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Introduction

We show how to calculate the number of all possible alignments of N sequences
generalizing results of Laquer [1] and Waterman [2] who solved this problem for the
special case of N = 2 sequences. We consider two notions of sequence alignment:
standard and effective alignments. We present recursive functions to calculate both,
the number of standard and the number of effective alignments. We also derive ex-
plicit formulae (i) for the number of standard alignments and (ii) for the number of
effective alignments of just two sequences.

Terminology

A standard alignment of N sequences of length L1; : : : ; LN is defined to be anN � L matrix (max(L1; : : : ; LN ) � L � P1�i�N Li) whose rows are obtained from
the original sequences by insertion of so-called ‘blanks’ or ‘gap characters’ – with the
additional requirement that no column of the alignment consists exclusively of blanks.F (L1; L2; : : : ; LN ) := the number of standard alignments of N se-

quences of length L1; L2; : : : ; LN .

An effective alignment of N sequences of length L1; : : : ; LN is a consistent equiv-
alence relation defined on the site space S := f[ijj℄ �� 1 � i � N; 1 � j � Lig. This
definition avoids a certain redundancy inherent in the standard definition and allows
to apply the mathematical theory of sets and relations to investigate the state space
associated with an alignment problem. (For a more detailed discussion see [3].)G(L1; L2; : : : ; LN ) := the number of effective alignments of N se-

quences of length L1; L2; : : : ; LN .

Summary of Results

First Result A recursive formula for the number of standard alignments:F (L1) = 1F (L1; : : : ; Li�1; 0; Li+1; : : : ; LN ) = F (L1; : : : ; Li�1 ; Li+1; : : : ; LN )F (L1; : : : ; LN ) = P;6=V �f1;:::;NgF (L1 � �V (1); : : : ; LN � �V (N))
where �V is the characteristic function�V : f1; : : : ;Ng ! f0; 1g : i 7! � 1 if i 2 V0 otherwise

Second Result An explicit formula for the number of standard alignments:F (L1; : : : ; LN ) = XL�0Xx�0(�1)x�Lx� NYi=1�L � xLi �
Third Result A recursive formula for the number of effective alignments:G(L1) = 1G(L1; : : : ; Li�1; 0; Li+1 ; : : : ; LN ) = G(L1; : : : ; Li�1; Li+1; : : : ; LN )G(L1; : : : ; LN ) = P;6=W�f1;:::;Ng a(jW j)G (L1 � �W (1); : : : ; LN � �W (N))
where the numbers a are defined as follows:a(k) := X� (�1)1+#(f1;:::;kg=�)
and where, for any given k 2 N0, we sum over all equivalence “�” relations defined
on f1; : : : ; kg, and #(f1; : : : ; kg=�) denotes the number of equivalence classes of the
equivalence relation “�”.

Fourth Result An explicit formula for the number of effective alignments of two se-
quences: G(L1; L2) = �L1 + L2L1 � = �L1 + L2L2 �:
Open Question We leave the development of an explicit formula for the number of
effective alignments of an arbitrary number of sequences as an open question.

Proofs

Here, we show in full detail only the proof of the second result. The first and the fourth
result are quite obvious. The proof of the third result, which – similar to that of the
second result – uses Möbius inversion as well as a deeper discussion of the numbersa can be found in [4].

Proof of the Second Result

The idea is to sum over all possible lengths of alignments.

1. LetF (L1; : : : ; LN ;L) := the number of standard alignments of length L ofN sequences of length L1; L2 ; : : : ; LN .

Then F (L1; : : : ; LN ) = Xmax(L1;:::;LN )�L�L1+:::+LN F (L1; : : : ; LN ;L):
2. For each X � f1; : : : ; Lg, putf(X;L) := the number of alignments of length L with exactly the

columns j 2 X consisting of blanks only.

Then F (L1; : : : ; LN ;L) = f(;; L):
3. Let f+(X;L) := f+(L1; : : : ; LN ;X;L) = the number of alignments of

length L with at least the
columns j 2 X consisting of
blanks only.

Then f+(X;L) = NYi=1�L � jX jLi �
and f+(X;L) = XX�Y�f1;:::;Lg f(Y;L):

4. By Möbius inversion [5], this impliesF (L1; : : : ; LN ;L) = Xx�0(�1)x�Lx� NYi=1�L � xLi �: (�)
The standard proof for this fact is the following:Xx�0(�1)x�Lx� NYi=1�L� xLi � = XX�f1;:::;Lg(�1)jXjf+(X;L)= XX�f1;:::;Lg(�1)jXj XX�Y�f1;:::;Lg f(Y;L)= XY�f1;:::;Lg f(Y;L) XX�Y (�1)jXj= f(;; L)= F (L1; : : : ; LN ;L):

5. The final result follows immediately:F (L1; : : : ; LN ) = Xmax(L1;:::;LN )�L�L1+:::+LN F (L1; : : : ; LN ;L)= XL�0Xx�0(�1)x�Lx� NYi=1�L � xLi �: 2

Informally, one could interpret formula (�) by the Inclusion-Exclusion Principle: To
obtain the number of standard alignments of a fixed length L (without blank-only
columns), first take the set of all alignments of length L including those with (one or
more) columns consisting of blanks only. Since these are more alignments than we
want to count, we would like to exclude from these all those alignments which have
at least one blank-only column. But we don’t have immediate access to their number.
Instead, we remove all alignments with at least a blank-only column at position x and
then add again the number of alignments which we have excluded more than once,
and so on ...
The following figure sketches this principle for alignments of length L = 3, given
sequences of length L1 = 1, L2 = 1, and L3 = 1.
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Discussion

We hope that our work regarding the enumeration of two types of multiple alignments
is a first step towards structuring the space of all multiple alignments which will even-
tually allow to employ well known and highly developed and sophisticated methods
from statistical physics to explore the “fitness landscape” defined on that space by
various alignment scores, as well as to analyze the various optimization methods
designed to actually find their respective (local and/or global) optima.
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