome rearrangement problem.
Happily for them, the presenter was a young graduate student, Julia Mixtacki,
and the authors had plenty of lounging time. On the sunny terraces, cafés and
salons of the MIT campus, David Sankoff managed to introduce us to Sophia
Yancopoulos, who had an original, thrilling, radical, but very informal view on
genome rearrangements, presented on a poster at that conference. Her paper [10],
written with O. Attie and R. Friedberg, appeared in the same month in Bioin-
formatics, but was a bit of a challenge to read.

The authors’ team, including Julia who would play a determinant role in the
sequel, felt that there should exist a more formal way of computing this distance.
The road was bumpy. We first had to understand the real power of the Double-
Cut-and-Join (DCJ) operation introduced by Yancopoulos et al. The original
paper focused on the usefulness of the new concepts to explain known results,
rather than exploring the consequences of the new definition. It was necessary
to forget, for the time being, the results of the former decade that explored
rearrangement operations on linear genomes.

Immediately after Recomb, the authors and Julia spent three days together in
Montréal and started trying to understand and formalize the ideas they had been
introduced to. However, we completely failed, as we were too closely following
the Yancopoulos ‘recipe’, instead of starting from scratch and re-phrase the DCJ
model in our own language. Therefore, it was possibly a good idea to wait for
eight months before continuing, so we could leave behind most of that early
attempt.



The first breakthrough occurred in February 2006 in Lisbon, Portugal, when
AB was giving a series of five lectures to graduate students at the Instituto Gul-
benkian de Ciencia. The lectures were given in the morning, and the lecturer
had the afternoons to herself to pursue her own research. Julia came from Biele-
feld to Lisbon for a week. This move resulted in the definition of the adjacency
graph, and in a deep grasp of the DCJ operations. While the shift of our un-
derlying data structure, from the breakpoint graph to the adjacency graph, was
rather formal, the understanding of the nature of the DCJ operations relied on
a toy genome, made of black and white electrical chords, together with male
and female connections that stood for double-stranded DNA, gene orientation,
breaks and repairs. At one point, the two researchers ‘executed’ all the variants
of a DCJ operation, using their four hands and the model genome. They were
so concentrated on the ‘proof’ that it took them a certain time to realize that
maintenance people were peering at them through the door’s window. These
results are described in Sections 2 and 3.

The next, and crucial, development happened in Montréal, in Spring 2006,
when JS came to visit as part of his sabbatical. At that point, the problem
was not to develop one formula, but to cope with too many formulas! One of
the frustrated authors decided, on one evening, to rely on a dirty mathematical
trick, discussed in Section 4, to come up with the ‘simplest’ formula among
those candidates. The result was suddenly quite simple, and the proof of the
DCJ distance became elementary, which is discussed in Section 5.

In fact, the DCJ model is only one out of many where the same technique
can be applied to quickly derive general and simple distance formulas, as we will
show in Section 6 for the algebraic, the breakpoint and two single-cut distances.

2 Rearrangement operations and the adjacency graph

Here we will briefly recall the notation we use to represent and manipulate
genomes. While it may nowadays seem natural and many other authors have
adopted the terminology, in 2005-06 we spent probably more time on the devel-
opment of this notation than on the derivation and proving of the DCJ distance
formula and sorting algorithm.

A gene is a piece of DNA with two extremities, its head and its tail. For
a gene a we denote its head by a” and its tail by a’. A genome for a given
set of genes G is a set of adjacencies, consisting of pairs of gene extremities,
where each extremity of each gene in G is contained in exactly one adjacency.
One of the two gene extremities in an adjacency can be replaced by the telomere
marker o, indicating the end of a linear chromosome. Such an adjacency is called
a telomere.

Ezample 1. Consider the gene set G = {a,b,¢,d, e, f}. Then the following set A
is a genome for G:

A = {{o, 0} {b", "} {a', '} " o} {e d' Y {d" [} {f" e} }



A genome can be represented as a graph, called the genome graph, whose
vertices are the adjacencies and whose edges connect for each gene the adjacency
containing its head with the adjacency containing its tail. Clearly, each vertex of
the genome graph has degree one or two, and therefore the connected components
are either cycles, representing circular chromosomes, or paths, representing linear
chromosomes.

Ezample 1 (cont’d). The genome graph of A looks as follows:

e—>—"f

It is easy to see that A has two connected components, one of which is linear
and the other one is circular.

We will also use a notation to represent the genome graph, in which a linear
chromosome is written as the sequence of its genes from one of its telomeres to
the other, where a gene is indicated by its name when it is read in tail-head
direction, and by its overlined name when it is read in head-tail direction. A
circular chromosome is represented similarly but, as it has no ends, spelling the
genes can start anywhere, in any of the two possible directions, and all these
representations are equivalent.

Ezample 1 (cont’d). In the linear notation, our genome looks as follows:
A={(ocbaco)(dfe}

Note that our genome model is very general in the sense that a genome can be
a mix of circular and linear chromosomes. Other models have been considered,
restricting genomes to contain only linear or only circular chromosomes. These
constraints can be added at any time to the general model in order to reflect
biological reality. However, as we will see in Section 3, rearrangement operations
are independent of chromosome structure.

Another graph that will be very useful in the sequel is the adjacency graph
for two genomes A and B containing the same genes. It will be the essential tool
when calculating their rearrangement distance. The vertices of the adjacency
graph are the adjacencies of the two genomes, and for each extremity of a gene
from G we have an edge, connecting the two adjacencies (one from A and one
from B) in which it is contained. Note that all vertices of the adjacency graph
also have degree one or two, thus its connected components are again paths or
cycles. However, because the graph is bipartite, all cycles have even length.

Ezample 1 (cont’d). For A as above and genome B={ (cabcdo) (oe f o) },
we have the following adjacency graph:
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In the sequel we will consider various models of genome comparison, most
of which realize some kind of edit distance, which in general can be phrased as
follows.

Definition 1 (Genomic distance problem). Given two genomes A and B
and a set of operations to manipulate them, what is the minimum number of
operations to transform A into B?

If a corresponding sequence of operations realizing this number is actually
reported, this is called the genomic sorting problem, but we will not discuss it
further in this chapter.

3 An Illustrated Guide to the Double-Cut-and-Join
Operation

In order to understand rearrangement operations it is necessary to have an idea
of the mechanisms underlying them. When a double-stranded DNA sequence is
broken, the cell is usually able to repair the damage by joining the two hanging
ends together. However, as one wikipedian wrote in 2007 under the pseudonym
Amazinglarry [9]:

“Double-strand breaks, in which both strands in the double helix are
severed, are particularly hazardous to the cell because they can lead to
genome rearrangements.”

Indeed, when a genome breaks at two positions that are physically close, creat-
ing four hanging ends of double-strand DNA, the repair mechanisms may join
the alternative ends together. This yields a deceptively simple definition of the
Double-Cut-and-Join (DCJ) operation as: the genome is cut in two places, and
the pieces are joined in a different way. This definition is correct, but it should
be treated with the care deserved to informal definitions: the oriented nature
of a double-stranded DNA sequence, and the fact that pieces may be lost or
misplaced, introduce subtle constraints that need to be formalized.

The basic DCJ operation. Let’s begin with Figure 1. The top genome is
a circular chromosome broken at two physically close positions. Two genes are



Fig. 1. The top drawing represents a genome with one double stranded circular chro-
mosome and 4 genes, a, b, ¢, and d. Genes are represented by arrows, and genes on
opposite strands have opposite orientation. This genome can be represented as (a b c d).
Suppose the chromosome is broken in two places, as illustrated, between genes a and
b, and between genes ¢ and d. The strands may be repaired in three different ways: the
original arrangement (a b ¢ d), the middle genome (a d) (b ¢) which is a fission of the
top chromosome, and the bottom one (a € b d) that contains an inversion with respect
to the original arrangement.

marked on each strand, a strand with genes a and ¢, and, in the opposite direc-
tion, a strand with genes b and d. Starting from gene a, and going around the



chromosome, the gene organization of this chromosome can be represented as
(abecd).

The position of a break in the double-strand is described by the severed
adjacency, which we say to be cut. In Figure 1, the two adjacencies of the top

genome:
{a", "} and {c",d"}

are cut. If those two breaks are sufficiently close, the repair mechanisms, which
have a very restricted understanding of the global situation, may join the a®
extremity with any of b®, ¢, or d", whichever comes handy. The two remaining
extremities are joined together, provided no pieces are lost. Thus there are three
possible results of the repair, illustrated in Figure 1:

1) The original configuration, when b”" is chosen. The shape and gene order of
the original genome are restored.

2) An alternative configuration, when d” is chosen. The circular chromosome
is split in two circular chromosomes, in an event called a fission. The cor-
responding genome can be represented by (a d) (b c). The reverse event is
called a fusion.

3) An alternative configuration, when c¢” is chosen. The chromosome is still
circular, but the original strands are mixed: genes a and b are now on the
same strand, opposite to genes ¢ and d. This event is called an inversion.
The new chromosome can be represented as (a ¢ b d). Note the change in
order and orientation of genes ¢ and b with respect to the original genome.

This is it! The essence of the DCJ operation is contained in this example. The
vast majority of identified rearrangement operations are based on this series of
events, and the variations in terminology usually come from factors that are not
directly related to the rearrangement operation itself.

A DCJ within a single linear chromosome. Figure 2 is a reproduction of
Figure 1 in which the circular genome has been transformed into a linear genome
by replacing a small segment of the double-stranded DNA with two telomeres.
This modification has been done far from the breaks, and the rest of the picture
is exactly the same. The genome organization would now be represented as

(cabedo),

to account for the new shape of the chromosome.

As in the circular case, the rearrangment operation between the top and bot-
tom chromosome is called an inversion: the original strands are mixed, but the
shape and gene content of the chromosome is the same. This type of rearrange-
ments was first identified on fruit fly chromosomes, at the beginning of the last
century [3], giving a founding example of rearranged genomes.



Fig. 2. In this figure, the top drawing represents a genome with one double stranded
linear chromosome. It was obtained by a slight modification of the genome in Figure 1,
consisting in removing a segment from the larger loop and capping the extremities with
telomeres. This genome contains the same genes as the one in Figure 1, and is now
represented as (o a b ¢ d o) to account for the telomeres, but the breaks and repairs are
exactly at the same positions. The bottom genome (o a € b d o) contains an inversion
with respect to the original arrangement. The middle genome has two chromosomes,
one linear and one circular: (o a d o) (b ¢).

The middle genome of Figure 2 is the only example in which linear and
circular chromosomes are mixed. The DCJ operations that transform a linear
chromosome into such a genome is called a circular excision, and its reverse, a



reincorporation. Many models of genome evolution explicitly forbid this type of
rearrangement, arguing that, for example, the transformation of a genome con-
sisting of linear chromosomes into a similar genome should not involve circular
chromosomes. This is a quite natural requirement, but there is a tradeoff in the
complexity of deriving the distance formula [6].

A DCJ between two linear chromosomes. In Figure 3, telomeres are in-
serted in both ends of the circular genome of Figure 1, resulting in a genome
consisting of two linear chromosomes, represented by:

(cabo) (ocdo).

In this case, the DCJ operations are referred to as reciprocal translocations. Here
again, the modifications have been done far from the breaks, and the rest of the
picture is the same, showing that the basic mechanics of DCJ cover a vast range
of rearrangement operations.

Reciprocal translocations change the sets of genes associated with a particular
chromosome, but do not modify the number of chromosomes in a genome. This
can be annoying, since there are examples of really close species, with virtually
the same set of genes, that have different number of chromosomes. This is the
case, for example, with the human and chimpanzee genome, the latter having
an extra chromosome. The DCJ model can be extended to cover this possibility
as explained in the next paragraph.

Single breaks and lost pieces. As we have seen, the vast majority of genome
rearrangements are caused by double breaks, but sometimes single breaks lead to
genome modifications. With a single break, the repair mechanism usually restores
the DNA strand but, in some rare instances, the break is never repaired. If this
event occurs in a linear chromosome, we model the operation as:

(0a bo) — (0ao) (o bo),

which is called a fission. When such an event occurs in a circular chromosome,
it is called a linearization: the number of chromosomes is unchanged, but the
genome is clearly modified. Despite involving only one break, these two opera-
tions are included in the DCJ model.

On the other hand, the reverse of these two operations, fusion of linear chro-
mosomes and circularization, require two breaks and can be explained using the
standard DCJ model and the loss of some hopefully redundant genetic material.
Figure 3 contains many instances of fusions of chromosome segments belonging
to different chromosomes: if all the necessary genetic information is contained in
two fused segments, the remaining segments can be lost without consequences.
As expected, we model this operation as the reverse of a fission:

(0ao) (0ho) — (oa bo),



Fig. 3. This figure is another photoshopped version of Figure 1 which produced two
linear chromosomes out of the original circular ones. The two breaks and the gene
labels are untouched. In this case, the operation that transforms one genome into any
of the two others is called a reciprocal translocation. The top genome is represented
by (0 a b o) (o c d o), the middle one by (o0 a d o) (o ¢ b o), and the bottom one by
(caco)(obdo).

where the telomere markers ‘o’ stand in for the lost material. The circularization
of a segment of a linear chromosome is central in Figure 2: again, if all the
necessary genetic information is contained in this circular segment, the two parts
that contain telomeres can be lost.



These four rearrangement operations are often described as “standard” DCJ
operations by introducing imaginary {o, o} adjacencies: a DCJ operation applied
to adjacencies {a”,b'} and {o, o} yields {a", o} and {b’, 0} and models fissions
and linearizations. The reverse operation models fusions and circularizations.

4 Deriving the DCJ formula

It was a clever observation by Sophia Yancopoulos that the DCJ operation sub-
sumes the two operations that have most prominently been discussed in the
genome rearrangement literature up to 2005: inversions and translocations. In
their paper [10], the authors also addressed the question of distance computa-
tion and gave the formula D = b — ¢ where b := N — 1 is the number of initial
breakpoints between the N genes in the input genomes and c is a parameter
closely related to the number of cycles in our adjacency graph. Nevertheless,
their argument was rather informal. As said in the Introduction, it was our goal
to formalize their approach and, if possible, simplify the argument and solution.

It was somehow clear to us that this should be possible, but even after almost
a year of working on it, the exact way and the general DCJ formula still eluded
our grasp. Therefore, in May 2005, we resorted to a ‘dirty trick’, based on just
a few simple (and fortunately true) assumptions. Consider the following six
parameters computed on the genomes and on the adjacency graph:

: number of genes in each genome

: number of cycles in the adjacency graph

: number of odd paths in the adjacency graph
: number of even paths in the adjacency graph
: total number of linear chromosomes

: total number of circular chromosomes

IS~ Qz

We begin with a well known mathematical technique called guessing the
solution. Here, the educated guess is that the formula for the DCJ distance
depends linearly on each of the above parameters, that is:

nN +cC+il +pP+{L+rR=D,

where the coefficients n, ¢, 7, p, £ and r are real numbers. Then we try to find the
values of the coefficients.

These values are not necessarily independent. The most obvious relation is
that the number L of linear chromosomes is related to the number of paths I
and P by the equation:

L=I+P

This means that we can keep one of the coefficient as an arbitrary constant,
which we choose to be £ in the sequel. We will wait until all the values of the
other coefficients are known, and then choose a value of ¢ that will make the
formula look ‘simple’.

The next step is to consider a series of examples for which the DCJ distance
is known. Each example will give a linear equation relating the values of the
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coefficients. The examples that we used in 2006 were lost in various paper bas-
kets. This turns out to be a blessing, since recreating a suitable set of examples
shows that only five very elementary examples are sufficient to determine the
DCJ distance.

The simplest circular chromosomes. In these first two examples, we apply
DCJ operations to a circular genome with two genes a and b. The graphs of
Figures 4 and 5 represent the two possible operations. Since a single DCJ has
been applied in each case, the distance is D = 1.

Ezample 2. Consider genomes A = (a) (b) and B = (a b), as in Figure 4. The
corresponding equation is:

2n+c+ 3r = 1.

Qap Gt br, by
Genome A O O
Genome B a Q b

an by at by,

Fig. 4. A fusion of two circular chromosomes.

Ezample 3. Consider genomes A = (a b) and B = (a b), as in Figure 5, with the
corresponding equation:
2n+4c+2r=1

Qap bh at bt
Genome A a

Genome B a @ b

an by at by

Fig. 5. An inversion within a circular chromosome.
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From these equations we immediately conclude that r» = 0, meaning that the
distance is independent of the number of circular chromosomes. Setting r to its
value yields the equation:

2n+c=1. (1)

Equality with one circular chromosome. The next equation is obtained
by drawing the adjacency graph of a circular chromosome compared to itself.
Obviously, the distance is D = 0 in this case, as in Figure 6.

Ezample 4. Consider genomes A = (a) and B = (a). The corresponding equa-
tion is:
n+c=0. (2)

Qap Q¢
Genome A

a
Genome B O
a

ap a¢

Fig. 6. Comparing a circular chromosome to itself.

Equations (1) and (2) yield n =1 and ¢ = —1.

Equality with one linear chromosome. When comparing a linear chromo-
some to itself, as in Figure 7, we also get a distance of D = 0.

Ezample 5. Consider genomes A = (o a o) and B = (o a o). The corresponding
equation is:
n+2i4+20=0. (3)

Knowing that n = 1 and using ¢ as a constant, we get i = —1/2 — £.

Fusion/fission of linear chromosomes. The last example is given by the
fusion of two linear chromosomes, and its dual operation, fission. In this case the
distance is D = 1, and the adjacency graph is shown in Figure 8.

Ezample 6. Consider genomes A = (o a o) (o b o) and B = (o a b o). The
corresponding equation is:

M+ 2i+p+30=1, (4)

which gives p = —/.

12
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Genome A ——>e
a

Genome B ——>e

at Qap

Fig. 7. Comparing a linear chromosome to itself.

a; an by by

Genome A —2 5 o—»b
b
Genome B —% pe ? e
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Fig. 8. Fusion/fission of linear chromosomes.

A simple formula. Summing up the work thus far, we get the following family
of distance formulas, indexed with £:

D=N—C—(1/2+ ) —(P+ (L.

Clearly, the ‘simplest’ formula is obtained by setting ¢ = 0.

The formula D = N — C — I/2 is simple in the sense that it has the fewest
number of parameters. However, this simplicity does not impose an intrinsic
value on the parameter I and we will also see, in the subsections of Section 6,
that setting ¢ = 0 does not always yield distance formulas with the least number
of parameters.

5 Proving the DCJ formula

Obtaining a formula based on a few examples does not mean that it computes
the correct distance between arbitrary genomes: a general proof is still needed. In
this section we discuss various topics associated with proving distance formulas,
and we refer the reader to [2] for formal proofs.

The formula D = N—C—1/2 of the preceding section is not only the simplest
but, as a nice added benefit, provides a roadmap for the general proof. The first
step is to prove that the distance between two genomes is 0 if and only if the
two genomes are equal. Here, this statement translates as:

13



Two genomes A and B are equal if and only if N = C + /2.

The best informal justification of this result is to show the adjacency graph of
two equal genomes with one circular and one linear chromosome, as in Figure 9
with genomes A = B = (a b) (o ¢ d o). This figure also illustrates that the graph
is a collection of cycles of length 2 and paths of length 1.

, a:  anby cndy  dnct
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Fig. 9. The genome and adjacency graphs of two equal genomes.

The next step in proving the distance formula is to show that D > N —
C — I/2. This is done by considering the quantity C' + I/2 in the adjacency
graph of genomes A and B, and showing that it increases by at most 1 for any
DCJ operation applied to genome A. A nice way to enumerate all the cases is
to realize that a DCJ operation applied to genome A is also a DCJ operation
applied to the adjacency graph. Thus, for example, the number of cycles can be
increased either by extracting a cycle, or by creating a cycle from a path. In the
first two cases, the number of paths is unchanged, and, in the third case, the
length of the path must be even, since the lengths of all cycles of an adjacency
graph are even. The reader is welcome to complete the details for the case of
odd paths.

The final step in the proof is to show that D < N —C —I/2. The easiest way
to prove this is to construct an algorithm that effectively sorts genome A into
genome B in exactly N — C' — I/2 steps, by showing that there always exists a
DCJ operation on genome A that either increases the number of cycles by 1, or
the number of odd paths by 2. In fact, any adjacency of genome B that is not
an adjacency of genome A can be created in one DCJ operation on genome A:
this operation creates a cycle of length 2, and increases the number of cycles by
1. Once all adjacencies of genome B are created, the two genomes have the same
adjacencies. If they are not equal, genome B has more telomeres than genome A,
and a few fissions should solve the problem, each creating two paths of length 1.

6 Algebraic, single-cut and breakpoint distance formulas

As mentioned in the Introduction, DCJ is just one of several rearrangement
models by which genomes can be compared. Since many of the alternative models
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are closely related to DCJ, it is not surprising that their distance formulas are
somewhat related as well. In this section we show in a systematic way how
to derive the distance formulas for four other genome rearrangement models,
using the techniques introduced in Section 4. In fact, we can re-use much of
the derivation of the DCJ distance formula and only small modifications are
necessary.

6.1 The algebraic distance

A line of research in genome rearrangement that has been introduced by Mei-
danis and Dias [7] uses algebraic operations acting on genomes represented as
permutations. Several “traditional” results can similarly be derived in that for-
malism, and some new models have also been introduced, including the so-called
algebraic (ALG) distance [5]. In its most general version including linear and cir-
cular chromosomes, it is identical to the DCJ distance, except that fissions and
fusions weigh 1/2 instead of 1.

Therefore, Equations (1), (2) and (3) are valid as well, the only difference is
that Equation (4) becomes

2n +2i+p+30=1/2.
The values of n, ¢ and i are the same as in the DCJ model, but p becomes:
p=-1/2—4.
Thus the corresponding family of distance formulas is:
Do =N-C—-(1/24+0I - (1/24+¢)P + (L.
In this case, the ‘simplest’ formula is obtained by setting ¢ = —1/2:
Darg=N-C—-1LJ2.

However, this formula mixes parameters from the genome graph, L, and from
the adjacency graph, C. In Section 5, we saw that choosing both parameters
from the adjacency graph gave us a big advantage in interpreting and proving
the DCJ distance formula. It might be wise to do the same in this case.

6.2 The Single-Cut-or-Join distance

Another rearrangement distance, that is particularly charming because it allows
efficient computational solutions to complicated multi-genome comparison, is
the Single-Cut-or-Join (SCorJ) distance [4]. Here, any cut in a chromosome, and
any join of two chromosome ends is considered as an individual operation, each
of weight 1.

When deriving the SCorJ distance formula, we need one more pair of genomes
in order to distinguish the roles of the long and short cycles, and we must rewrite
the first four equations accordingly. The parameter C' is split in two:

15



C, : number of cycles of length 2
Cy : number of long cycles

and the first four equations become:

2n+c =4
n+cs =0
n+2i+20=0

n+2i+p+30=1
The simplest rearrangement operation that gives the required new equation
is a transposition, which exchanges two consecutive blocks of genes. In order to
transpose blocks in a circular chromosome with Single-Cut-or-Join operations,

it is necessary to cut three adjacencies, and join them at three different places.

Ezample 7. Consider the circular genomes A = (a b ¢) and B = (a ¢ b), as in
Figure 10. The corresponding equation is:

3n+ce =6. (5)

a cnar ap bt by, ¢t
Genome A @
c b
a
Genome B @
c

Fig. 10. A transposition within a circular chromosome.

(=)

brhar ance  cpbe

The solution of the system is given by n = 2, ¢, =0, ¢y = =2, i = =1 — ¢
and p = —1 — ¢, yielding the general formula

Dscorg =2N —2C, — (1 + )1 — (1 +£)P + (L.
Here we would want to set £ = —1, to get the ‘simplest’ distance formula:
Dscorg = 2N —2C, — L.

Again, here, this simplest formula might not be the wisest, since it mixes pa-
rameters from both the genome and the adjacency graphs.
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6.3 The Single-Cut-and-Join distance

Similar by name to SCorJ, but more closely related to the DCJ distance is the
Single-Cut-and-Join (SCandJ) distance [1] where a single operation comprises
at most one cut, followed by at most one join.

Again, we distinguish long and short cycles and get the following first four
equations:

2n+c =3
n+c, =0
n+2i+20=0

2n+2i+p+30=1

The final equation can be derived from a transposition as in Example 7,
which has distance® D = 4, yielding a fifth equation:

3n+c =4

Therefore the solutionisn =1,¢p =1, ¢y = —1, 2i+20 = —1, 2i+p+30 = —1,
and we get the general formula:

Dscandas =N+ Cy—Cs — (1/244)I —LP + (L.
Setting £ = 0, we find:

DSCandJ:N+CZ_Cs_I/2~

6.4 The breakpoint distance

Finally we consider the breakpoint (BRK) distance, which is possibly the most
classical and simplest genomic distance. Different from the previous ones, the
breakpoint distance is not an edit distance, but just defined as the number
of adjacencies that are present in one, but not in the other of the two input
genomes [8].

The breakpoint distance needs to distinguish the odd paths of length 1, that
are shared telomeres between genomes, from the longer odd paths. Thus we need
two more coefficients:

I : number of paths of length 1
I; : number of long odd paths

3 Since Single-Cut-and-Join operations are sometimes less intuitive, here is a scenario
that sorts genome (a b ¢) to genome (a ¢ b) in 4 steps. Cuts are indicated by vertical
bars: (abc|) — (ca|bco) — (0cao) (b]c) — (cacbo) — (ach).
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We also need a revised set of equations, reflecting the new values on our pet
examples for the breakpoint distance:

2n+cp =2

n+c, =0
n+2is+20=0
2n+2is +p+30=1
3n+c =3

Finally, we need a last example to distinguish the roles of the short and long
odd paths. The simplest one is the linear variant of Example 2.

Example 8. Consider genomes A = (o a b o) and B = (o a b o) with the
corresponding equation
2n+is + i+ 21 = 3/2, (6)

as in Figure 11. The value 3/2 comes from the definition of the general breakpoint
distance for mixed multichromosomal genomes given in [8]. The solution is given
by n = 1,¢ = 0,¢5 = —1,is = —1/2 — £,iy = —{,p = —{ with the general
formula:

Dprx =N —-Cs— (1/24+ 0)I; — 41, — (P + (L.

at anp bh bt
Genome A —2 pee? b
Genome B Mﬂ

at ahbt bh

Fig. 11. An inversion inside a linear chromosome.

Setting ¢ = 0, as in the DCJ distance, we get the breakpoint distance formula
of David Sankoff and co-authors [8]:

DBRK = N—CS — 5/2.

7 Conclusion
In this paper, we showed that many standard formulas for computing the rear-

rangement distance between genomes can be obtained using a handful of very
simple genomes and a little linear algebra. Table 1 summarizes the principal
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results. It should be noted, though, that the formulas must be treated as conjec-
tures. As for the DCJ formula, independent correctness proofs are needed, and
are available in the literature.

Table 1. Distance parameters for various genomes and rearrangement models

Genomes Equation DCJ ALG | SCorJ |SCandJ| BRK
(a) (b) & (a b) 2n + ¢ 1 1 4 3 2
(a) & (a) n+ cs 0 0 0 0 0
(cao) & (cao) n+ 24, + 20 0 0 0 0 0
(cao)(obo) & (cabo)|2n+2is+p+ 3¢ 1 1/2 1 1 1
(abe) & (ach) 3n+c 2 2 6 4 3
(oabo)& (0cabo) |2n—+is+ir+ 24 1 1 2 4 3/2
Parameter Coefficient
Genes n 1 1 2 1 1
Long cycles ce -1 -1 0 1 0
Short cycles Cs -1 -1 —2 -1 -1
Long odd paths i —1/2—4|-1/2—4| -1 —¢ 0 —L
Short odd paths is —-1/2—¢|-1/2—¢ -1—¢ 0 |-1/2—¢
Even paths p - |-1/2—¢|—-2—-2¢ —¢ -2/
Linear chromosomes L L L L l l

These distance formulas are similar, in the sense that they all depend linearly
on the same set of parameters. However, in this setting, each model yields an
infinite number of formulas: finding the simplest, or one that depends on given
parameters, is just a mathematical trick. The important point is that the pa-
rameters should be chosen for their practical implications on the formulae, such
as ease of interpretation or propensity toward elegant proofs.
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