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Two Applications of the Divide & Conquer
Principle in the Molecular Sciences

G. Brinkmann, A.-W.M. Dress, S.W. Perrey, J. Stoye

Abstract

In this note, two problems from the molecular sciences are ad-
dressed: the enumeration of fullerene-type isomers and the alignment
of biosequences. We report on two algorithms dealing with these prob-
lems both of which are based on the well-known and widely used Di-
vide&Conquer principle. In other words, our algorithms attack the
original problems by associating with them an appropriate number of
much simpler problems whose solutions can be “glued together” to
yield solutions of the original, rather complex tasks. The considerable
improvements achieved this way exemplify that the present day molec-
ular sciences offer many worthwhile opportunities for the effective use
of fundamental algorithmic principles and architectures.



1 Introduction

One of the most powerful principles for solving complex tasks algorithmically
is the so-called Divide& Conquer Principle. It has been applied successfully
for an amazingly wide range of problems, from combinatorial optimization to
matrix multiplication. Its principal idea is to break up a given complex task
T appropriately into a reasonable number of less complex tasks 17,...,T}%
so that, by “gluing together” appropriately solutions of those less complex
tasks, some or even all solutions of the original complex task T' can be found.

Whatever problem the original task were to address, it is often possible
to rephrase it as a task to search for certain maps f € Y+ from a (generally)
large set X into a (generally) much smaller set Y, that is, for maps f :
X — Y which exhibit a number of very particular, well-specified properties.
A Divide&Conquer strategy then can be applied for such a search problem
whenever it is possible to break up the set X into subsets Xi,..., X} (which,
of course, may — and in most cases will — be overlapping) and to define
specific properties regarding maps f; from the X; into Y so that (a) it is
comparatively easy to find (some or all) maps f; : X; — Y with the desired
properties and (b) it is possible to construct (some or all) maps f: X — Y
from (appropriate) k-tuples of maps (fi,..., fx) by concatenation, that is,
by putting

f(@) = fiz)

whenever x € X, — provided this is well-defined, that is, provided z € X;NX;
implies fi(x) = f;(x) for all 1,5 € {1,2,...,k}.

For instance, if we try to find a map f : X — Y := {£1} such that,
for some pregiven matrix C' = (¢;;); jex of real numbers, the value of the

C(f) = Y ciif(i)f()

1,jEX

quadratic function

is maximized, we may try to find overlapping subsets X;, Xo C X with
X1 UX; = X and with an intersection Z := X; N X; such that ¢;; = ¢;; =0
for all i € X7\ 7 and 5 € X3\ Z in which case we have

max (C(f) : f € {£1}") =

max (Cl(f*) + Co(f7) + Z ci [T )+ M€ {il}z)

where for any f* € {£1}Z the values C;(f*) and Cy(f*) are defined in terms

of the following optimization problems: put

v Joey if,ye Xy and {i,j} € Z
“%TY0 ifijes
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and

s )y if,yeXy and {i,j} € Z
“%TY0 ifijes
and define C,,(f*) (o = 1,2) by

Ca(f7) = maX( > i(i)fi(j))

ivjeXa

where [ runs over all extensions of f* to X,, that is, over all maps from X,
into {£1} with f*|z = f*.

While this gives a handle to actually solve the original optimization prob-
lem exactly provided that can be done with the three resulting smaller prob-
lems, it for sure reduces the original search space of cardinality 2#¥X to a
search space of cardinality 2#7 where for each point in that small search
space two search spaces of cardinality 2#(X1\9) and 2#(X2\7) " regpectively,
need to be investigated separately so that altogether the trivial upper bound
2#X for the time complexity of the original problem can be replaced by the
number 2#2(2#(X1\Z) + 2#(X2\Z)) = 2#X1 L 2#X2 of all points in the total
“fibred” search space

U {mrexty™ : mlz=rlu{f ez} Blz=r7}).

fre{£1}2

Yet, even if the three smaller problems cannot be solved exactly, searching
heuristically for maps f* : Z — {£1} with a large value of 3=, ;e ci; f*(¢) f*(J)
and then extending them heuristically to maps f : X, — Y with large values

of
PR MOYNG)
i7j€Xa

might lead to good, if not optimal solutions of the original problem (and this
applies even if the matrix entries ¢;; with {i,5} € Xy and {i,7} € X5 are
very small compared to the other ones but not necessarily equal to 0).

Clearly, this idea is the starting point for many dynamic programming
solutions of complex problems, e.g. the spin-glass optimization problem or
the (closely related) so-called small parsimonious tree problem (cf. [12], [13],
14)).

Analysing the idea a bit more systematically suggests to look for a good
concept of embedding complexity, that is a concept which measures how in-

tricately a given set S = S(X') is embedded into a large product set [] Vi —
1€X
with a generally large index set X and generally small }; — by a family of

maps p; : S — Y, (1 € X) or, more precisely, how easily the image S(X)
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of the set S can be described in terms of its projections S(A”) onto smaller
product sets [] JV; where X’ runs through appropriate — and hopefully quite
ieX
small — subsets of .
In the above example, a natural choice is

X:X(X,C) = {(l,j) cX?: Cij %0}

for the index set A and N

Vi) = {1117
for the individual factor sets Y ;) ((7,7) € &) into which the search space
S = {1} is projected via restriction by

Py 2 S = Yagy s = gy
Clearly, defining weight functions
wiig) * Nig) = R

by

wip(9) = eiig(1)g(7) (9 € Vi)
on every factor set Y ;), the quadratic function C'(f) can now be expressed
“linearly” as a simple sum

> wi (pea ()

(7,5)eX

of the weights of its projections and could be maximized by independent
maximization in each component if the image S(&X') of S would coincide with
the full product set []; jex Vij)- Yet, even if this ideal situation is not
provided by the given data, the above assumption ¢;; = 0 unless {i,7} C X,
or {1,7} € X, implies that an element (g(i’j))(i,j)ex from [ jyex Vi) 1s in
S(X) if and only if its two projections onto []; e, Vi) and [T jyex, Vi)
—with X, 1= X(X,,Cly.«x.) =1(,7) € X : {i,5} € X} (a = 1,2) — both
are contained in the correspondingly defined subsets S(X;) and S(X3). And
it is exactly this simple fact regarding the embedding of S = {£1}¥ into
the product J[; jyex Vi ;) on which the above proposal for reducing the given
optimization problem to a family of considerably less complex problems is
based.

Similarly and more generally, associating to any (simple) graph I' =
(V, E) with vertex set V and edge set £ C {e C V : #e = 2}, the em-
bedding of S := {£1}" into the product [J.cx{£1}° given, as above, by
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restrictions p. : S — {£1}°: f — f|{6} (e € E), one sees easily that
the tree width of I' can be invoked to provide a good measure for the com-
plexity of that particular embedding and, hence, to provide means to solve
problems related to graphs by dynamic programming procedures based on a
Divide&Conquer strategy or to evaluate the efficiency of local optimization
procedures.

Yet, we will not delve deeper into the abyss of abstract combinatorial
complexity theory here. Rather, as promised in the title of this contribu-
tion, we will discuss two recent and rather successful applications of the
Divide&Conquer principle in the molecular sciences — with the intention of
(a) just demonstrating once more its wide range of applicability and intro-
ducing new fields of exploration and (b) of underlining the well-known facts
that (bl) it is rarely clear at the beginning how to break up efficiently a
given complex task into manageable subtasks, and that there is no routine
all-purpose procedure of doing this systematically, and that (b2) even if an
efficient way of doing this is anticipated, lots of additional efforts are needed
to make such an idea really work.

The examples we want to discuss are the following two:

e a procedure for fast and complete enumeration of fullerene structures

(cf. [23]) and

e an algorithm for fast and reliable simultaneous alignment of sizeable
families of biomolecular sequences.

The first example will demonstrate how the Divide&Conquer principle
can be used to find efficiently all solutions of a complex problem — that is,
the problem of enumerating all fullerene isomers up to any given number
of Carbon atoms — by (a) first solving recursively a comparatively simple
problem and (b) devising clever ways of gluing together appropriate pairs
and triples of solutions of the simpler problem to find solutions of the original
problem (and (c), of course, establishing beforehand theoretically that every
solution can be constructed that way). The resulting computer program has
already found many important applications in Carbon chemistry.

In the second example, the Divide&Conquer principle is used to generate
heuristic (suboptimal) solutions for the task of aligning biomolecular RNA-,
DNA-, or amino-acid sequences so that phylogenetically and/or structurally
corresponding sites in the individual sequences will be recognized by being
assembled in just one column provided the given sequences are spelled out
horizontally, one above the other. This is achieved by introducing gaps here
or there into these sequences so as to make up for apparent inconsistencies
between them (in particular to bring them all up to the same length), and to
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maximize overall similarity along the resulting columns. Sequence alignment
is a fundamental task in string processing, and it is performed as a daily
routine around the world in all computer laboratories servicing the molecular
biosciences.

2 Fullerene Structure Enumeration

Fullerenes were first observed on Wednesday, September 4th, 1985 in an ex-
periment designed to explore the formation of molecules under conditions
simulating those of outer space (cf. [23]). Much to the surprise of the ex-
perimenters, a clear signal was seen indicating a (relative) abundance of
molecules consisting of exactly 60 Carbon atoms. Discussing this perplex-
ing observation next morning, an exchange of serendipitous speculation led
to the stunningly simple and aesthetically pleasing hypothesis that the 60
atoms in these molecules were arranged in a way reminiscent of the geodesic
domes designed by the world-famous architect R. BUCKMINSTER FULLER
(1895 — 1983) in the twenties and thirties. More precisely, the hypothesis
stated that the atoms were placed in pairs of two along the thirty edges of
an icosahedron, cutting each edge into three parts of equal length. This way,
they would form a spherical cage structure — also called a truncated icosa-
hedron — consisting of twenty regular hexagons (resulting from the twenty
triangular faces of the icosahedron) and twelve equally regular pentagons
(resulting from its twelve vertices) so that (a) each atom is shared by exactly
three of these polygons and (b) the pentagons are all isolated, that is, they
never share an atom. Remarkably, this structure is also identical with the
patchwork geometry that can be found on any of the present soccer balls
which came in use when television started to broadcast soccer games.

This speculation was supported by the fact that no such spherical cage
structure with isolated pentagons exists with less than 60 or with between
61 or 69 atomic positions, while fullerene-type cages with any even number
of positions from 70 positions on do exist (cf. Table 1) — well in accordance
with the observation that no signals indicating the existence of molecules
consisting of n Carbon atoms were discernible for any n between 61 and 69
while C7g clusters did show up, though considerably less pronounced than
the Cgp ones.

These observations mark a turning point in Carbon chemistry. Besides
diamond and graphite, fullerenes now present a third form of molecular struc-
ture consisting exclusively of Carbon atoms. It is expected that they will
turn out to be of great commercial importance. At the moment tube-type
fullerenes — that is, fullerenes with a long tubular body — are regarded as



most promising concerning future industrial applications.

In consequence, already eight years later, in 1993, the citation index deal-
ing with publications in chemistry showed that the relevant paper [23] had
been quoted more than a thousand times and roughly ten times more than
the next popular paper in chemistry, — and sure enough, a Nobel Prize was
awarded to the discoverers R.F. CURL, H W. KROTO, and R.E. SMALLEY
in 1996.

The observations led in particular to the problem of how to enumerate
all such cage structures (including also those with non-isolated pentagons)
so that, by energy calculations, the more plausible isomer structures could
be singled out and investigated in a more systematic fashion. Consequently,
methods for reliable and efficient enumeration of fullerene cages quickly be-
came a much discussed topic as is clearly documented by the beautiful Atlas
of Fullerenes (cf. [28]) authored by P.W. FOWLER and D.E. MANOLOPOU-
LOS (see also [3], [22], [25], [29], [38], and [40]).

Adopting a purely combinatorial, graphtheoretical point of view, a ful-
lerene isomer structure is defined to be a finite planar 3-regular graph all of
whose faces are exclusively hexagons or pentagons (cf. Fig. la). It follows
easily from Euler’s formula (in conjunction with standard book-keeping de-
vices) that any such graph must contain exactly 12 pentagons and that the
number n of its vertices and the number N of its hexagons are related by the
formula

n=20+2-N.

Most of the procedures applied so far for fullerene enumeration use a bottom-
up strategy: starting from a small subconfiguration, fullerene structures are
generated by enlarging this subconfiguration stepwise in all conceivable ways
(or in some particular ways assumed to be sufficient), e.g. by using one or
the other variant of the so-called spiral algorithm (cf. [28], [40], [3]). These
methods often meet prohibitive time constraints. So, quite a few implemen-
tations try to reduce complexity by shortcuts which then endanger reliability.
Hence, none of these methods which is fast enough to be applicable for more
than, say, 40 C-atoms can guarantee complete lists of fullerenes while those
accepting possibly incomplete lists cannot go much beyond 100 C-atoms.

It may therefore be remarkable (cf. [6]) that a top-down Divide&Conquer
strategy allows to design an algorithm for fullerene enumeration which is
absolutely reliable — that is, it guarantees complete lists — and simultaneously
amazingly efficient: On an HP9000/735, a complete enumeration of e.g. all
Ceo-structures (of which there are 1812) needs about 12 seconds: 6.5 seconds
for the generation of sufficiently many such structures and 5.5 seconds for
testing structural isomorphism. For fullerenes with about 100 atoms, the
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Figure la: A Jordan curve Petrie path.

program appears to be faster by more than three million times than previous
(incomplete) ones.

In that algorithm, the Divide&Conquer strategy is applied using Petrie
paths (cf. [9]) to reduce the problem of enumerating all fullerene structures
with a given number of C-atoms to solving corresponding pairs or triplets of
PentHex Puzzles (cf. Fig. 1 and 2):

A Petrie path in a fullerene is a sequence of edges ey, es,. .., e such that
any two consecutive edges €;, €;41 (1 = 1,...,k—1) share precisely one vertex
(and, hence, they also share one face because the graph is 3-regular), while no
face is shared by any three consecutive edges €;,€;41,€i12 (1 =1,... k —2).
In other words, Petrie paths are zig-zag paths along the network of edges
provided by a fullerene which, at each vertex they meet, turn right or left
alternatively.

It is clear that for each pair eq, e5 of edges which share precisely one vertex
and for each k£ > 2, there exists precisely one Petrie path e, e, ..., ¢ and
that starting with an arbitrary such pair ey, €5, there must exist a smallest
k > 2 such that the end vertex of e, coincides with one of the vertices
which have been met before. In Fig. 1, this vertex is indicated by a full
circle. If this is the vertex of ¢ where our Petrie path started and if e;_q, e,
and e; do not share a face, we have a closed Jordan Petrie path which cuts
our spherical fullerene structure into two hemispheres, both of which have
a zig-zag boundary consisting of precisely k edges (see Fig. la). Otherwise,
we may reverse our direction and follow the reverse Petrie path starting
with ey and then continuing with ey, ep,e_q,...,e_; until again, for some
[ > 0, we meet some vertex visited before (including, of course, the vertices
of e1,es,...,€;), indicated by an open circle. In this case the total path
€1y €11y, €0,€E1,...,€r cuts our spherical fullerene structure in precisely
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Figure 1b: A "dumb-bell’ Petrie path. Figure 1c: A ’sandwich’ Petrie path.

three patches, either of the form depicted in Fig. 1b or of that depicted in
Fig. 1c.

In each case, the boundaries of these patches are again zig-zag paths
(that is, the third edges emerging from the vertices along the boundary —
those which are not followed by our path — alternatively stick out of and into
the patch) except for at most two localities in cases 2 and 3 — involving the
vertices where our Petrie path met itself — where at least two consecutive
vertices at the boundary have their third edge sticking out. Clearly, once we
know those (either two or three) whole patches, we can glue them together
appropriately to regain our fullerene.

It remains to describe how the structure of these patches can be (re-
Jconstructed. This leads to the concept of PentHexr Puzzles: A PentHex
Puzzle is given by separating a given finite set S of points — called boundary
vertices — on a circle into two disjoint subsets, say A and B. The associated
task is to (re)create fullerene patches by filling the disc inside the circle by
a planar graph so that this graph contains the circle line, its vertices on the
circle line are precisely the points in S (that is, the boundary vertices), all of
its vertices except those in A have degree 3 while those in A have degree 2,
and all of its faces are exclusively pentagons or hexagons. Invoking Euler’s
formula again, one easily sees that the number of pentagonal faces in any such
patch equals 6 + #B — #A — so, we must have #A — #B < 6. Obviously,
any of the above patches is a solution of the PentHex Puzzle defined by its
boundary line, with A the set of vertices along the boundary where the third
edge sticks out of and B those where it sticks into the patch. Moreover,
the way our patches were constructed in terms of Petrie paths ensures that
only conver PentHex Puzzles have to be solved, that is, those where no two
consecutive vertices are in B.

In cases like that depicted in Fig. la, that is if #A = #B, the structure
of such a puzzle can be encoded by just one number M (= #A = #B).
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Figure 2: The three patches — of type (0,9),(5,6) and (0,8), respectively —
needed to construct the fullerene in Figure 1c relative to the marked Petrie
path. Edges with both endpoints in A are marked by a thick line.

Figure 3a: Example. A puzzle with boundary sequence M =9 (case #A =
#B) is — after being filled with one circle of hexagons — reduced to one with
boundary sequence (M; = 3, My = 4).

It #A4 > #B. the edges with both incident vertices in A divide the
boundary into j := #A — #B > 0 segments. In this case, the sequence
(My, My, ..., M;), denoting consecutively the numbers of vertices in B in
these segments, can be used to encode the structure of the puzzle (cf. Fig. 2).

Fortunately, convex PentHex Puzzles can be solved quite easily because
any solution can be dismantled recursively in a more or less canonical way,
thus giving rise to a sequence of solutions of simpler convex PentHex Puzzles
containing less and less B-type vertices: In case #A = #B =: M, any
solution starts with a number of inscribed hexagon circles, each of length M
and each reproducing the given puzzle in its interior (cf. Fig. 3a). Removing
these inscribed hexagon circles one by one, we’ll finally hit upon the first
inscribed circle containing pentagons, too. Upon removing this circle next,
we are left with a convex PentHex Puzzle of the second type, that is, a
PentHex Puzzle of type (Mi,..., M;) with j the number of pentagons in
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start for coding the
puzzle start for coding the

Figure 3b: Example. A puzzle with boundary sequence (My, ..., M;_1, M; =
5) is reduced to one with boundary sequence (My —1,..., M;_y —1, M; = 6).

start for coding the
puzzle

start for coding the
puzzle

Figure 3c: Example. A puzzle with boundary sequence (My, ..., M;_1, M;
4) is reduced to one with boundary sequence (My,...,M;_y — 1, M,
3, M]‘_|_1 - 1)

that circle (and M = j+ My + ...+ M;). And in that second case, we can
start removing faces at an edge with both of its vertices in A and proceed
either to the next such edge (as indicated in Fig. 3b) or until we meet a
pentagon (Fig. 3c). Convexity guarantees that this will never interfere with
other parts of the boundary of the given patch. This way, the PentHex Puzzle
can be reduced to one with a smaller number of B-type vertices. The inverse
of the described reduction process can be used to construct all solutions of
convex PentHex Puzzles with — in principle — any given number of hexagons,
starting from a pentagon or a hexagon.

Constructing all relevant patch structures in this way and taking lots
of care regarding the use of memory and the implementation of the gluing
procedure (using in particular a sophisticated lexicographic coding method
to also make sure that the resulting list of fullerene structures never contains
two structurally isomorphic copies, thereby taking orientation either into
account or neglecting it), we have computed all fullerene structures for up to
n = 170 atoms, as well as for up to n = 214 atoms those special structures
which obey the isolated pentagon rule (IPR) — that is, structures where every
pentagon is surrounded by hexagons, only.

Table 1 records the number of structures we have found. It seems remark-
able that for n > 38 the number F'(n) of all fullerene isomers with n atoms
roughly coincides with the number Frpr(n + 48) of all IPR-fullerene isomers
with n 4+ 48 atoms, and that for n divisible by 4 the difference between F'(n)
and F(n — 2) roughly coincides with the difference between F(n + 2) and
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A B A C A B A C
60: 1 92: 126 409 140: 121 354
62: 0 94: 153 493 142: 151 201
64: 0 96: 191 839 144: 186 611
66: 0 98: 231 017 146: 225 245
20: 1 68: 0 100: 285 914 148: 277 930
22: 0 70: 1 102: 341 658 150: 335 569
24: 1 72: 1 104: 419 013 152: 404 667
26: 1 74: 1 106: 497 529 154: 489 646
28: 2 76: 2 108: 604 217 156: 586 264
30: 3 78: 5 110: 713 319 158: 697 720
32: 6 80: 7 112: 860 161 160: 836 497
34: 6 82: 9 114: 1 008 444 162: 989 495
36: 15 84: 24 116: 1207 119 164: 1170157
38: 17 86: 19 118: 1 408 553 166: 1 382 953
40: 40 88: 35 120: 1674171 168: 1 628 029
42: 45 90: 46 122: 1942 929 170: 1 902 265
44: 89 92: 86 124: 2 295 721 172: 2 234133
46: 116 94: 134 126: 2 650 866 174: 2 601 868
48: 199 96: 187 128: 3114 236 176: 3 024 383
50: 271 98: 259 130: 3 580 637 178: 3 516 365
52: 437 100: 450 132: 4182 071 180: 4 071 832
54: 580 102: 616 134: 4 787 715 182: 4 690 880
56: 924 104: 823 136: 5 566 948 184: 5424 777
58: 1205 106: 1233 138: 6 344 698 186: 6 229 550
60: 1812 108: 1 799 140: 7 341 204 188: 7 144 091
62: 2 385 110: 2 355 142: 8 339 033 190: 8 187 581
64: 3 465 112: 3 342 144: 9 604 410 192: 9 364 975
66: 4 478 114: 4 468 146: | 10 867 629 194: | 10 659 863
68: 6 332 116: 6 063 148: | 12 469 092 196: | 12 163 298
70: 8 149 118: 8 148 150: | 14 059 173 198: | 13 809 901
72: | 11 190 120: | 10 774 152: | 16 066 024 200: | 15 655672
74: | 14 246 122: | 13 977 154: | 18 060 973 202: | 17 749 388
76: | 19 151 124: | 18 769 156: | 20 558 765 204: | 20 070 486
78: | 24 109 126: | 23 589 158: | 23 037 593 206: | 22 606 939
80: | 31 924 128: | 30 683 160: | 26 142 839 208: | 25 536 557
82: | 39 718 130: | 39 393 162: | 29 202 540 210: | 28 700 677
84: | 51 592 132: | 49 878 164: | 33 022 572 212: | 32 230 861
86: | 63 761 134: | 62 372 166: | 36 798 430 214: | 36 173 081
88: | 81 738 136: | 79 362 168: | 41 478 338
90: | 99 918 138: | 98 541 170: | 46 088 148

Table 1: Numbers of fullerenes and IPR-fullerenes with corresponding num-
bers of fullerenes and IPR-fullerenes in one row. A stands for the number
of vertices, B for the number of fullerenes and C for the number of IPR-
fullerenes.
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The method extends easily to fullerene-like molecular cages or patches
which include quadrangles and /or triangles and it can also be applied (though
not that easily) to handle also those cages which include heptagons etc. [19]
as well as to 4-regular planar graphs or even some types of regular graphs of
higher genus, and to further related problems (cf. [5]).

To summarise: Given any fullerene structure, that structure can be bro-
ken up more or less canonically into two or three convex fullerene patches
in several, yet not too many distinct ways, lists of possible patches can be
generated recursively quite easily by solving the associated PentHex Puzzles,
and the given — as well as any other such — structure can thus be found
by gluing together appropriate pairs and triples of patches in all legitimate
ways.

This is surely not a standard way of applying the Divide& Conquer prin-
ciple which is generally used to find one structure, map (or whatever) out
of a virtually very large list of such structures, maps (or whatever) rather
than to create such a list; yet, it has proven to be an amazingly efficient
application of that principle, speeding up the enumeration process by quite
a few orders of magnitude compared with competing solutions — and adding
reliability regarding the completeness of the lists of obtained structures as an
extra bonus.

3 A Fast and Reliable Method for Simulta-
neous Multiple Sequence Alignment

3.1 The Alignment Problem

Our second example is a new algorithm for producing close to optimal solu-
tions of the multiple sequence alignment problem, called the Divide& Conquer
Alignment algorithm (DCA, [41]). Multiple sequence alignment is a well-
studied but still not satisfactorily solved problem in string processing hav-
ing its most important application in computational molecular biology. In-
deed, many important conclusions to be drawn from the sequence of residues
in a big biomolecule, that is, of amino acids in a given protein or that of
nucleotides in a given RNA or DNA molecule, depend crucially on com-
paring that sequence with other such sequences by means of appropriately
constructed alignments. For example, such alignments are used to detect
homologues among sequences in genome databases, to study phylogenetic
relationships, or to identify structurally or functionally important parts of
the molecule in question.
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Consequently, establishing fast and reliable tools for sequence alignment
is one of the most fundamental tasks in present day computational biology,
enjoying an abundance of publications and software contributions (see [32],
[8], or [49]).

The overall strategy one has to follow for producing reliable alignments
is quite obvious: by inserting gaps into the sequences one wants to align,
one tries to come up with sequences of equal length so that the sequence
entries at each site — that is, in each column when the (aligned) sequences
themselves are spelled out horizontally, one below the other — exhibit a bio-
logically meaningful diversity, possibly of not too large a degree, which can be
interpreted in a coherent way. For example, one may head for a phylogenetic
interpretation implying that the sequence entries at a given site have evolved
from a common ancestor entry, or for a structural interpretation implying
that the aligned residues are placed at similar locations within the folded
molecule.

Consequently, because it is the similarity of sequence patterns which is
supposed to signal phylogenetic and/or structural kinship between the se-
quences, the aim of sequence-alignment procedures is to mazimize overall
similarity. Thus, all that is required is

e specifying in a quantifiable way the term overall similarity, and

e constructing algorithms which produce alignments which maximize that
overall similarity or, if this turns out to be too time consuming, at least
exhibit a rather high degree of that similarity.

While the first task needs input from biology as well as from mathemati-
cal modelling, the second task is a purely mathematical one. Unfortunately,
many ideas relating to the first task cannot be tested, and important struc-
tural parameters suggested by these ideas cannot be evaluated easily unless
the second task has been dealt with appropriately.

To tackle that second task, the starting point is clearly to find good
methods for aligning two sequences — that is, for pairwise alignment — and
algorithms for solving this problem were developed successfully already a
quarter of a century ago ([33], [48]). These algorithms follow the well-known
dynamic programming method. However, their natural and straightforward
generalizations to three or more sequences (together with the natural exten-
sion of quantifying overall similarity in terms of the so-called sum-of-pairs
score, see below) quickly run into prohibitive memory and time constraints
as number or length of sequences increase. Therefore, almost all techniques
for aligning larger sets of sequences are based on first performing a series
of pairwise alignments (using, if necessary, appropriate adaptations of the
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standard algorithm aligning profiles of sequences rather than sequences) and
then constructing a multiple alignment in a “hill-climbing” manner (see for
example [11], [30] for reviews). However, these methods (e.g. CLUSTAL [45],
DFALIGN [16], GENALIGN [27], MULTAL [44]) though fast, can be used
with some reservation only for the following two reasons: they easily run
into local, but not necessarily global optima —, a risk, which is inherent in
any hill-climbing method — and they often do not even accept a well-defined
optimality criterion for multiple sequence alignment.

In order to circumvent these problems, one just has to stick to the origi-
nal task of trying to construct high quality simultaneous alignments. In the
late eighties, significant progress with this technique was made by H. CAR-
RILLO and D.J. LIPMAN [7]: it became possible to align simultaneously and
optimally up to between six and eight protein sequences (of medium length
and comparatively high pairwise similarity) in some minutes. To this end,
the (high-dimensional) search space used in the standard dynamic program-
ming approach was reduced efficiently by some branch & bound procedure
based on considering projections of precalculated heuristic alignments onto
the (two-dimensional) “boundaries” of that space. Yet, even when imple-
menting this idea using highly sophisticated implementation techniques, the
resulting program, called MSA, often requires more time and/or memory space
than available when ever it has to deal with larger data sets [18].

Hence, for dealing with such cases, a new procedure was proposed which is
based on a simple but amazingly efficient application of the Divide& Conquer
principle dubbed DCA, the Divide & Conquer Alignment algorithm ([15], [46],
43))

The general idea of DCA is rather simple: Fach of the sequences is cut
in two by cutting it just behind a suitable slicing site somewhere close to its
midpoint. This way, the problem of aligning one family of (long) sequences is
divided into the two problems of aligning two families of (shorter) sequences,
the prefix and the suffix sequences. This procedure is re-iterated until the
sequences are sufficiently short so that they can be aligned optimally by MSA.
Finally, the resulting short alignments are concatenated, yielding a multiple
alignment of the original sequences.

Of course, the main difficulty with this approach is how to identify those
slicing-site combinations which lead to an optimal or — at least — close to opti-
mal concatenated alignment. Here, a heuristic based on so-called secondary-
charge matrices which are used for quantifying the compatibility of slicing
sites in distinct sequences proved to be successful. Several ways of speeding
up the search for these slicing sites are possible some of which are imple-
mented already. They also will be discussed below.
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3.2 A Formal Set-Up: The Weighted Sum of Pairs
Score for Multiple Sequence Alignment
Next, we define multiple alignments formally, and we describe the basic prin-

ciples of evaluating quantitatively the quality of a given multiple alignment

(for further reference see [11], [39], and [49]).

Suppose that we are given a family S = (sy,...,s;) of k sequences:
51 = S11812---S51n,
Sk = Skl Sk2--.-Skn,

where each sequence entry s;; represents a letter from a given finite alphabet
A. An alignment of the sequences S is a matrix M = (my;)1<i<ki<j<n Where

e m;; € AU {—}, with ‘=" denoting the gap letter supposed not to be
contained in A,

e the rows my; := myy...myny of M considered as sequences of symbols
from AU {—}, reproduce the sequences s; upon elimination of the gap
letters (1 <1 < k),

e the matrix M has no column, only containing gaps.

For example, one alignment of S = {s;,s,} with s; = GTATGCCG and s, =
GTGTCGG is given by the matrix

__ /(GTATG CCG-—
M = (GTGT——CG G)’

and another one is given by

,_(GTATGCC—G
M= (G——TGTCGG)'

We denote the set of all alignments of S by Mg. Assume that we are
given a pairwise distance

d: (AU{-1)? >R

(the distances given e.g. by a substitution cost matrix (cf. [10]) with appro-
priately chosen gap penalties' d(a,—) for all @ € A). For each pair of rows

!More sophisticated gap-penalty functions are in use, e.g. the so-called affine gap
penalty function, which works for pairwise as well as for multiple sequence alignment

(1, [17].
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m,, m, in an alignment M € Mg, define

N
Winym, 1= Z d(mopi, My ),
=1

and denote by w,y(s,,s,) the minimum of W, m,, taken over all alignments
M.

The weighted sum of pairs score for an alignment M € Mg relative to a
given family of (generally non-negative) weight parameters o, , (1 < p < ¢ <

k) is defined by
wM):= > g Wmpm,
1<p<g<k
The multiple alignment problem that we aim to solve is to search for matrices
M € Mg whose weighted sum of pairs score w(M) is small.

The logic for introducing the weight parameters o, (from which proce-
dures for choosing them appropriately are to be deduced) is the following
one: In general, any set of related biological sequences contains some se-
quences which are more closely related to one another than to the remain-
ing ones, and highlighting their similarity might often be more important
than forcing them to independently conform to the patterns of the other
sequences. On the other hand, as almost any sample of sequences is biased
in one way or the other (even, most probably, the sample provided by Na-
ture itself), a perhaps overrepresented subset of highly similar sequences in
a data set should not be allowed through its sheer size to force all the other
sequences to conform to its patterns. Both goals, highlighting similarity be-
tween closely related sequences and discounting overrepresentation of certain
subclasses of sequences can (hopefully) be achieved by choosing appropriate
weight factors,— one might even consider using homology-dependent distance
scores for each given pair of sequences.

As mentioned above, optimizing w(M) can be solved in principle by
straightforward dynamic programming (cf. [33], [39]). However, this is pos-
sible only in theory at present: in practice, the space and time requirements
for dynamic programming, even in its most sophisticated forms, make it vir-
tually impossible to deal with, say, five not highly homologous sequences of
length approximately 1000. However, such tasks present themselves easily
when dealing with problems from biological sequence analysis.

3.3 The Divide&Conquer Approach

How does the DCA procedure attack this problem? As mentioned already
above, given a family of sequences sy, ..., s; of length ny, ... ng, respectively,
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Figure 4: Schematic representation of the divide and conquer method.

each of these sequences is to be cut just behind an appropriately chosen
slicing site somewhere near to its midpoint. This way, the original alignment
problem is reduced to the two subproblems of aligning the two resulting
families of prefix and suffix subsequences, respectively. These will be handled
by the same procedure in a recursive manner (cf. Fig. 4). The recursion stops
whenever all subsequences in a resulting subsequence family have length not
exceeding a pregiven upper bound L. Those subsequence families are then
aligned by MSA [24], [18], and the resulting alignments are concatenated.
The main problem is to find a k-tuple of optimalslicing sites (¢1, 2, ..., k)
(with 0 < ¢, < n, for p=1,...,k) so that the simple concatenation of the
two optimal alignments of the prefix sequences s1(< ¢1),82(< ¢2), ..., 86 (< )
and the suffix sequences s1(> ¢1),82(> ¢2),..., sp(> ¢) forms an optimal
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alignment of the original sequences?.

Obviously, for any fixed site é; (0 < é; < ny), there exists a (k — 1)-tuple
of slicing sites (¢a(é1),...,¢x(¢1)), such that (é1,¢2(¢1),...,cx(ér)) forms an
optimal k-tuple. Unfortunately, finding exactly these sites requires approx-
imately as much time as solving the original optimization problem directly.
So, of course, this is not the method of choice.

Instead, we aim to find slicing sites which can be computed in terms of
pairwise sequence comparisons, only. More precisely, we use the dynamic
programming procedure to compute, for all pairs of sequences (s,,s,), and
for all slicing sites ¢, of s, and ¢, of s, the secondary charge Cs, s [cp, ]

defined by

Cspvsq[cpch] 1= Wopt(8p( <€), 80(< ¢g) ) FwWope(8p(> €5),84(> ¢4) ) —wopt(Sy, 84)

which quantifies the additional charge imposed by forcing the alignment of
s, and s, to optimally align s,(< ¢,) and s,(< ¢,) as well as s,(> ¢,) and
s,(> ¢,), rather than aligning s, and s, optimally (cf. Fig. 5). The calculation
of the matrices (s s, can be performed by computing forward and reverse
matrices in a similar way as described in [21], [31], [47]. Note that there
exists, for every fixed ¢é,, at least one vertex ¢,(¢é,) with Cs, s [¢p, ¢(é5)] = 0
which can be computed easily from any optimal pairwise alignment of s, and
s,. The problem multiple alignments have to face is that ¢, (¢,(¢1)) might
not coincide with ¢, (¢1), that is, that given pairwise optimal alignments may
be incompatible with each other - much in analogy to frustrated systems
considered in statistical physics.

To search for good k-tuples of slicing sites, we define the multiple ad-
ditional charge C(c,...,cx) imposed by slicing the sequences at any given
k-tuple of slicing sites (e1,...,¢x) as a weighted sum of secondary charges
over all projections (¢,, ¢ ), that is, we put

Cler,eay.n,0p) = Z ozp7q-Csp7sq[cp,cq],
1<p<g<k

where the o, , are the same sequence-dependent weight factors as above.

Our proposition is now that using as the preferred slicing-site combina-
tions those C-optimal k-tuples that minimize — for a given fixed slicing site ¢,
of s; — the value C(éy, ¢a, ..., c;) over all slicing sites ca, ..., ¢ of sq,..., sy,
respectively, will result in very good, if not optimal multiple alignments be-
cause, this way, the mutual frustration is distributed as fairly as possible.

“Here, s,(< ¢p) denotes the prefix subsequence of s, with indices running from 1 to ¢,
and s, (> ¢p) denotes the suffix subsequence of s, with indices running from ¢, + 1 to n,,
1<p<k.

21



Figure 5: The definition of secondary charges: White boxes present an op-
timal alignment M of the sequences s and t, shaded boxes present the con-
catenation of an optimal alignment M; of the two prefix and an optimal

alignment M, of the two suffix sequences defined by the slicing sites (1, j).
Cst is then defined by w(My) + w(Mz) — w(M).

In conclusion, this leads to the following general procedure:

Algorithm DCA(sy,sq,...,8;, L)

If minegqo, minit <L
then return the optimal alignment of sy, s3,...,s; (using e.g. MSA);
else return the concatenation of
DCA(s1(< e1),82(< e2), .o usi(Sep), L)
and DCA(s1(> ¢1),82(> ¢a),. .., 8k(> ¢x), L);

where (c1,c¢a,...,¢x) = cale-cut(sy,82,...,Sk).

In the following section, we describe how to realize the subroutine calc-cut
which computes a k-tuple of C-optimal slicing sites.
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3.4 Efficiently Calculating the Slicing Sites

In a naive implementation, the search calc-cut for C-optimal slicing sites
(e1,¢2,...,cx) needs time O(k*n? +n*~1), where n is the length of the longest
of the sequences sq,83,...,8;: the computation of all pairwise secondary
matrices takes O(k*n?) time and, for given ¢;, all possible combinations of
o, ..., have to be checked to find the tuple that minimizes C' in altogether
O(n*~1) single steps.

We reduce this running time and the required memory (which is of order
O(k*n?) for the naive version) by first precalculating an estimate C for

Copt(C1581, ..., 8) 1= crfmrclk C(é1, ¢y, Ck).

This allows us to prune the search space enormously: Because the multiple
additional cost C'(éq,ca,...,cx) is defined as a sum of non-negative numbers,
it is possible to exclude any tuple of slicing sites (é1, ¢z, . . ., ¢x), whenever one
of the summands is larger than the minimum C found so far. In particular,
for fixed ¢1, no ¢, with ay - Cs s, [¢1,¢q] > C' can ever lead to a smaller sum
C.

With this in mind, a C-optimal tuple of slicing sites can be calculated as

follows (cf. Fig. 6):

Function cale-cut (sq1,82,...,8;)
1. Reorder sq,ss,...,s; so that s; is the longest of all sequences in ques-
tion.

2. Fix ¢y := [3];
3. calculate and save rows row%q[j] = C s,l61,5] 2< <k 1< 7 <ny);

4. locate slicing sites é; 1= é2(é1), ..., ¢ := ¢x(¢é1) such that row%q [¢] =0
(2<q<k);

5. calculate the estimate®

~

Ci= Y apy - Css, g = D apg-Cs,s,6n084),

1<p<g<k 2<p<q<k
3Some additional approaches have been developed which work by using (¢1, éa, . . ., ¢x)
as the starting points and then sucessively minimize C(éq,ca,...,c;) over some ¢; (i €

{2,...,n}) while keeping the other slicing sites ¢; (j # ¢) fixed. This leads to significantly
smaller estimates for C' than the one described above [35].
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Figure 6: Computing relevant regions of the secondary charge matrices and
the estimate C'.

6. Calculate lower and upper bounds [, and u, such that oqu-row%q [7] > C
for all j < [, and for all j > u, (2 < g < k). The intermediate segment
rowy',[lg], . .., rowy [u,] forms the relevant part of each row rowt,.

. Given these bounds, compute and save the relevant parts of the matri-
ces Cs, s, defined by Cs, s [, ¢, with [, < ¢, <y and [, < ¢p < uy.

. Search for better slicing-site combinations (¢4, ¢a, . . ., ¢x) within the rel-
evant parts of the rows row%q and the matrices (s, s,. Thereby, the
sum ' can be computed step by step and the search can be stopped,
if an intermediate result is larger than C.

During this final search, better values for C may be obtained, too, so

that, with decreasing Values of C, the relevant part of the rows row!! L, can

p0881b1y be further reduced, diminishing the search space even more.
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Obviously, the worst case time and space complexity of this approach
still remains of the order of O(k*n* + n*~1) and O(k*n?), respectively, for
the (very improbable) case that the bounds [; and u; can never be increased or
decreased, respectively. But for biological sequences, the effect is enormous:
For calculating the first tuple of slicing sites in the recursion (which takes far
the longest time of all slicing-site computations) replacing n by the length
r:=maxp=2  r{t, — [, + 1} of the longest of the remaining relevant parts of
the rows, usually results in a reduction of at least two orders of magnitude per
sequence (for small k), yielding memory savings for the matrices by several
orders of magnitude and reducing the expected time and space complexity

to O(k*n? + r*=1) and O(kn + k*r?), respectively (cf. [42]).

3.5 Further Improvements

To speed up the procedure for still larger k£, an additional preprocessing
step can be used: To determine, say, the slicing site ¢; of si, the optimal
additional charge of any subfamily s} := s;,s),...,s. of our sequences not
including sequence s; can be used to compute a better estimate for those
values of Cg, s, [¢1,¢x] which need further consideration: Clearly, for every
slicing site ¢ of s; we have

AL / A A
Copt(C158), .. .,sh) +arp - Cs, 561, 1] < Clér, e, .., ¢)
for all possible slicing sites cg,...,cx_1 of 89,...,8;_1. Hence, we can exclude
a slicing site ¢; from further consideration if for some such family s},s5, ..., s’
and some upper bound C of C,,(¢é1581,...,8;), we have
~ -~ A 1 /
aq k- Csl,sk [Cla Ck] Z C - Copt(cl; Siyee ey SH)7
as this implies C' < C(¢éq, ¢q, . .., ¢i) for all slicing sites ¢z, . .., cp_q Of S2,.. ., 851
(cf. Fig. 7).

3

Using this principle to its fullest extent would require computing 3 = (2)

times the optimal slicing sites for three sequences in case of altogether four
sequences, 6 = (3) times the optimal slicing sites for three and — based on

that — 4 = (g) times the optimal slicing sites for four sequences in case of
altogether five sequences, and so on. Hence, for k sequences,

kE—1 kE—1 E—1
k=1 _ 1
o= () () s ()

additional optimal slicing-site combinations for 3,4, ..., k—1 sequences would
have to be computed. Clearly, this would always be worth the trouble if the
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Figure 7: Computing the optimal additional charge C,,:(¢é1;81,82,84) of the
subfamily (s1,s2,84), useful for excluding slicing sites ¢35 of s3 with ay3 -
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average rate a by which — at each step — the average length a of the relevant
part of each sequence in question is reduced, is just (a — 1)/a: indeed, if
a < (a—1)/a, then

=2 e — 1
S

=2

(o - a)i <14 a- a)k_l < a1t
i

In addition, computing the optimal slicing-site combination ¢4, ..., ¢, for
!

a fixed slicing site ¢; of s; and any given sequence family s} := sy,s),...,s]

may also help to improve the estimates C' for Copi(é158,, ..., s}, s, ) for each

new sequence s, ; in view of

K
ALt P At ’ .
Copt(C1587, ... 80,8l 1) < Cop(érssh, oo s+ pt1Csp s [Cp, Cpt]
p=1

26



Figure 8: Typical form of an secondary charge matrix. Light boxes denote
low values, dark boxes denote high values.

for each slicing site c.1y of s] ;.

And finally, the variety of optimal slicing sites coming up in such a com-
putation may also be useful for evaluating the rate of mutual frustration as
well as the reliability and the quality of the slicing sites finally chosen and of
the alignment(s) resulting from that choice.

A different approach to the time problem (which can, of course, be com-
bined with the one outlined just above) is motivated by the regular shape of
the matrices Cs, s, (cf. Fig. 8). It utilizes the observation that the entries in a
row of a secondary charge matrix from left to right generally start with rather
high values, decrease almost monotonically for a long time, reach the value
zero at the slicing site corresponding to an optimal pairwise alignment, and
then increase almost monotonically again to high values. Thus, for each row
2, [, <1 <y, of the secondary charge C, s,, we can define lower and upper

monotony bounds L, s [1] and Us, s [1], given by the formulae (cf. Fig. 9):

Lspysq[i] = mln{] S {lq —I_ 17 e 7uq} | Cspysq[i%j] > Cspysq[i%j - 1] }7
Uspysq[i] = ma‘X{j S {lpv . '7up - 1} | Cspysq[i%j] > Cspysq[i%j —I_ 1] }7
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spl

Figure 9: A secondary charge matrix with monotony bounds L, s, (solid

line) and U, (dotted line).

Sp,Sq

When determining the ¢-th slicing site ¢,, 2 < ¢ < k, for already fixed
sites €1, €z, . .., Cq—1, any value of the ¢,-th row in the matrix Cs, s,, 1 < p < ¢,
leading to a sum

¢ = Z Qpp' - Cspsp/ [Cp, ] + Z g Csys,[Cp, €4

1<p<p’<yq 1<p<yq

larger than C', with ¢q < Mili<peq Ls,s,[6p], thus gives a sum larger than C
for every ¢, < ¢,. A corresponding statement holds for U.

With this approach, we were able to speed up DCA by a factor of 2. For
more than 8 sequences, the improvement was even better: it is possible to
align up to twelve sufficiently related sequences (e.g. the homology family of a
protein) in rather moderate time spans (often just a few seconds, sometimes
some minutes).

An addition to be tested soon is to compute, for each row ¢ (I, <17 < u,)

28



in U, s,

and each j between Lg g [1] and U,

sp.sqlt) the values

li’]g := min{ Csp,sq[i,jl] |1, <j' <3}

and

W = mind Cy o i, 7] 11 < ' < )
and to stop going left (or right) with ¢, whenever an appropriate sum includ-
P
7,70
the given bound. On the expense of some more storage requirements, it can
be hoped that again a considerable speed-up will be achieved this way.

ing oy - 77 (or ap g - ull, respectively) rather than a,, - Cs, s, [7, 7] exceeds

3.6 Performance of DCA

We have tested DCA thoroughly, using families of related random sequences
as well as real biological data. The following are the main results of the
evaluation:

e The memory usage of DCA is in the magnitude required for standard
pairwise alignments (about 30 megabytes for twelve sequences of av-
erage length 250 — and just 16 times that much for an average length
1000) (cf. [46], [42]).

e Compared to previous simultaneous alignment methods, the program
is very fast (about 40 seconds for twelve sequences of average length
250) (cf. [43]). Applied to the sequences used by GUPTA et al. [1§]
to evaluate the improved version 2.0 of MSA, we found that — while
the alignment quality was basically unchanged — the speed-up factor of
DCA relative to MSA ranged from 15 to 1500, while the memory usage
of DCA is two to twenty times lower than that of MSA. These improve-
ments — though quite satisfying, if not spectacular — are of course not
of much importance when it comes to aligning sequence families which
could also be aligned with MSA. After all, having worked for several
weeks or even months to sequence some biomolecules, biologists will
not care much whether their data can be processed finally in a few sec-
onds rather than in a few minutes or hours. Yet, the improvements are
of considerable importance when (i) the number or the lengths of the
sequences in question are too large to be manageable by MSA and/or
(17) various parameter sets need to be checked for the same sequence
family before a decision about the biologically most plausible alignment
and, simultaneously, the most plausible mode of evolution of the given
sequence family can be made (for a thorough discussion of that point

cf. [36]).
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e The alignments are of a very high quality, in mathematical (cf. [42]) as
well as in biological terms (cf. [20], [36], [43]). For none of the anal-
ysed random sequence families for which the optimal score could be
computed using MSA, the sum-of-pairs score of the alignment computed
with DCA differs by more than 0.3 percent from the optimal score.
Applied to biological sequences, DCA can compete with the best align-
ment methods currently available.

e Due to the simultaneity, the computed alignments are also suited very
well as an unbiased starting point for the reconstruction of evolutionary
relationships (cf. [34]).

e Because DCA approximates the optimal score very closely, new ways of
testing and validating alternative choices for multiple alignment score
functions are possible.

e Due to the stable interdependence of the parameters of DCA and its
performance, the behavior of the program is transparent to the user.

To summarize, we have shown that — although the multiple sequence align-
ment problem has been a much studied subject over the last decades — the
systematic application of the well-known Divide&Conquer principle opens
the way to a new, efficient, and effective simultaneous multiple sequence
alignment algorithm.

4 A Concluding Remark

When being confronted with the two problems from the molecular sciences
discussed above, we had originally of course no intention of looking specifi-
cally for a way to apply the Divide&Conquer principle for solving them; we
just wanted to solve them somehow. And actually, it took quite a while be-
fore the ideas presented above “crystallised”, and it became clear that some
sort of a Divide&Conquer strategy could be applied successfully in both in-
stances.

This is to say — as stated already in the introduction — that in general,
there is no canonical, routine way of solving complex problems by applying
the Divide& Conquer principle, and that the best way to tackle such problems
is still to get deeply involved with them trying to find just the best and the
most natural way to deal with them (which may or may not involve the
Divide&Conquer principle) rather than hoping for a preconceived machinery
to be applicable independently of the particular nature of the problem in
question.
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Yet, we do hope that the ideas presented above may inspire further ap-
plications of well worked out principles of algorithmic architectures in the
molecular sciences. An example of such an application for the computation
of the matching polynomial is given in [4].

Finally, it should be noted that while the above two algorithms are still
quite conventional in that they are to be performed either by hand or, better,
by a computer and not by the molecules themselves these algorithms are de-
signed to analyse, it is not just a presently very fashionable and fund-raising
idea to consider the molecular processes themselves from an algorithmic point
of view — that is, as processes which actually perform more or less well-defined
computations. Indeed, what we see happening presently in the molecular sci-
ences is a continuously increasing intermingling of “wet” experimental and
“dry” algorithmic approaches, each being used to drastically enhance and
partly control the efficiency of the other, and we, the Mathematical Pro-
gramming community, should better be aware of (a) the enormous potential
expansion of the applicability of ideas relating traditionally to mathemati-
cal computer programming and (b) the changes that this new development
will require and bring about. This is evidenced for instance very clearly by
the newly emerging field of combinatorial chemistry where Divide& Conquer
strategies are implemented experimentally right at the heart of even the most
basic experimental set-up.

Added in proof: Remarkably, a good survey of these novel techniques
appeared just in time in the April 97 issue of the Scientific American (cf.

37).
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