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Abstract. Many methods in computational comparative genomics re-
quire gene family assignments as a prerequisite. While the biological
concept of gene families is well established, their computational predic-
tion remains unreliable. This paper continues a new line of research in
which family assignments are not presumed. We study the potential of
several family-free approaches in detecting conserved structures, genome
rearrangements and in reconstructing ancestral gene orders.

1 Introduction

In more than 20 years of research in computational comparative genomics [44,48]
a large variety of questions have been addressed. By now, strong methods are
available to study the structural organization of genomes as well as to unravel
their shared and individual evolutionary histories. The structural organization
of genomes does not only give insights into species’ phylogeny, but also hints at
interactions within and between sets of genes by means of their involvement in
metabolic and regulatory networks. As such, one aims to understand cell func-
tions. Whereas point mutations generally affect one or a few nucleotides, large-
scale mutations such as rearrangements, deletions, substitutions, or insertions
affect one or more genes. These modifications alter the structural organization
of the genome which can cause profound changes in the cellular machinery. Iden-
tifying and quantifying such structural modifications is crucial in understanding
the highly complex functions of organisms and their interactions with the natural
environment.

Initial approaches to study genome rearrangement considered pairwise com-
parisons with well identified one-to-one orthologous markers [44], for many of
which polynomial time algorithms for computing distances and evolutionary sce-
narios could be designed [5, 6, 30, 46, 63]. Extensions considering more than two
genomes lead to hard problems [8,13,15,41,46,61], with few exceptions [26,54].
David Sankoff initiated formulations and algorithms for genome rearrangement
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problems with duplicated markers originating from gene families [45], quickly fol-
lowed by the outline of a general approach that would consider both gene orders
and gene family information as input to genome rearrangement problems [49].
Since then, genome rearrangement with unequal gene content and gene fami-
lies, where genomes are represented by signed sequences, has been intensively
explored; for reviews see [16,27].

Another line of research in computational genomics aims at the detection
of genomic segments that are conserved across different species. The presence
of such structures often hints at functional coupling of the contained genes, or
indicates remnant ancestral gene order which is valuable information for phylo-
genetic reconstruction. Initial approaches in this field — like early rearrangement
studies — required the identification of one-to-one orthologous markers [4,32,33],
but in the following most of them were adapted to a more general genome model
that allows genomes to differ in their marker set and to have homologous markers
on the same genome [21,31,50].

All of the above methods, that we call family-based, require prior gene family
assignments. However, biological gene families are difficult to assess; commonly,
they are predicted computationally. In doing so, they can be either obtained
from databases [42,55,59] or directly computed based on the particular dataset
under consideration [36,40,51]. In either case, the obtained assignments are pre-
dicted by some computational method which typically involves a clustering phase
in which genes are partitioned into groups representing the predicted families.
Generally, the results of such efforts depend on arbitrary parameters of sequence
comparison, similarity quantification and clustering. These parameters are user-
controlled and influence the size and granularity of the computed gene families.
In particular, when genes within biological gene families are largely diverged,
computational means may not be able to resolve gene family assignments accu-
rately [28]. Consequently, errors are introduced into the primary dataset which
deteriorate subsequent analyses, a phenomenon that can be amplified when phy-
logenetic trees for the gene families are considered [16, 39]. The quest to reduce
misassignments in gene family construction also led to the use of positional ho-
mology [9, 57,58,65].

Recently, in an attempt to avoid these problems, a family-free method, that
does not assume prior gene family assignment, has been proposed for computing
the adjacency score between two genomes [22]. In this approach, given the gene
similarities, the aim is to find pairwise gene assignments while maximizing the
conserved adjacency measure. In other words, next to finding the maximal num-
ber of adjacent genes along different genomes, the method also infers homologies
between genes. It should be noted that these homologies are not equivalent to
gene families in the classical sense, as by design only one-to-one relationships
are detected, while a gene family in general may consist of a potentially large
set of orthologous and paralogous genes. Given the nature of the detected one-
to-one relationships, they are not unlikely to form sub-families of biological gene
families. Therefore they can be further utilized in gene family construction.
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Here we go beyond this one application and explore how various problems
in computational comparative genomics could be approached in a family-free
setting. We do not necessarily provide full solutions to the proposed problems.

This paper is organized as follows. After basic definitions in Section 2, we
extend earlier results on the adjacency measure to more than two genomes and
to larger conserved structures (gene clusters) in Section 3. A more dynamic view
is taken in Section 4, where we apply the ideas to rearrangement distances, most
notably the Double Cut and Join distance. In Section 5, finally, we indicate
how the family-free approach could be further extended to the reconstruction of
ancestral genomes. The paper concludes with a discussion in Section 6.

2 Basic Definitions

A chromosome is a DNA molecule composed of antiparallel strands and can be
read in either of the two possible directions. Since each gene, representing an
interval along the DNA, lies in one of the two strands of the chromosome, the
orientation of the gene depends on the adopted reading direction. The represen-
tation of a gene g in a chromosome can then be the symbol g, if it is read in direct
orientation, or the symbol g, if it is read in reverse orientation. Without loss of
generality, we will assume in this paper that each chromosome has a canonical
reading direction, giving a natural left to right order of its genes.

A genome consists of one or more chromosomes that can be either linear or
circular. For ease of presentation, throughout this paper we will consider only
unichromosomal linear genomes. The general case can be easily inferred with
minor modifications.

A unichromosomal linear genome is represented as a sequence of distinct sym-
bols, flanked by telomeric ends indicated by the ◦ sign: G = (◦ g1 g2 . . . gn ◦).
The size of G with n genes and two telomeric ends is |G| = n + 2. When we
consider a set of genomes, we will assume that all genes can be distinguished
from each other, i.e., every two genomes G 6= H share only the telomeric ends.

Let A be the universe of all genes and let σ : A×A → [0, 1] be a normalized
similarity measure between all pairs of genes.

Definition 1 (Gene similarity graph). For a set of k genomes {G1, . . . , Gk},
the gene similarity graph is defined as an ordered weighted undirected k-partite
graph B = (G1, . . . , Gk, E), where each gene and each telomere represents a
node, and the nodes are ordered following the chromosomal order. Any two genes
g and h, belonging to two distinct genomes, are connected by an edge eg,h ≡
{g, h} ∈ E with weight w(eg,h) := σ(g, h), if and only if σ(g, h) > 0. Telomeres
in distinct genomes are always connected with edges of weight 1.

We call a gene g ∈ G unconnected if there exists no other gene h in any of
the other genomes H 6= G such that σ(g, h) > 0. An example of a gene sim-
ilarity graph for the case k = 2 is shown in Figure 1(a). The k-partite gene
similarity graph features similarity relationships between genes of different ge-
nomes whereas similarities between genes within the same genome are ignored.
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Fig. 1. (a) Example of a gene similarity graph for k = 2. Part (b) shows a matching
in which the weak edge with weight 0.1 between genes 4 and 8 is selected, creating a
conserved adjacency between (3̄, 4) and (7̄, 8). In the matching of (c) the stronger edge
with edge weight 0.8 between genes 4 and 5 is selected.

For now, if information about paralogous relationships between genes within
the same genome is desired, it must be gained through a postprocessing step
incorporating the results obtained by the methods presented herein.

3 Detecting Conserved Structures

Many gene order studies quantify conserved structures based on well-defined
proximity relations between the chromosomal locations of pairs or groups of
genes. Typical proximity relations between pairs of genes are conserved adjacen-
cies [44,47,60] and generalized conserved adjacencies [62], whereas proximity re-
lations between groups of genes include common intervals [21,33,50,56], max gap
clusters (gene teams) [4,31], approximate common intervals [12,34,43], general-
ized adjacency clusters [64,67], and conserved intervals [6]. We discuss conserved
adjacencies in Section 3.1 and common intervals and some of its derivatives in
Section 3.2.

Whenever one-to-one relationships between genetic markers, genes or genome
segments (identified through some proximity relation) between genomes must be
established, comparative genomics applications commonly incorporate match-
ings. For example, in aligning whole genomes, one aims to find a matching
between genome segments that maximizes the similarity of the respective se-
quences, but also minimizes the number of breakpoints (or other measures of
structural dissimilarity) in the final ordering of segments [19]. Similarly, recent
methods in predicting co-orthologs and gene families not only assess the se-
quence similarity between genes, but also their position within the genome [20].
In the following we describe approaches that incorporate matchings to iden-
tify conserved adjacencies and common intervals without the use of gene family
assignments.
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3.1 Conserved Adjacencies

Previous work. Two genes that are located next to each other in a genome
are said to be adjacent, their adjoining extremities form an adjacency. An early
measure for family-based genome similarity was to count the number of conserved
adjacencies, i.e. those adjacencies that are common to two genomes, with the
restriction that the gene content of both genomes is identical [44, 60]. Thereby,
the number of conserved adjacencies constitutes the dual measure of the number
of breakpoints between both sequences [47].

With the adoption of gene families, gene duplicates are introduced, i.e., the
occurrence of several members of the same family in one genome [45, 49]. Gene
duplicates allow for multiple scenarios of ancestral gene order. One possibility to
resolve the consequential ambiguities consists in computing a matching between
orthologous subsets of given family members, with some predefined constraints
on the structure of the matching. This general principle, which relates also to
ortholog identification [20], was introduced by David Sankoff with the notion of
exemplar distance [45], where the main ortholog (the exemplar) of each family
is kept. This initial model was later generalized to less constrained classes of
matchings where one or more genes per family is kept, always leading to NP-
hard computational problems [2, 11, 66], although practically efficient solutions
were designed, using heuristics [29] or integer linear programming [1].

Family-free adjacencies. Recently, a gene family-free model was introduced to
compute the number of conserved adjacencies in pairwise comparison [22]. The
computational problem being NP-hard, exact and heuristic algorithms were pre-
sented with feasible running times in practice. In this section, we advance towards
a more general model applicable for the simultaneous study of several genomes.
Conserved adjacencies obtained in this approach can further benefit ancestral
genome reconstruction, as it will be explained in Section 5.

The genome model described in Section 2 is neither restricted to one-to-one
relations between genes, nor to closed sets of gene family members. In the subse-
quent analysis, unconnected genes are omitted from the chromosomal sequences.
The remaining genes form connected components of size two or larger. Their size
is typically greater than their gene family counterparts. Further, opposing the
gene family concept, these connected components are not required to equal their
transitive closure.

Given k ≥ 2 genomes, we aim to find a matching between genes, analogous
to previous family-based approaches [1,10,45]. One way is to find all completely
connected subgraphs of size k in the gene similarity graph and then perform a
k-dimensional matching (also known as k-matching). Yet, this approach elimi-
nates many connected components that do not form complete cliques or spread
over only a smaller subset of genomes. Consequently, with increasing number
of genomes in the dataset, the matching size will decrease until only few fully
connected genes remain. In this work we use a partial k-matching which allows
for missing genes and edges:
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Fig. 2. The 7 valid types of components of a partial 3-matching

Definition 2 (Partial k-matching). Given a gene similarity graph B = (G1,
. . . , Gk, E), a partial k-matching M ⊆ E is a selection of edges such that for
each connected component C ⊆ BM := (G1, . . . , Gk,M) no two genes in C
belong to the same genome.

Figure 2 depicts all valid types of components in a partial k-matching for
k = 3. The partial k-matching is closely related to the intermediate matching [1]
for k = 2. Just as in the latter, a partial k-matching can saturate an arbitrary
number of edges of the initial k-partite graph B but differs in that it is not
required to saturate at least one edge per connected component. Our motivation
to reject this constraint is discussed further below.

Biological interpretation. Relating to the underlying mechanism of gene fam-
ily evolution, a connected component in the partial k-matching represents a
tentative sub-family assignment in which two intrinsic aspects of gene family
prediction are addressed; first, the similarity measure between genes is generally
not transitive; second, genes and gene families may arise or vanish along the
evolutionary process whereas some genes that are intermittently indispensable
for the organism emerge as main orthologs. The biological interpretation of the
matching is limited by the restriction to one-to-one assignments between genes
and by the fact that the matching does not consider the underlying phylogeny
of species and thus is unable to differentiate between orthologs and paralogs. As
such, our method is susceptible to non-ortholog assignments in entangled events
of gene deletions. Thus it is deceptive to relate a connected component in the
partial k-matching to an ortholog assignment. Rather, under the optimization
problem stated further below, it represents a tentative sub-family determined
by the most parsimonious homology assignment with respect to gene similarity
and gene order. Conserved subsets of outparalogs are likely to be assigned to
the same connected components, whereas for inparalogs the main orthologs are
likely to be matched.

Constructing a partial k-matching. We assume for now that a partial k-matching
M is given. For any two genomes G and H in the gene similarity graph we
defineMGH ⊆M as the set of matched edges between G and H. We call a gene
GH-saturated if it is incident to an edge inMGH . Two GH-saturated genes are
consecutive with respect to G and H if no GH-saturated gene lies between them.
Further, two pairs of consecutive GH-saturated genes (g, g′) in genome G, with
g to the left of g′, and (h, h′) in genome H, form a conserved adjacency if
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(a) for h left of h′ in H, sgn(g) = sgn(h) and sgn(g′) = sgn(h′) or
(b) for h right of h′ in H, sgn(g) 6= sgn(h) and sgn(g′) 6= sgn(h′),

where the orientation of a gene (or telomere) g is determined by the following
function:

sgn(g) =

 1 if g is in forward direction
−1 if g is in backward direction

0 if g is a telomere

For example, the consecutive pair of genes (2, 3) and (6, 7) in Figure 1(b) rep-
resent a conserved adjacency. Following [22], we define a scoring scheme for
adjacencies:

s(g, g′, h, h′) =

{√
w(eg,h) · w(eg′,h′) if (g, g′), (h, h′) form a cons. adjacency

0 otherwise

The convex nature of the scoring scheme rewards conserved adjacencies between
high weighted edges the most, whereas combinations of high and low weighted,
or low weighted edges are decreasingly scored. While a matching that creates
many conserved adjacencies is often more appreciated than a matching with few
conserved adjacencies, maximizing the number of conserved adjacencies is not
desirable at any price. For example, the matching depicted in Figure 1(b) con-
tains an adjacency between genes (3̄, 4) and (7, 8) at the expense of dismissing the
stronger edge between genes (4, 8), which is selected in the matching displayed
in Figure 1(c). Hence we view a matching as a trade-off between two competing
properties, namely similarity and synteny. We quantify both in a matching M
between genomes G = {G1, . . . , Gk} by means of the following measures:

adj(M) =
∑

G,H∈G

∑
g left of g′ in G

h,h′ in H

s(g, g′, h, h′) (1)

edg(M) =
∑
e∈M

w(e) (2)

Extending [22], we propose to find a partial k-matching that maximizes a linear
combination of both quantities:

Problem 1 (FF-Adjacencies). Given a gene similarity graphB = (G1, . . . , Gk, E)
and some α ∈ [0, 1], find a partial k-matchingM such that the following formula
is maximized:

Fα(M) = α · adj(M) + (1− α) · edg(M). (3)

Thereby α is a user-controlled parameter that can be adjusted in favor of simi-
larity or synteny.
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Rejection of intermediate matching constraints. Recall that a partial k-matching
for k = 2 differs from the intermediate matching only by omitting the constraint
that for each connected component at least one edge must be matched. While
such restriction is reasonable in gene family studies, where family assignments
act as filter in reducing false positive associations between genes, the gene sim-
ilarity graph can include also small weakly connected components (depending
on the particular similarity function) that most likely represent false positives.
Substituting the intermediate matching which was used in the initial gene family-
free approach [22] for the partial k-matching may have a crucial effect on α in
solving Problem FF-Adjacencies. While in pairwise comparison where α = 0,
both matchings coincide, the choice of edges in the intermediate matching is
increasingly limited, when α > 0. Discarding the constraint of keeping at least
one edge per connected component allows more freedom in the choice of edges
included in the matching and thus may lower the number of false positive assign-
ments. However, it does so at the cost of increasing the combinatorial solution
space that must be explored in solving Problem FF-Adjacencies. That is because
the constraints of the intermediate matching enable the reduction of the solu-
tion space by identifying anchors in the gene similarity graph. Using a partial
k-matching, we lack sensible constraints of the matching that can be exploited
to identify anchors beforehand. Nevertheless, heuristic methods can be applied
to establish anchors based on highly conserved structures in the gene similarity
graph that are likely preserved in optimal solutions of Problem FF-Adjacencies.
These methods will not be discussed here.

3.2 Common Intervals

The concept of common intervals is used to represent two or more genomic seg-
ments (usually from different genomes) that are composed of the same set of
genes. The presence of such segments in the genomes of different species sug-
gests either functional coupling of the involved genes, as observed in operons
in prokaryotes, or remnant ancestral gene order, often referred to as syntenic
blocks, which are used to study large-scale genome evolution. Over the past
years, the common intervals model has been generalized to increase its appli-
cability: Starting from a model that requires genomes to be permutations of
each other [32, 33, 56], it extended to a sequence-based model that allows mul-
tiple occurrences of the same gene and differences in the gene composition of
genomes [21, 50]. Finally it was redefined in different ways to account for small
differences in the gene content of otherwise well-conserved segments. The most
notable of the latter extensions are r-windows [23], max-gap clusters [4, 31] and
approximate common intervals [12, 34,43].

Currently, all approaches to common interval detection require as a prerequi-
site that the genes of the studied genomes are partitioned into gene families. It is
evident that errors in this assignment can have a negative impact on common in-
tervals detection. In the classical common intervals model a single unrecognized
homology can prematurely end a conserved segment, or even cause the whole
segment to remain unrecognized. Approximate common intervals are to some
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extent robust against errors in gene family assignment. An unrecognized homol-
ogy between two genes may be interpreted as a combined gene insertion/gene
deletion. However, in presence of a large number of erroneous gene family as-
signments this workaround quickly reaches its limits. Another drawback of the
current approach is that all information on alignment scores is discarded once
gene families are assigned, such that later on, it makes no difference if two genes
that are each others’ counterpart in a pair of common intervals are strong bidi-
rectional best hits or barely made it into the same gene family and may not even
be true homologs after all.

To make better use of positional information and pairwise gene similarity
scores, we can use a partial k-matching, as introduced earlier in this section, and
simply translate each connected component into one gene family. (Strictly speak-
ing, these are rather sub-families, as discussed previously.) However, conserved
adjacencies, the only type of positional information currently used to obtain
partial k-matchings, are not optimal in the context of common intervals detec-
tion. Typically their definition allows for unrestricted internal rearrangements
and disregards gene orientation. The rationale behind this approach is not that
conservation of gene order and orientation are supposed to be meaningless, but
merely that it is difficult to decide ad hoc how much internal rearrangement in a
conserved segment is plausible. In practice, a post-processing step can be applied
to screen the predicted conserved segments for these qualities. A more integra-
tive approach are generalized adjacency clusters which employ a user-defined
parameter to restrict internal rearrangements [67].

The above considerations suggest that for common intervals more suitable
positional information for gene family assignment could be obtained if the partial
k-matching was not only based on conserved adjacencies, but the conserved
neighborhood of up to θ > 0 genes to the left and right of each gene. To obtain
such a matching, we introduce the notion of θ-neighbors: Two genes g and g′ in
genome G are θ-neighbors with respect to G and H if at most θ−1 GH-saturated
genes lie between them. Two pairs of θ-neighbors (g, g′) in genome G and (h, h′)
in genome H form a θ-adjacency if the corresponding edges eg,h and eg′,h′ are
part of MGH . An initial scoring scheme for θ-adjacencies could look as follows:

sθ(g, g′, h, h′) =

{√
w(eg,h) · w(eg′,h′) if (g, g′) and (h, h′) form a θ-adjacency

0 otherwise

It can be extended by a weighting scheme that values pairs of θ-neighbors the
higher the closer they are.

While the use of positional information is most likely an advantage for gene
family assignment, the restriction of gene families to at most one gene per
genome, a consequence of the partial k-matching, is clearly not. In fact, it is
not only unnecessary but even unwanted in common intervals detection. It pre-
vents the detection of duplicate occurrences of genes within a common interval,
as well as multiple occurrences of common intervals in a genome. Both findings
are certainly interesting as they hint at segmental or whole genome duplications.
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In the remainder of this section, we broach a gene family-free approach for
common intervals detection that avoids the above mentioned restrictions. We
first study the case of two genomes G and H. Any pair of intervals (I, J) on G
and H can be common intervals. Therefore we build for each (I, J) a maximum
weighted bipartite matching MI,J between the gene sets of I and J . This is
equivalent to solving Problem FF-Adjacencies with α = 0 for G1 = I and
G2 = J .

An unmatched gene in I and J is either a duplicate occurrence if it is incident
to an unchosen edge within the interval pair, or an inserted gene, if there are
no incident edges or all of them point to a gene outside the interval pair. We
obtain a matching score score(MI,J) = F0(MI,J) that needs to be corrected for
the number of genes occurring in the intervals. Otherwise, the biggest score is
obtained for (G,H), the interval pair defined by the complete genomes. Simply
normalizing score(MI,J) by the length of I and J is also not advisable, as it
causes the best-scoring common intervals to be of length one, the best scoring
pair of genes. Instead a trade-off between matching score and interval compact-
ness needs to be defined. The corrected score can then be used to decide whether
an interval pair should pass for a conserved segment or not. For k > 2 genomes,
the matching score can be defined as the sum over all pairwise matching scores
which equals the score of a partial k-matching over all genomes.

The computation of a single matchingMI,J can be done in O(max {|I|, |J |}3)
time using the Hungarian Method [35]. However, already for two genomes there
are O(|G|2|H|2) interval combinations that need to be tested. One order of mag-
nitude is saved if the initial definition of common intervals is used that neither
allows duplicate genes nor gene insertions/deletions. In this case, only intervals
of the same size need to be paired. For larger k, the complexity increases fur-
ther, as all O(k2) pairwise genome combinations need to be considered. With
polynomials of such high degrees in the asymptotic time complexity, it remains
to be seen to what extent matching-based approaches are feasible in practice.

4 Genome Rearrangements

The study of genome rearrangements leads to a better understanding of the
dynamics of genome structure over time. Typical rearrangement operations are
the inversion of a piece of a chromosome, the translocation of material between
two chromosomes, or the fusion and fission of chromosomes. These operations
are explicitly modeling the modification of the genome over time and the methods
therefore are called rearrangement model-based [30, 44, 63], in contrast to the
rearrangement model-free methods that we discussed in the previous section,
which only study and compare static properties of the genomes.

In rearrangement model-based methods, given two genomes and a set of
rearrangement operations, two problem variants are typically considered: (1)
calculate the minimum number of steps that are necessary to transform one
genome into another, the so-called genomic distance problem, and (2) find a
series of operations that perform such a transformation, the genomic sorting
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problem. Traditional approaches to analyze these problems are family-based,
and the vast majority of methods also adopt the simplifying assumption that
exactly one occurrence of each family appears in each genome, which allows the
existence of several polynomially-time computable methods, including for the
popular Double Cut and Join (DCJ) rearrangement model [7, 63].

While the sorting problem, especially for the case of multiple genomes and
their relation along the branches of a phylogenetic tree, will be addressed briefly
in the following Section 5, here we concentrate on distance calculations in a
family-free setting. In general, similarly to the rearrangement model-free measure
of conserved adjacencies described in Section 3, the challenge is finding pairwise
gene assignments based on similarities while minimizing the distance. In the
following we will sketch a natural modification of existing approaches for the DCJ
model. Whether this will lead to meaningful distances and allows for efficient
algorithms has yet to be shown.

4.1 The Weighted Adjacency Graph

Recall that a gene is an oriented interval of a chromosome. We now represent a
gene by the two extremities of its interval, called tail and head. The tail of gene g
is denoted by gt and the head by gh. In a family-based setting composed of n gene
families, consider that each one of two genomes G and H has exactly n genes,
one occurrence of each family. A data structure that has proven to be useful
in the study of the DCJ rearrangement model in this context is the adjacency
graph AG(G,H). This graph has a vertex for each adjacency of either of the two
given genomes, and for each one of the two extremities of each gene there is an
edge connecting the two vertices, one in G and the other in H, that contain this
extremity. The graph is bipartite and a collection of paths and cycles, because
each vertex has either degree one or degree two. The DCJ rearrangement distance
can easily be calculated from this graph using the formula dDCJ = n− c− i/2,
where c is the number of cycles and i is the number of paths with an odd number
of edges in AG(G,H) [7]. Since, in the linear unichromosomal case that we
consider in this paper, the adjacency graph has exactly two paths and otherwise
only cycles, i/2 is either 0 or 1. Therefore, the similarity of two genomes G and
H is closely related to the number of cycles in the adjacency graph AG(G,H).

While the original adjacency graph clearly depends on the assignment of
gene families, we observe that based on the information in the gene similarity
graph from Section 2 we can obtain a data structure that resembles some of the
properties of the adjacency graph. This new data structure might thus be a good
basis for DCJ-like rearrangement distance calculations in a family-free setting:

Definition 3 (Weighted Adjacency Graph). The weighted adjacency graph
WAG(G,H) of two genomes G and H has a vertex for each adjacency in G and
a vertex for each adjacency in H. For a gene g in G and a gene h in H with
similarity σ(g, h) > 0 there is one edge connecting the vertices containing the
two heads gh and hh and one edge connecting the vertices containing the two
tails gt and ht. The weight of each of these edges is w(eg,h) := σ(g, h).
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As an example, the gene similarity graph for the two genomesG = (◦ 1 2 3 4 ◦)
and H = (◦ 5 6 7 8 9 ◦) and six edges with non-zero weight, and the correspond-
ing weighted adjacency graph are given in Figure 3.
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Fig. 3. Gene similarity graph (left) and the resulting weighted adjacency graph
WAG(G,H) (right) for two genomes G = (◦ 1 2 3 4 ◦) and H = (◦ 5 6 7 8 9 ◦)

Note that if G and H have the same number of genes and the similarity mea-
sure σ forms a perfect matching with weight 1 for all edges of the matching and
weight 0 otherwise, then the weighted adjacency graph reduces to the ordinary
adjacency graph.

4.2 The Weighted Double-Cut-and-Join Distance

As for the case of conserved adjacencies, where instead of the breakpoint distance
we calculate a matching maximizing an adjacency score in Equation (3), here
we first define a similarity measure that, if needed, can easily be converted into
a distance.

Again, the similarity measure is based on a matchingM of the genes in G and
the genes in H. Let I(G,H;M) be a graph derived from the weighted adjacency
graph WAG(G,H) and the matchingM by first removing from WAG(G,H) each
unmatched gene, consequently merging the two vertices containing its extrem-
ities, and second keeping only the edges representing extremities of gene pairs
from M. This graph has the shape of a standard adjacency graph and thus is
a collection of cycles and paths. We denote by C(M) ≡ C(G,H;M) the set of
connected components of I(G,H;M).

The graph derived from the weighted adjacency graph of Figure 3 and the
matching M = {(1, 5), (2, 6), (3, 8), (4, 9)} is given in Figure 4.

Since we know that the number of DCJ operations is closely related to the
number of cycles in the adjacency graph, we define a score function whose domain
is defined by gene similarities and cycles in the matching. Therefore, in analogy to
the corresponding formula for conserved adjacencies in Equation (3), we propose
the following objective function:

FDCJα (M) = α · cyc(M) + (1− α) · edg(M)
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Fig. 4. The graph derived from the weighted adjacency graph of Figure 3 and the
matching M = {(1, 5), (2, 6), (3, 8), (4, 9)}

where

cyc(M) =
∑

C∈C(M)

(
1

|C|
∑
e∈C

w(e)

)
and edg(M) is the same as in Equation (2). Again, α ∈ [0, 1] is a parameter that
allows to balance between the two extremes, here between rearrangements (α =
1) and gene similarities (α = 0). Nevertheless, even for α = 1 gene similarities
are not ignored since the weights w(e) also form an essential part of the cycle
score cyc(M). Note that the normalization 1/|C| in cyc(M) is designed such
that many short cycles are preferred over fewer long ones. For example, if all
edges have the same weight w, two cycles of length 2 receive the score 2w, which
is twice the score of one cycle of length 4. The cycle score of the graph shown in
Figure 4 is cyc(M) = 1

1 ·1.0+ 1
2 ·(1.0+0.7)+ 1

4 ·(0.7+0.9+0.6+0.9)+ 1
1 ·0.6 = 3.225.

It is unlikely to find an efficient algorithm to compute a matching M that
maximizes FDCJα (M), but the solution of this optimization problem through
integer linear programming seems possible and will be the subject of further
research.

It is also an open question how to treat genes that are not covered by M.
They can be explained as being inserted or deleted during the course of evolution.
Thus, a more general score function might consider these genes and prefer sorting
scenarios with a low number of insertion/deletion events, similar to existing
family-based approaches [14,25].

Even further reaching might be approaches that do not rely on any matching,
and instead optimize an objective directly defined on the weighted adjacency
graph, for example a weighted version of maximum cycle decomposition.

5 Ancestral Genome Reconstruction

Studying conservation of gene order or rearrangement processes in the light of
a phylogeny – given or unknown – can provide deeper insight into evolutionary
mechanisms, gene functions, or the phylogeny itself. In this section, we will dis-
cuss how a partial k-matching can be used for ancestral genome reconstruction.
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Phylogeny aware optimization. A natural first step when reconstructing ances-
tral gene orders is to take phylogenetic information into account. Apart from
ancestral reconstruction, this can actually be done in general to improve the con-
struction of the partial k-matching. Given an edge-weighted phylogenetic tree,
say T , for the species under consideration where the edge weights reflect the
phylogenetic/evolutionary distance, the lengths of the paths between all pairs of
species define an additive distance matrix DT . As additivity gives a one-to-one
correspondence of DT and T , including the pairwise distances into the opti-
mization implicitly also includes the topology of T . These distances can be used
to scale the pairwise scores in the objective function – close relatives receive a
higher score than more distant pairs:

Fα,T (M) = α ·
∑
G,H

(DT
max −DT

GH) adj(MGH)

+ (1− α) ·
∑
G,H

(DT
max −DT

GH) edg(MGH)

=
∑
G,H

(DT
max −DT

GH) (α · adj(MGH) + (1− α) · edg(MGH))

where
DT
max = max

G,H
{DT

GH}.

Ancestral genes. To be able to reconstruct ancestral gene orders, we first need to
define ancestral genes and the ancestral gene content of ancestral genomes. To
this end, we leave the family-free approach and rely on the assignments given by
the partial k-matching. From such assignments, gene families can be derived by
simply assigning all genes from a connected component in a partial k-matching
to one family. As mentioned in Section 3.2, strictly speaking, these are rather
gene sub-families. Recall further that the partial k-matching is defined such
that within each connected component formed by saturated edges no two genes
belong to the same genome. If all components are k-cliques, then genomes can
be modeled as signed permutations. But in general, components might cover
less than k genomes, i.e., not all genomes have the same gene content, although
genomes do not have duplicated genes, thus leading to easier problems.

Based on the gene sub-families, we can infer the ancestral gene content from
standard methods [18] or methods tailored for genome rearrangement prob-
lems [24,53].

Ancestral gene orders. Similarly to the computation of genomic distances (Sec-
tion 4), the reconstruction of ancestral gene orders can be seen from two points of
view – incorporating a rearrangement model-based approach or not. Once gene
families have been defined from the partial k-matching, we have the gene orders
of the extant genomes. Thus, we can apply rearrangement model-based methods
allowing for unequal gene content such as [24, 49, 53]. Usually, such methods,
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following a parsimony approach, would aim at minimizing the total number of
operations along the tree edges, which in most cases will lead to computationally
hard optimization problems.

In the rearrangement model-free approach, ancestral syntenic characters are
determined which induce a (partial) gene order. In our case, adjacencies qualify
as ancestral syntenic characters. The remaining questions are then (1) how to
infer the ancestral adjacencies, and (2) whether a set of adjacencies assigned to
an ancestral node is concordant with some valid gene order, i.e., a collection of
linear (and circular) chromosomes where each gene has at most two neighbors.

For a median-of-three, the above questions can easily be answered. Following
a parsimony approach, the 0/1-assignment of an adjacency to the median boils
down to a majority vote. Further, in almost all rearrangement median mod-
els, any adjacency present in at least two genomes is contained in any optimal
median. In the case of signed gene orders, this selection will always ensure com-
patibility with a collection of linear and circular gene orders, and the inferred
partial k-matching defines implicitly a set of linear or circular genome segments.
Note however that this median genome might not be optimal for a given rear-
rangement model; however, it is a valid set of ancestral genome segments that
has been inferred in a joint process, together with putative gene sub-families.

For general trees, one could follow rearrangement model-free approaches that
try to find a most parsimonious labeling of the whole tree that is at the same
time consistent with some linear or circular gene order [52], or one could con-
centrate on a single ancestral node as, e.g., done in several recent works [17,37].
The method by Chauve and Tannier [17] relies on the Dollo principle, where
only adjacencies conserved in pairs of genomes whose path in the species tree
contain that ancestor are deemed ancestral; other approaches can select or score
adjacencies using a Fitch principle [37].

The Dollo principle can easily be included into the optimization of the partial
k-matching by introducing a factor πAGH that equals one if the path between G
and H contains the ancestor A and zero otherwise:

Fα,T ,A(M) =
∑
G,H

πAGH (DT
max −DT

GH) (αadj(MGH) + (1− α) edg(MGH)) .

Thus, adding this feature to the objective function allows to select a set of
putative ancestral adjacencies that can also receive a phylogenetic score as we
described it earlier. Then existing methods that select a subset of adjacencies
that form a valid genome can be used (see [38] for an example).

In this section we outlined how the family-free principle can fit quite naturally
in existing approaches to reconstruct ancestral gene orders. This preliminary
study opens several interesting research avenues. For example, it is worth to
mention that rearrangement model-free reconstruction methods can utilize larger
conserved structures than just adjacencies. Thus, e.g., common intervals could be
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included by integrating the scoring for θ-adjacencies as proposed in Section 3.2.
Also, progressing toward a fully integrated inference process, it would be natural
to incorporate the constraints posed by the structure of an ancestral genome;
with adjacencies, this reduces to ensuring that every ancestral gene has at most
two adjacent neighboring genes. However, integrating such constraints – even
if only for a single internal node of a species tree (ancestral genome) – seems
to be very challenging. Finally, it would also be interesting to move on from
reconstructing the states of the internal nodes of a given phylogeny (the small
phylogeny problem) to reconstructing the tree itself. It is known that using gene
order data for phylogenetic reconstructions can be more accurate and robust
than sequence based methods since they are not affected by gene-tree species-
tree issues and less affected by small sequence or alignment errors. Not relying
on purely sequence based homology assignments could be a benefit for such
reconstructions.

6 Discussion

In this paper we have outlined the potential of family-free methods in various
aspects of genome comparison. Gene families are generally computationally pre-
dicted and serve as basis for a large variety of current comparative genomics
studies. Since the predicted families may not be concordant with the underlying
true biological gene families, erroneous gene family assignments can deteriorate
subsequent analyses. Most importantly, comparative genomics methods require
prior gene family assignments, yet the attained information about the structural
organization of the genome may in turn actually help to improve the initially
required gene family assignments. Consequently we propose the use of a gene
similarity graph as underlying data structure in genome comparison. Therein
genes are associated with each other by weighted edges according to a normal-
ized similarity measure. In practice, sequence similarity scores can be employed
in constructing the graph.

The underlying strategy of almost all presented methods is tantalizingly sim-
ple and boils down to obtain a one-to-one matching between orthologous genes
of the gene similarity graph by solving an optimization problem. More specifi-
cally, a linear combination of a synteny (or rearrangement) score and a similarity
score, parameterized by α, between saturated genes is optimized. Here, we give
users the choice in favoring one of the two quantities over the other by adjusting
α in each particular analysis. At this point, we like to acknowledge an inherent
disadvantage of a one-to-one matching, namely its inability to account for inpar-
alogous genes. Thus, the detection of inparalogs remains part of post-processing
steps which identify unsaturated genes with high similarities to other genes of
the same genome.

In Section 3 we studied two forms of conserved structures: adjacencies and
common intervals. In the former, we generalized the problem of family-free com-
putation of adjacencies of [22], called FF-Adjacencies, towards the simultaneous
study of more than two genomes. Thereby we introduced the notion of a partial
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Fig. 5. Various fields of comparative genomics can be explored under the family-free
model such as conserved structure detection or reconstruction of ancestral genomes,
employing different gene similarity measures (based on alignment scores, functional
similarity, etc).

k-matching, which allows to incorporate in solutions of Problem FF-Adjacencies
sparsely interconnected genes as well as connected components that are only
contained in subsets of the genomes. We also discussed two possible approaches
towards family-free common intervals by introducing a scoring scheme for θ-
adjacencies, which is a co-localization measure for genes similar to adjacencies.
We further outlined a more dynamic, but also computationally more expensive
approach based on performing local maximum matchings. Complementing the
study of conserved structures, we turned in Section 4 to model-based genome
comparison by introducing the weighted adjacency graph. On this basis we pro-
posed a weighted DCJ distance following a similar strategy as in the previous
section. We further showed in Section 5 how the reconstruction of ancestral ge-
nomes can be performed using the family-free principle. Thereby we studied the
concept of family-free adjacencies in a phylogeny-aware setting using existing
approaches of reconstructing ancestral gene orders.

This work presents a number of initial studies in a new field of genome com-
parison which aims at developing methods where prior gene family assignments
are no longer required. It consequently offers many directions in which these
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studies can be extended (see Figure 5). Most evidently, the principle of family-
free genome comparison can be applied to the numerous existing family-based
studies. More interestingly, the family-free principle could even be integrated
into a methodology for joint inference of gene families, conserved structures and
ancestral gene orders at the same time, extending presented work in reconstruct-
ing ancestral gene orders. Even though such venture most likely involves a more
complex data structure and a potentially increased solution space, the question
remains unanswered if the stronger signal gained from harvesting more informa-
tion from the genomic datasets may reduce the computational cost in finding
optimal solutions. Finally, it is worth to mention that the family-free principle
may be particularly beneficial in studying partially sequenced (or assembled)
genomes, as methods in gene family prediction tend to be susceptible for miss-
ing genes. Here, the family-free approach can offer improvements for inferring
phylogenetic distances of incomplete genomes, but also in detecting conserved
structures, which may lead to improved methods in contig layouting.

While sequence similarity between genes is an obvious and reasonable mea-
sure in constructing the gene similarity graph, similarity scores can also in-
tegrate additional information such as functional similarity. Such information
can be obtained from various databases, most notably, from the Gene Ontol-
ogy database [3]. Family-free genome comparisons of this kind may give further
insights into the functional organization of the genome.
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