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Two Applications of the Divide&ConquerPrinciple in the Molecular SciencesG. Brinkmann, A.W.M. Dress, S.W. Perrey, J. StoyeAbstractIn this note, two problems from the molecular sciences are ad-dressed: the enumeration of fullerene-type isomers and the alignmentof biosequences. We report on two algorithms dealing with these prob-lems both of which are based on the well-known and widely used Di-vide&Conquer principle. In other words, our algorithms attack theoriginal problems by associating with them an appropriate number ofmuch simpler problems whose solutions can be \glued together" toyield solutions of the original, rather complex tasks. The considerableimprovements achieved this way exemplify that the present day molec-ular sciences o�er many worthwhile opportunities for the e�ective useof fundamental algorithmic principles and architectures.
3



1 IntroductionOne of the most powerful principles for solving complex tasks algorithmicallyis the so-called Divide&Conquer Principle. It has been applied successfullyfor an amazingly wide range of problems, from combinatorial optimization tomatrix multiplication. Its principal idea is to break up a given complex taskT appropriately into a reasonable number of less complex tasks T1; : : : ; Tkso that, by \gluing together" appropriately solutions of those less complextasks, some or even all solutions of the original complex task T can be found.Whatever problem the original task were to address, it is often possibleto rephrase it as a task to search for certain maps f 2 Y X from a (generally)large set X into a (generally) much smaller set Y , that is, for maps f :X ! Y which exhibit a number of very particular, well-speci�ed properties.A Divide&Conquer strategy then can be applied for such a search problemwhenever it is possible to break up the set X into subsets X1; : : : ;Xk (which,of course, may { and in most cases will { be overlapping) and to de�nespeci�c properties regarding maps fi from the Xi into Y so that (a) it iscomparatively easy to �nd (some or all) maps fi : Xi ! Y with the desiredproperties and (b) it is possible to construct (some or all) maps f : X ! Yfrom (appropriate) k-tuples of maps (f1; : : : ; fk) by concatenation, that is,by putting f(x) := fi(x)whenever x 2 Xi, { provided this is well-de�ned, that is, provided x 2 Xi\Xjimplies fi(x) = fj(x) for all i; j 2 f1; 2; : : : ; kg:For instance, if we try to �nd a map f : X ! Y := f�1g such that,for some pregiven matrix C = (cij)i;j2X of real numbers, the value of thequadratic function C(f) := Xi;j2X cijf(i)f(j)is maximized, we may try to �nd overlapping subsets X1;X2 � X withX1 [X2 = X and with an intersection Z := X1 \X2 such that cij = cji = 0for all i 2 X1nZ and j 2 X2nZ in which case we havemax�C(f) : f 2 f�1gX� =max0@C1(f�) + C2(f�) + Xi;j2Z cijf�(i)f�(j) : f� 2 f�1gZ1Awhere for any f� 2 f�1gZ the values C1(f�) and C2(f�) are de�ned in termsof the following optimization problems: putc1ij := ( cij if i; j 2 X1 and fi; jg 6� Z0 if i; j 2 Z4



and c2ij := ( cij if i; j 2 X2 and fi; jg 6� Z0 if i; j 2 Zand de�ne C�(f�) (� = 1; 2) byC�(f�) := max0@ Xi;j2X� c�ijf��(i)f��(j)1Awhere f�� runs over all extensions of f� to X�, that is, over all maps from X�into f�1g with f��jZ = f�.While this gives a handle to actually solve the original optimization prob-lem exactly provided that can be done with the three resulting smaller prob-lems, it for sure reduces the original search space of cardinality 2#X to asearch space of cardinality 2#Z where for each point in that small searchspace two search spaces of cardinality 2#(X1nZ) and 2#(X2nZ), respectively,need to be investigated separately so that altogether the trivial upper bound2#X for the time complexity of the original problem can be replaced by thenumber 2#Z(2#(X1nZ) + 2#(X2nZ)) = 2#X1 + 2#X2 of all points in the total\�bred" search space[f�2f�1gZ �nf�1 2 f�1gX1 : f�1 jZ = f�o [ nf�2 2 f�1gX2 : f�2 jZ = f�o� :Yet, even if the three smaller problems cannot be solved exactly, searchingheuristically for maps f� : Z ! f�1gwith a large value ofPi;j2Z cijf�(i)f�(j)and then extending them heuristically to maps f�� : X� ! Y with large valuesof Xi;j2X� c�ijf��(i)f��(j)might lead to good, if not optimal solutions of the original problem (and thisapplies even if the matrix entries cij with fi; jg 6� X1 and fi; jg 6� X2 arevery small compared to the other ones but not necessarily equal to 0).Clearly, this idea is the starting point for many dynamic programmingsolutions of complex problems, e.g. the spin-glass optimization problem orthe (closely related) so-called small parsimonious tree problem (cf. [12], [13],[14]).Analysing the idea a bit more systematically suggests to look for a goodconcept of embedding complexity, that is a concept which measures how in-tricately a given set S = S(X ) is embedded into a large product set Qi2X Yi {with a generally large index set X and generally small Yi { by a family ofmaps pi : S ! Yi (i 2 X ) or, more precisely, how easily the image S(X )5



of the set S can be described in terms of its projections S(X 0) onto smallerproduct sets Qi2X 0 Yi where X 0 runs through appropriate { and hopefully quitesmall { subsets of X .In the above example, a natural choice isX = X (X;C) := f(i; j) 2 X2 : cij 6= 0gfor the index set X and Y(i;j) := f�1gfi;jgfor the individual factor sets Y(i;j) ( (i; j) 2 X ) into which the search spaceS := f�1gX is projected via restriction byp(i;j) : S ! Y(i;j) : f 7! f jfi;jg:Clearly, de�ning weight functionsw(i;j) : Y(i;j) ! Rby w(i;j)(g) := cijg(i)g(j) (g 2 Y(i;j))on every factor set Y(i;j), the quadratic function C(f) can now be expressed\linearly" as a simple sum X(i;j)2X w(i;j) �p(i;j)(f)�of the weights of its projections and could be maximized by independentmaximization in each component if the image S(X ) of S would coincide withthe full product set Q(i;j)2X Y(i;j). Yet, even if this ideal situation is notprovided by the given data, the above assumption cij = 0 unless fi; jg � X1or fi; jg � X2 implies that an element �g(i;j)�(i;j)2X from Q(i;j)2X Y(i;j) is inS(X ) if and only if its two projections onto Q(i;j)2X1 Y(i;j) and Q(i;j)2X2 Y(i;j){ with X� := X (X�; CjX��X�) = f(i; j) 2 X : fi; jg � X�g (� = 1; 2) { bothare contained in the correspondingly de�ned subsets S(X1) and S(X2). Andit is exactly this simple fact regarding the embedding of S = f�1gX intothe product Q(i;j)2X Y(i;j) on which the above proposal for reducing the givenoptimization problem to a family of considerably less complex problems isbased.Similarly and more generally, associating to any (simple) graph � =(V;E) with vertex set V and edge set E � fe � V : #e = 2g, the em-bedding of S := f�1gV into the product Qe2Ef�1ge given, as above, by6



restrictions pe : S ! f�1ge : f 7! f jfeg (e 2 E), one sees easily thatthe tree width of � can be invoked to provide a good measure for the com-plexity of that particular embedding and, hence, to provide means to solveproblems related to graphs by dynamic programming procedures based on aDivide&Conquer strategy or to evaluate the e�ciency of local optimizationprocedures.Yet, we will not delve deeper into the abyss of abstract combinatorialcomplexity theory here. Rather, as promised in the title of this contribu-tion, we will discuss two recent and rather successful applications of theDivide&Conquer principle in the molecular sciences { with the intention of(a) just demonstrating once more its wide range of applicability and intro-ducing new �elds of exploration and (b) of underlining the well-known factsthat (b1) it is rarely clear at the beginning how to break up e�ciently agiven complex task into manageable subtasks, and that there is no routineall-purpose procedure of doing this systematically, and that (b2) even if ane�cient way of doing this is anticipated, lots of additional e�orts are neededto make such an idea really work.The examples we want to discuss are the following two:� a procedure for fast and complete enumeration of fullerene structures(cf. [23]) and� an algorithm for fast and reliable simultaneous alignment of sizeablefamilies of biomolecular sequences.The �rst example will demonstrate how the Divide&Conquer principlecan be used to �nd e�ciently all solutions of a complex problem { that is,the problem of enumerating all fullerene isomers up to any given numberof Carbon atoms { by (a) �rst solving recursively a comparatively simpleproblem and (b) devising clever ways of gluing together appropriate pairsand triples of solutions of the simpler problem to �nd solutions of the originalproblem (and (c), of course, establishing beforehand theoretically that everysolution can be constructed that way). The resulting computer program hasalready found many important applications in Carbon chemistry.In the second example, the Divide&Conquer principle is used to generateheuristic (suboptimal) solutions for the task of aligning biomolecular RNA-,DNA-, or amino-acid sequences so that phylogenetically and/or structurallycorresponding sites in the individual sequences will be recognized by beingassembled in just one column provided the given sequences are spelled outhorizontally, one above the other. This is achieved by introducing gaps hereor there into these sequences so as to make up for apparent inconsistenciesbetween them (in particular to bring them all up to the same length), and to7



maximize overall similarity along the resulting columns. Sequence alignmentis a fundamental task in string processing, and it is performed as a dailyroutine around the world in all computer laboratories servicing the molecularbiosciences.2 Fullerene Structure EnumerationFullerenes were �rst observed on Wednesday, September 4th, 1985 in an ex-periment designed to explore the formation of molecules under conditionssimulating those of outer space (cf. [23]). Much to the surprise of the ex-perimenters, a clear signal was seen indicating a (relative) abundance ofmolecules consisting of exactly 60 Carbon atoms. Discussing this perplex-ing observation next morning, an exchange of serendipitous speculation ledto the stunningly simple and aesthetically pleasing hypothesis that the 60atoms in these molecules were arranged in a way reminiscent of the geodesicdomes designed by the world-famous architect R. Buckminster Fuller(1895 { 1983) in the twenties and thirties. More precisely, the hypothesisstated that the atoms were placed in pairs of two along the thirty edges ofan icosahedron, cutting each edge into three parts of equal length. This way,they would form a spherical cage structure { also called a truncated icosa-hedron { consisting of twenty regular hexagons (resulting from the twentytriangular faces of the icosahedron) and twelve equally regular pentagons(resulting from its twelve vertices) so that (a) each atom is shared by exactlythree of these polygons and (b) the pentagons are all isolated, that is, theynever share an atom. Remarkably, this structure is also identical with thepatchwork geometry that can be found on any of the present soccer ballswhich came in use when television started to broadcast soccer games.This speculation was supported by the fact that no such spherical cagestructure with isolated pentagons exists with less than 60 or with between61 or 69 atomic positions, while fullerene-type cages with any even numberof positions from 70 positions on do exist (cf. Table 1) { well in accordancewith the observation that no signals indicating the existence of moleculesconsisting of n Carbon atoms were discernible for any n between 61 and 69while C70 clusters did show up, though considerably less pronounced thanthe C60 ones.These observations mark a turning point in Carbon chemistry. Besidesdiamond and graphite, fullerenes now present a third form of molecular struc-ture consisting exclusively of Carbon atoms. It is expected that they willturn out to be of great commercial importance. At the moment tube-typefullerenes { that is, fullerenes with a long tubular body { are regarded as8



most promising concerning future industrial applications.In consequence, already eight years later, in 1993, the citation index deal-ing with publications in chemistry showed that the relevant paper [23] hadbeen quoted more than a thousand times and roughly ten times more thanthe next popular paper in chemistry, { and sure enough, a Nobel Prize wasawarded to the discoverers R.F. Curl, H.W. Kroto, and R.E. Smalleyin 1996.The observations led in particular to the problem of how to enumerateall such cage structures (including also those with non-isolated pentagons)so that, by energy calculations, the more plausible isomer structures couldbe singled out and investigated in a more systematic fashion. Consequently,methods for reliable and e�cient enumeration of fullerene cages quickly be-came a much discussed topic as is clearly documented by the beautiful Atlasof Fullerenes (cf. [28]) authored by P.W. Fowler and D.E. Manolopou-los (see also [3], [22], [25], [29], [38], and [40]).Adopting a purely combinatorial, graphtheoretical point of view, a ful-lerene isomer structure is de�ned to be a �nite planar 3-regular graph all ofwhose faces are exclusively hexagons or pentagons (cf. Fig. 1a). It followseasily from Euler's formula (in conjunction with standard book-keeping de-vices) that any such graph must contain exactly 12 pentagons and that thenumber n of its vertices and the number N of its hexagons are related by theformula n = 20 + 2 �N:Most of the procedures applied so far for fullerene enumeration use a bottom-up strategy: starting from a small subcon�guration, fullerene structures aregenerated by enlarging this subcon�guration stepwise in all conceivable ways(or in some particular ways assumed to be su�cient), e.g. by using one orthe other variant of the so-called spiral algorithm (cf. [28], [40], [3]). Thesemethods often meet prohibitive time constraints. So, quite a few implemen-tations try to reduce complexity by shortcuts which then endanger reliability.Hence, none of these methods which is fast enough to be applicable for morethan, say, 40 C-atoms can guarantee complete lists of fullerenes while thoseaccepting possibly incomplete lists cannot go much beyond 100 C-atoms.It may therefore be remarkable (cf. [6]) that a top-down Divide&Conquerstrategy allows to design an algorithm for fullerene enumeration which isabsolutely reliable { that is, it guarantees complete lists { and simultaneouslyamazingly e�cient: On an HP9000/735, a complete enumeration of e.g. allC60-structures (of which there are 1812) needs about 12 seconds: 6:5 secondsfor the generation of su�ciently many such structures and 5:5 seconds fortesting structural isomorphism. For fullerenes with about 100 atoms, the9



e e21Figure 1a: A Jordan curve Petrie path.program appears to be faster by more than three million times than previous(incomplete) ones.In that algorithm, the Divide&Conquer strategy is applied using Petriepaths (cf. [9]) to reduce the problem of enumerating all fullerene structureswith a given number of C-atoms to solving corresponding pairs or triplets ofPentHex Puzzles (cf. Fig. 1 and 2):A Petrie path in a fullerene is a sequence of edges e1; e2; : : : ; ek such thatany two consecutive edges ei; ei+1 (i = 1; : : : ; k�1) share precisely one vertex(and, hence, they also share one face because the graph is 3-regular), while noface is shared by any three consecutive edges ei; ei+1; ei+2 (i = 1; : : : ; k � 2).In other words, Petrie paths are zig-zag paths along the network of edgesprovided by a fullerene which, at each vertex they meet, turn right or leftalternatively.It is clear that for each pair e1; e2 of edges which share precisely one vertexand for each k � 2, there exists precisely one Petrie path e1; e2; : : : ; ek andthat starting with an arbitrary such pair e1; e2, there must exist a smallestk � 2 such that the end vertex of ek coincides with one of the verticeswhich have been met before. In Fig. 1, this vertex is indicated by a fullcircle. If this is the vertex of e where our Petrie path started and if ek�1; ek,and e1 do not share a face, we have a closed Jordan Petrie path which cutsour spherical fullerene structure into two hemispheres, both of which havea zig-zag boundary consisting of precisely k edges (see Fig. 1a). Otherwise,we may reverse our direction and follow the reverse Petrie path startingwith e2 and then continuing with e1; e0; e�1; : : : ; e�l until again, for somel � 0, we meet some vertex visited before (including, of course, the verticesof e1; e2; : : : ; ek), indicated by an open circle. In this case the total pathe�l; e�l+1; : : : ; e0; e1; : : : ; ek cuts our spherical fullerene structure in precisely10
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e2Figure 1b: A 'dumb-bell' Petrie path. Figure 1c: A 'sandwich' Petrie path.three patches, either of the form depicted in Fig. 1b or of that depicted inFig. 1c.In each case, the boundaries of these patches are again zig-zag paths(that is, the third edges emerging from the vertices along the boundary {those which are not followed by our path { alternatively stick out of and intothe patch) except for at most two localities in cases 2 and 3 { involving thevertices where our Petrie path met itself { where at least two consecutivevertices at the boundary have their third edge sticking out. Clearly, once weknow those (either two or three) whole patches, we can glue them togetherappropriately to regain our fullerene.It remains to describe how the structure of these patches can be (re-)constructed. This leads to the concept of PentHex Puzzles: A PentHexPuzzle is given by separating a given �nite set S of points { called boundaryvertices { on a circle into two disjoint subsets, say A and B. The associatedtask is to (re)create fullerene patches by �lling the disc inside the circle bya planar graph so that this graph contains the circle line, its vertices on thecircle line are precisely the points in S (that is, the boundary vertices), all ofits vertices except those in A have degree 3 while those in A have degree 2,and all of its faces are exclusively pentagons or hexagons. Invoking Euler'sformula again, one easily sees that the number of pentagonal faces in any suchpatch equals 6 + #B �#A { so, we must have #A�#B � 6. Obviously,any of the above patches is a solution of the PentHex Puzzle de�ned by itsboundary line, with A the set of vertices along the boundary where the thirdedge sticks out of and B those where it sticks into the patch. Moreover,the way our patches were constructed in terms of Petrie paths ensures thatonly convex PentHex Puzzles have to be solved, that is, those where no twoconsecutive vertices are in B.In cases like that depicted in Fig. 1a, that is if #A = #B, the structureof such a puzzle can be encoded by just one numberM (= #A = #B).11



Figure 2: The three patches { of type (0,9),(5,6) and (0,8), respectively {needed to construct the fullerene in Figure 1c relative to the marked Petriepath. Edges with both endpoints in A are marked by a thick line.
Figure 3a: Example. A puzzle with boundary sequence M = 9 (case #A =#B) is { after being �lled with one circle of hexagons { reduced to one withboundary sequence (M1 = 3;M2 = 4).If #A > #B, the edges with both incident vertices in A divide theboundary into j := #A � #B > 0 segments. In this case, the sequence(M1;M2; : : : ;Mj), denoting consecutively the numbers of vertices in B inthese segments, can be used to encode the structure of the puzzle (cf. Fig. 2).Fortunately, convex PentHex Puzzles can be solved quite easily becauseany solution can be dismantled recursively in a more or less canonical way,thus giving rise to a sequence of solutions of simpler convex PentHex Puzzlescontaining less and less B-type vertices: In case #A = #B =: M , anysolution starts with a number of inscribed hexagon circles, each of length Mand each reproducing the given puzzle in its interior (cf. Fig. 3a). Removingthese inscribed hexagon circles one by one, we'll �nally hit upon the �rstinscribed circle containing pentagons, too. Upon removing this circle next,we are left with a convex PentHex Puzzle of the second type, that is, aPentHex Puzzle of type (M1; : : : ;Mj) with j the number of pentagons in12
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        puzzleFigure 3b: Example. A puzzle with boundary sequence (M1; : : : ;Mj�1;Mj =5) is reduced to one with boundary sequence (M1�1; : : : ;Mj�1�1;Mj = 6).
start for coding the

    puzzle
start for coding the

    puzzleFigure 3c: Example. A puzzle with boundary sequence (M1; : : : ;Mj�1;Mj =4) is reduced to one with boundary sequence (M1; : : : ;Mj�1 � 1;Mj =3;Mj+1 = 1).that circle (and M = j +M1 + : : :+Mj). And in that second case, we canstart removing faces at an edge with both of its vertices in A and proceedeither to the next such edge (as indicated in Fig. 3b) or until we meet apentagon (Fig. 3c). Convexity guarantees that this will never interfere withother parts of the boundary of the given patch. This way, the PentHex Puzzlecan be reduced to one with a smaller number of B-type vertices. The inverseof the described reduction process can be used to construct all solutions ofconvex PentHex Puzzles with { in principle { any given number of hexagons,starting from a pentagon or a hexagon.Constructing all relevant patch structures in this way and taking lotsof care regarding the use of memory and the implementation of the gluingprocedure (using in particular a sophisticated lexicographic coding methodto also make sure that the resulting list of fullerene structures never containstwo structurally isomorphic copies, thereby taking orientation either intoaccount or neglecting it), we have computed all fullerene structures for up ton = 170 atoms, as well as for up to n = 214 atoms those special structureswhich obey the isolated pentagon rule (IPR) { that is, structures where everypentagon is surrounded by hexagons, only.Table 1 records the number of structures we have found. It seems remark-able that for n � 38 the number F (n) of all fullerene isomers with n atomsroughly coincides with the number FIPR(n+48) of all IPR-fullerene isomerswith n+48 atoms, and that for n divisible by 4 the di�erence between F (n)and F (n � 2) roughly coincides with the di�erence between F (n + 2) and13
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A B A C92: 126 409 140: 121 35494: 153 493 142: 151 20196: 191 839 144: 186 61198: 231 017 146: 225 245100: 285 914 148: 277 930102: 341 658 150: 335 569104: 419 013 152: 404 667106: 497 529 154: 489 646108: 604 217 156: 586 264110: 713 319 158: 697 720112: 860 161 160: 836 497114: 1 008 444 162: 989 495116: 1 207 119 164: 1 170 157118: 1 408 553 166: 1 382 953120: 1 674 171 168: 1 628 029122: 1 942 929 170: 1 902 265124: 2 295 721 172: 2 234 133126: 2 650 866 174: 2 601 868128: 3 114 236 176: 3 024 383130: 3 580 637 178: 3 516 365132: 4 182 071 180: 4 071 832134: 4 787 715 182: 4 690 880136: 5 566 948 184: 5 424 777138: 6 344 698 186: 6 229 550140: 7 341 204 188: 7 144 091142: 8 339 033 190: 8 187 581144: 9 604 410 192: 9 364 975146: 10 867 629 194: 10 659 863148: 12 469 092 196: 12 163 298150: 14 059 173 198: 13 809 901152: 16 066 024 200: 15 655 672154: 18 060 973 202: 17 749 388156: 20 558 765 204: 20 070 486158: 23 037 593 206: 22 606 939160: 26 142 839 208: 25 536 557162: 29 202 540 210: 28 700 677164: 33 022 572 212: 32 230 861166: 36 798 430 214: 36 173 081168: 41 478 338170: 46 088 148Table 1: Numbers of fullerenes and IPR-fullerenes with corresponding num-bers of fullerenes and IPR-fullerenes in one row. A stands for the numberof vertices, B for the number of fullerenes and C for the number of IPR-fullerenes. 14



F (n).The method extends easily to fullerene-like molecular cages or patcheswhich include quadrangles and/or triangles and it can also be applied (thoughnot that easily) to handle also those cages which include heptagons etc. [19]as well as to 4-regular planar graphs or even some types of regular graphs ofhigher genus, and to further related problems (cf. [5]).To summarise: Given any fullerene structure, that structure can be bro-ken up more or less canonically into two or three convex fullerene patchesin several, yet not too many distinct ways, lists of possible patches can begenerated recursively quite easily by solving the associated PentHex Puzzles,and the given { as well as any other such { structure can thus be foundby gluing together appropriate pairs and triples of patches in all legitimateways.This is surely not a standard way of applying the Divide&Conquer prin-ciple which is generally used to �nd one structure, map (or whatever) outof a virtually very large list of such structures, maps (or whatever) ratherthan to create such a list; yet, it has proven to be an amazingly e�cientapplication of that principle, speeding up the enumeration process by quitea few orders of magnitude compared with competing solutions { and addingreliability regarding the completeness of the lists of obtained structures as anextra bonus.3 A Fast and Reliable Method for Simulta-neous Multiple Sequence Alignment3.1 The Alignment ProblemOur second example is a new algorithm for producing close to optimal solu-tions of the multiple sequence alignment problem, called theDivide&ConquerAlignment algorithm (DCA, [41]). Multiple sequence alignment is a well-studied but still not satisfactorily solved problem in string processing hav-ing its most important application in computational molecular biology. In-deed, many important conclusions to be drawn from the sequence of residuesin a big biomolecule, that is, of amino acids in a given protein or that ofnucleotides in a given RNA or DNA molecule, depend crucially on com-paring that sequence with other such sequences by means of appropriatelyconstructed alignments. For example, such alignments are used to detecthomologues among sequences in genome databases, to study phylogeneticrelationships, or to identify structurally or functionally important parts ofthe molecule in question. 15



Consequently, establishing fast and reliable tools for sequence alignmentis one of the most fundamental tasks in present day computational biology,enjoying an abundance of publications and software contributions (see [32],[8], or [49]).The overall strategy one has to follow for producing reliable alignmentsis quite obvious: by inserting gaps into the sequences one wants to align,one tries to come up with sequences of equal length so that the sequenceentries at each site { that is, in each column when the (aligned) sequencesthemselves are spelled out horizontally, one below the other { exhibit a bio-logically meaningful diversity, possibly of not too large a degree, which can beinterpreted in a coherent way. For example, one may head for a phylogeneticinterpretation implying that the sequence entries at a given site have evolvedfrom a common ancestor entry, or for a structural interpretation implyingthat the aligned residues are placed at similar locations within the foldedmolecule.Consequently, because it is the similarity of sequence patterns which issupposed to signal phylogenetic and/or structural kinship between the se-quences, the aim of sequence-alignment procedures is to maximize overallsimilarity. Thus, all that is required is� specifying in a quanti�able way the term overall similarity, and� constructing algorithms which produce alignments which maximize thatoverall similarity or, if this turns out to be too time consuming, at leastexhibit a rather high degree of that similarity.While the �rst task needs input from biology as well as from mathemati-cal modelling, the second task is a purely mathematical one. Unfortunately,many ideas relating to the �rst task cannot be tested, and important struc-tural parameters suggested by these ideas cannot be evaluated easily unlessthe second task has been dealt with appropriately.To tackle that second task, the starting point is clearly to �nd goodmethods for aligning two sequences { that is, for pairwise alignment { andalgorithms for solving this problem were developed successfully already aquarter of a century ago ([33], [48]). These algorithms follow the well-knowndynamic programming method. However, their natural and straightforwardgeneralizations to three or more sequences (together with the natural exten-sion of quantifying overall similarity in terms of the so-called sum-of-pairsscore, see below) quickly run into prohibitive memory and time constraintsas number or length of sequences increase. Therefore, almost all techniquesfor aligning larger sets of sequences are based on �rst performing a seriesof pairwise alignments (using, if necessary, appropriate adaptations of the16



standard algorithm aligning pro�les of sequences rather than sequences) andthen constructing a multiple alignment in a \hill-climbing" manner (see forexample [11], [30] for reviews). However, these methods (e.g. CLUSTAL [45],DFALIGN [16], GENALIGN [27], MULTAL [44]) though fast, can be usedwith some reservation only for the following two reasons: they easily runinto local, but not necessarily global optima {, a risk, which is inherent inany hill-climbing method { and they often do not even accept a well-de�nedoptimality criterion for multiple sequence alignment.In order to circumvent these problems, one just has to stick to the origi-nal task of trying to construct high quality simultaneous alignments. In thelate eighties, signi�cant progress with this technique was made by H. Car-rillo and D.J. Lipman [7]: it became possible to align simultaneously andoptimally up to between six and eight protein sequences (of medium lengthand comparatively high pairwise similarity) in some minutes. To this end,the (high-dimensional) search space used in the standard dynamic program-ming approach was reduced e�ciently by some branch&bound procedurebased on considering projections of precalculated heuristic alignments ontothe (two-dimensional) \boundaries" of that space. Yet, even when imple-menting this idea using highly sophisticated implementation techniques, theresulting program, called MSA, often requires more time and/or memory spacethan available when ever it has to deal with larger data sets [18].Hence, for dealing with such cases, a new procedure was proposed which isbased on a simple but amazingly e�cient application of the Divide&Conquerprinciple dubbed DCA, theDivide &Conquer Alignment algorithm ([15], [46],[43]).The general idea of DCA is rather simple: Each of the sequences is cutin two by cutting it just behind a suitable slicing site somewhere close to itsmidpoint. This way, the problem of aligning one family of (long) sequences isdivided into the two problems of aligning two families of (shorter) sequences,the pre�x and the su�x sequences. This procedure is re-iterated until thesequences are su�ciently short so that they can be aligned optimally by MSA.Finally, the resulting short alignments are concatenated, yielding a multiplealignment of the original sequences.Of course, the main di�culty with this approach is how to identify thoseslicing-site combinations which lead to an optimal or { at least { close to opti-mal concatenated alignment. Here, a heuristic based on so-called secondary-charge matrices which are used for quantifying the compatibility of slicingsites in distinct sequences proved to be successful. Several ways of speedingup the search for these slicing sites are possible some of which are imple-mented already. They also will be discussed below.17



3.2 A Formal Set-Up: The Weighted Sum of PairsScore for Multiple Sequence AlignmentNext, we de�ne multiple alignments formally, and we describe the basic prin-ciples of evaluating quantitatively the quality of a given multiple alignment(for further reference see [11], [39], and [49]).Suppose that we are given a family S = (s1; : : : ; sk) of k sequences:s1 = s11 s12 : : : s1n1...sk = sk1 sk2 : : : sknkwhere each sequence entry sij represents a letter from a given �nite alphabetA. An alignment of the sequences S is a matrixM = (mij)1�i�k;1�j�N where� mij 2 A [ f�g, with `�' denoting the gap letter supposed not to becontained in A,� the rows ml := ml1 : : :mlN of M considered as sequences of symbolsfrom A[ f�g, reproduce the sequences sl upon elimination of the gapletters (1 � l � k),� the matrixM has no column, only containing gaps.For example, one alignment of S = fs1; s2g with s1 = GTATGCCG and s2 =GTGTCGG is given by the matrixM := �G T A T G C C G�G T G T�� C G G � ;and another one is given byM 0 := �G T A T G C C� GG�� T G T C G G� :We denote the set of all alignments of S by MS . Assume that we aregiven a pairwise distance d : (A [ f�g)2 ! R(the distances given e.g. by a substitution cost matrix (cf. [10]) with appro-priately chosen gap penalties1 d(a;�) for all a 2 A). For each pair of rows1More sophisticated gap-penalty functions are in use, e.g. the so-called a�ne gappenalty function, which works for pairwise as well as for multiple sequence alignment[1], [17]. 18



mp;mq in an alignmentM 2MS , de�newmp;mq := NXi=1 d(mpi;mqi);and denote by wopt(sp; sq) the minimum of wmp;mq, taken over all alignmentsM .The weighted sum of pairs score for an alignment M 2 MS relative to agiven family of (generally non-negative) weight parameters �p;q (1 � p < q �k) is de�ned by w(M) := X1�p<q�k �p;q � wmp;mq:The multiple alignment problem that we aim to solve is to search for matricesM 2MS whose weighted sum of pairs score w(M) is small.The logic for introducing the weight parameters �pq (from which proce-dures for choosing them appropriately are to be deduced) is the followingone: In general, any set of related biological sequences contains some se-quences which are more closely related to one another than to the remain-ing ones, and highlighting their similarity might often be more importantthan forcing them to independently conform to the patterns of the othersequences. On the other hand, as almost any sample of sequences is biasedin one way or the other (even, most probably, the sample provided by Na-ture itself), a perhaps overrepresented subset of highly similar sequences ina data set should not be allowed through its sheer size to force all the othersequences to conform to its patterns. Both goals, highlighting similarity be-tween closely related sequences and discounting overrepresentation of certainsubclasses of sequences can (hopefully) be achieved by choosing appropriateweight factors,{ one might even consider using homology-dependent distancescores for each given pair of sequences.As mentioned above, optimizing w(M) can be solved in principle bystraightforward dynamic programming (cf. [33], [39]). However, this is pos-sible only in theory at present: in practice, the space and time requirementsfor dynamic programming, even in its most sophisticated forms, make it vir-tually impossible to deal with, say, �ve not highly homologous sequences oflength approximately 1000. However, such tasks present themselves easilywhen dealing with problems from biological sequence analysis.3.3 The Divide&Conquer ApproachHow does the DCA procedure attack this problem? As mentioned alreadyabove, given a family of sequences s1; : : : ; sk of length n1; : : : ; nk, respectively,19



s3 original sequencesdividedivide dividealign optimallyconcatenate
s1s2

Figure 4: Schematic representation of the divide and conquer method.each of these sequences is to be cut just behind an appropriately chosenslicing site somewhere near to its midpoint. This way, the original alignmentproblem is reduced to the two subproblems of aligning the two resultingfamilies of pre�x and su�x subsequences, respectively. These will be handledby the same procedure in a recursive manner (cf. Fig. 4). The recursion stopswhenever all subsequences in a resulting subsequence family have length notexceeding a pregiven upper bound L. Those subsequence families are thenaligned by MSA [24], [18], and the resulting alignments are concatenated.The main problem is to �nd a k-tuple of optimal slicing sites (c1; c2; : : : ; ck)(with 0 � cp � np for p = 1; : : : ; k) so that the simple concatenation of thetwo optimal alignments of the pre�x sequences s1(� c1); s2(� c2); : : : ; sk(� ck)and the su�x sequences s1(> c1); s2(> c2); : : : ; sk(> ck) forms an optimal20



alignment of the original sequences2.Obviously, for any �xed site ĉ1 (0 � ĉ1 � n1), there exists a (k � 1)-tupleof slicing sites (c2(ĉ1); : : : ; ck(ĉ1)), such that (ĉ1; c2(ĉ1); : : : ; ck(ĉ1)) forms anoptimal k-tuple. Unfortunately, �nding exactly these sites requires approx-imately as much time as solving the original optimization problem directly.So, of course, this is not the method of choice.Instead, we aim to �nd slicing sites which can be computed in terms ofpairwise sequence comparisons, only. More precisely, we use the dynamicprogramming procedure to compute, for all pairs of sequences (sp; sq), andfor all slicing sites cp of sp and cq of sq the secondary charge Csp;sq [cp; cq]de�ned byCsp;sq [ cp; cq ] := wopt(sp(� cp); sq(� cq))+wopt(sp(> cp); sq(> cq))�wopt(sp; sq)which quanti�es the additional charge imposed by forcing the alignment ofsp and sq to optimally align sp(� cp) and sq(� cq) as well as sp(> cp) andsq(> cq), rather than aligning sp and sq optimally (cf. Fig. 5). The calculationof the matrices Csp;sq can be performed by computing forward and reversematrices in a similar way as described in [21], [31], [47]. Note that thereexists, for every �xed ĉp, at least one vertex cq(ĉp) with Csp;sq [ĉp; cq(ĉp)] = 0which can be computed easily from any optimal pairwise alignment of sp andsq. The problem multiple alignments have to face is that cq (cp(ĉ1)) mightnot coincide with cq (ĉ1), that is, that given pairwise optimal alignments maybe incompatible with each other - much in analogy to frustrated systemsconsidered in statistical physics.To search for good k-tuples of slicing sites, we de�ne the multiple ad-ditional charge C(c1; : : : ; ck) imposed by slicing the sequences at any givenk-tuple of slicing sites (c1; : : : ; ck) as a weighted sum of secondary chargesover all projections (cp; cq), that is, we putC(c1; c2; : : : ; ck) := X1�p<q�k �p;q � Csp;sq [cp; cq];where the �p;q are the same sequence-dependent weight factors as above.Our proposition is now that using as the preferred slicing-site combina-tions those C-optimal k-tuples that minimize { for a given �xed slicing site ĉ1of s1 { the value C(ĉ1; c2; : : : ; ck) over all slicing sites c2; : : : ; ck of s2; : : : ; sk,respectively, will result in very good, if not optimal multiple alignments be-cause, this way, the mutual frustration is distributed as fairly as possible.2Here, sp(� cp) denotes the pre�x subsequence of sp with indices running from 1 to cpand sp(> cp) denotes the su�x subsequence of sp with indices running from cp + 1 to np,1 � p � k. 21
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Figure 5: The de�nition of secondary charges: White boxes present an op-timal alignment M of the sequences s and t, shaded boxes present the con-catenation of an optimal alignment M1 of the two pre�x and an optimalalignment M2 of the two su�x sequences de�ned by the slicing sites (i; j).Cs;t is then de�ned by w(M1) + w(M2)� w(M).In conclusion, this leads to the following general procedure:Algorithm DCA ( s1; s2; : : : ; sk; L )If mini2f1;2;:::;kgfnig � Lthen return the optimal alignment of s1; s2; : : : ; sk (using e.g. MSA);else return the concatenation ofDCA(s1(� c1); s2(� c2); : : : ; sk(� ck); L)and DCA(s1(> c1); s2(> c2); : : : ; sk(> ck); L);where (c1; c2; : : : ; ck) := calc-cut (s1; s2; : : : ; sk).In the following section, we describe how to realize the subroutine calc-cutwhich computes a k-tuple of C-optimal slicing sites.22



3.4 E�ciently Calculating the Slicing SitesIn a naive implementation, the search calc-cut for C-optimal slicing sites(c1; c2; : : : ; ck) needs timeO(k2n2+nk�1), where n is the length of the longestof the sequences s1; s2; : : : ; sk: the computation of all pairwise secondarymatrices takes O(k2n2) time and, for given ĉ1, all possible combinations ofc2; : : : ; ck have to be checked to �nd the tuple that minimizes C in altogetherO(nk�1) single steps.We reduce this running time and the required memory (which is of orderO(k2n2) for the naive version) by �rst precalculating an estimate bC forCopt(ĉ1; s1; : : : ; sk) := minc2 ;:::;ck C(ĉ1; c2; : : : ; ck):This allows us to prune the search space enormously: Because the multipleadditional cost C(ĉ1; c2; : : : ; ck) is de�ned as a sum of non-negative numbers,it is possible to exclude any tuple of slicing sites (ĉ1; c2; : : : ; ck), whenever oneof the summands is larger than the minimum bC found so far. In particular,for �xed ĉ1, no cq with �1;q �Cs1;sq [ĉ1; cq] � bC can ever lead to a smaller sumC. With this in mind, a C-optimal tuple of slicing sites can be calculated asfollows (cf. Fig. 6):Function calc-cut ( s1; s2; : : : ; sk )1. Reorder s1; s2; : : : ; sk so that s1 is the longest of all sequences in ques-tion.2. Fix ĉ1 := dn12 e;3. calculate and save rows row ĉ11;q[j] := Cs1;sq [ĉ1; j] (2 � q � k; 1 � j � nq);4. locate slicing sites ĉ2 := ĉ2(ĉ1); : : : ; ĉk := ĉk(ĉ1) such that row ĉ11;q[ĉq] = 0(2 � q � k);5. calculate the estimate3bC := X1�p<q�k �p;q � Csp;sq [ĉp; ĉq] = X2�p<q�k �p;q � Csp;sq [ĉp; ĉq];3Some additional approaches have been developed which work by using (ĉ1; ĉ2; : : : ; ĉk)as the starting points and then sucessively minimize C(ĉ1; c2; : : : ; ck) over some ci (i 2f2; : : : ; ng) while keeping the other slicing sites cj (j 6= i) �xed. This leads to signi�cantlysmaller estimates for C than the one described above [35].23
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bC = Cs2;s3 [ĉ2; ĉ3]+Cs2;s4 [ĉ2; ĉ4]+Cs3;s4 [ĉ3; ĉ4]
Cs2;s4Cs2;s3 Cs3;s4

� bC � bC � bC� bC� bC� bC 0 u3l3l2 ĉ2 l4 ĉ4 u4Cs1;s4s3 s4s4l3̂c3u3s3s2 s2l2̂c2u2
00 s2 s3 s4ĉ1s1 s1 s1u2Cs1;s2 Cs1;s3 ĉ3

Figure 6: Computing relevant regions of the secondary charge matrices andthe estimate bC.6. Calculate lower and upper bounds lq and uq such that �1;q�row ĉ11;q[j] � bCfor all j < lq and for all j > uq (2 � q � k). The intermediate segmentrow ĉ11;q[lq]; : : : ; row ĉ11;q[uq] forms the relevant part of each row row ĉ11;q.7. Given these bounds, compute and save the relevant parts of the matri-ces Csp;sq , de�ned by Csp;sq [cp; cq], with lp � cp � up and lq � cq � uq.8. Search for better slicing-site combinations (ĉ1; c2; : : : ; ck) within the rel-evant parts of the rows row ĉ11;q and the matrices Csp;sq . Thereby, thesum C can be computed step by step and the search can be stopped,if an intermediate result is larger than bC.During this �nal search, better values for bC may be obtained, too, sothat, with decreasing values of bC, the relevant part of the rows row ĉ11;q canpossibly be further reduced, diminishing the search space even more.24



Obviously, the worst case time and space complexity of this approachstill remains of the order of O(k2n2 + nk�1) and O(k2n2), respectively, forthe (very improbable) case that the bounds li and ui can never be increased ordecreased, respectively. But for biological sequences, the e�ect is enormous:For calculating the �rst tuple of slicing sites in the recursion (which takes farthe longest time of all slicing-site computations) replacing n by the lengthr := maxp=2;:::;kfup� lp+1g of the longest of the remaining relevant parts ofthe rows, usually results in a reduction of at least two orders of magnitude persequence (for small k), yielding memory savings for the matrices by severalorders of magnitude and reducing the expected time and space complexityto O(k2n2 + rk�1) and O(kn+ k2r2), respectively (cf. [42]).3.5 Further ImprovementsTo speed up the procedure for still larger k, an additional preprocessingstep can be used: To determine, say, the slicing site ck of sk, the optimaladditional charge of any subfamily s01 := s1; s02; : : : ; s0� of our sequences notincluding sequence sk can be used to compute a better estimate for thosevalues of Cs1;sk [ĉ1; ck] which need further consideration: Clearly, for everyslicing site ck of sk we haveCopt(ĉ1; s01; : : : ; s0�) + �1;k � Cs1;sk [ĉ1; ck] � C(ĉ1; c2; : : : ; ck)for all possible slicing sites c2; : : : ; ck�1 of s2; : : : ; sk�1. Hence, we can excludea slicing site ck from further consideration if for some such family s01; s02; : : : ; s0�and some upper bound bC of Copt(ĉ1; s1; : : : ; sk), we have�1;k � Cs1;sk [ĉ1; ck] � bC � Copt(ĉ1; s01; : : : ; s0�);as this implies bC � bC(ĉ1; c2; : : : ; ck) for all slicing sites c2; : : : ; ck�1 of s2; : : : ; sk�1(cf. Fig. 7).Using this principle to its fullest extent would require computing 3 = �32�times the optimal slicing sites for three sequences in case of altogether foursequences, 6 = �42� times the optimal slicing sites for three and { based onthat { 4 = �43� times the optimal slicing sites for four sequences in case ofaltogether �ve sequences, and so on. Hence, for k sequences,2k�1 � k � 1 =  k � 12 !+  k � 13 !+ : : :+  k � 1k � 2!additional optimal slicing-site combinations for 3; 4; : : : ; k�1 sequences wouldhave to be computed. Clearly, this would always be worth the trouble if the25
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Figure 7: Computing the optimal additional charge Copt(ĉ1; s1; s2; s4) of thesubfamily (s1; s2; s4), useful for excluding slicing sites c3 of s3 with �1;3 �Cs1;s3[ĉ1; c3] � bC � Copt(ĉ1; s1; s2; s4).average rate � by which { at each step { the average length a of the relevantpart of each sequence in question is reduced, is just (a � 1)=a: indeed, if� < (a� 1)=a, thenk�2Xi=2  k � 1i !(� � a)i < (1 + � � a)k�1 � ak�1:In addition, computing the optimal slicing-site combination ĉ1; : : : ; ĉ� fora �xed slicing site ĉ1 of s1 and any given sequence family s01 := s1; s02; : : : ; s0�may also help to improve the estimates bC for Copt(ĉ1; s01; : : : ; s0�; s0�+1) for eachnew sequence s0�+1 in view ofCopt(ĉ1; s01; : : : ; s0�; s0�+1) � Copt(ĉ1; s01; : : : ; s0�) + �Xp=1�p;�+1Cs0p;s0�+1 [ĉp; c�+1]26



t
sFigure 8: Typical form of an secondary charge matrix. Light boxes denotelow values, dark boxes denote high values.for each slicing site c�+1 of s0�+1.And �nally, the variety of optimal slicing sites coming up in such a com-putation may also be useful for evaluating the rate of mutual frustration aswell as the reliability and the quality of the slicing sites �nally chosen and ofthe alignment(s) resulting from that choice.A di�erent approach to the time problem (which can, of course, be com-bined with the one outlined just above) is motivated by the regular shape ofthe matrices Csp;sq (cf. Fig. 8). It utilizes the observation that the entries in arow of a secondary charge matrix from left to right generally start with ratherhigh values, decrease almost monotonically for a long time, reach the valuezero at the slicing site corresponding to an optimal pairwise alignment, andthen increase almost monotonically again to high values. Thus, for each rowi, lp � i � up, of the secondary charge Csp;sq , we can de�ne lower and uppermonotony bounds Lsp;sq [i] and Usp;sq [i], given by the formulae (cf. Fig. 9):Lsp;sq [i] := minf j 2 flq + 1; : : : ; uqg j Csp;sq [i; j] > Csp;sq [i; j � 1] g;Usp;sq [i] := maxf j 2 flp; : : : ; up � 1g j Csp;sq [i; j] > Csp;sq [i; j + 1] g;27
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Figure 9: A secondary charge matrix with monotony bounds Lsp;sq (solidline) and Usp;sq (dotted line).When determining the q-th slicing site cq, 2 � q � k, for already �xedsites ĉ1; ĉ2; : : : ; ĉq�1, any value of the ĉp-th row in the matrixCsp;sq , 1 � p < q,leading to a sumC = X1�p<p0<q �p;p0 � Csp;sp0 [ĉp; ĉp0] + X1�p<q �p;q � Csp;sq [ĉp; cq]larger than bC, with cq < min1�p<q Lsp;sq [ĉp], thus gives a sum larger than bCfor every c0q � cq. A corresponding statement holds for U .With this approach, we were able to speed up DCA by a factor of 2. Formore than 8 sequences, the improvement was even better: it is possible toalign up to twelve su�ciently related sequences (e.g. the homology family of aprotein) in rather moderate time spans (often just a few seconds, sometimessome minutes).An addition to be tested soon is to compute, for each row i (lp � i � up)28



in Csp;sq and each j between Lsp;sq [i] and Usp;sq [i] the valueslp;qi;j := minfCsp;sq [i; j0] j lq � j0 � jgand up;qi;j := minfCsp;sq [i; j0] j i � j0 � uqgand to stop going left (or right) with cq whenever an appropriate sum includ-ing �p;q � lp;qi;j (or �p;q � up;qi;j , respectively) rather than �p;q � Csp;sq [i; j] exceedsthe given bound. On the expense of some more storage requirements, it canbe hoped that again a considerable speed-up will be achieved this way.3.6 Performance of DCAWe have tested DCA thoroughly, using families of related random sequencesas well as real biological data. The following are the main results of theevaluation:� The memory usage of DCA is in the magnitude required for standardpairwise alignments (about 30 megabytes for twelve sequences of av-erage length 250 { and just 16 times that much for an average length1000) (cf. [46], [42]).� Compared to previous simultaneous alignment methods, the programis very fast (about 40 seconds for twelve sequences of average length250) (cf. [43]). Applied to the sequences used by Gupta et al. [18]to evaluate the improved version 2.0 of MSA, we found that { whilethe alignment quality was basically unchanged { the speed-up factor ofDCA relative to MSA ranged from 15 to 1 500, while the memory usageof DCA is two to twenty times lower than that of MSA. These improve-ments { though quite satisfying, if not spectacular { are of course notof much importance when it comes to aligning sequence families whichcould also be aligned with MSA. After all, having worked for severalweeks or even months to sequence some biomolecules, biologists willnot care much whether their data can be processed �nally in a few sec-onds rather than in a few minutes or hours. Yet, the improvements areof considerable importance when (i) the number or the lengths of thesequences in question are too large to be manageable by MSA and/or(ii) various parameter sets need to be checked for the same sequencefamily before a decision about the biologically most plausible alignmentand, simultaneously, the most plausible mode of evolution of the givensequence family can be made (for a thorough discussion of that pointcf. [36]). 29



� The alignments are of a very high quality, in mathematical (cf. [42]) aswell as in biological terms (cf. [20], [36], [43]). For none of the anal-ysed random sequence families for which the optimal score could becomputed using MSA, the sum-of-pairs score of the alignment computedwith DCA di�ers by more than 0:3 percent from the optimal score.Applied to biological sequences, DCA can compete with the best align-ment methods currently available.� Due to the simultaneity, the computed alignments are also suited verywell as an unbiased starting point for the reconstruction of evolutionaryrelationships (cf. [34]).� Because DCA approximates the optimal score very closely, new ways oftesting and validating alternative choices for multiple alignment scorefunctions are possible.� Due to the stable interdependence of the parameters of DCA and itsperformance, the behavior of the program is transparent to the user.To summarize, we have shown that { although the multiple sequence align-ment problem has been a much studied subject over the last decades { thesystematic application of the well-known Divide&Conquer principle opensthe way to a new, e�cient, and e�ective simultaneous multiple sequencealignment algorithm.4 A Concluding RemarkWhen being confronted with the two problems from the molecular sciencesdiscussed above, we had originally of course no intention of looking speci�-cally for a way to apply the Divide&Conquer principle for solving them; wejust wanted to solve them somehow. And actually, it took quite a while be-fore the ideas presented above \crystallised", and it became clear that somesort of a Divide&Conquer strategy could be applied successfully in both in-stances.This is to say { as stated already in the introduction { that in general,there is no canonical, routine way of solving complex problems by applyingthe Divide&Conquer principle, and that the best way to tackle such problemsis still to get deeply involved with them trying to �nd just the best and themost natural way to deal with them (which may or may not involve theDivide&Conquer principle) rather than hoping for a preconceived machineryto be applicable independently of the particular nature of the problem inquestion. 30



Yet, we do hope that the ideas presented above may inspire further ap-plications of well worked out principles of algorithmic architectures in themolecular sciences. An example of such an application for the computationof the matching polynomial is given in [4].Finally, it should be noted that while the above two algorithms are stillquite conventional in that they are to be performed either by hand or, better,by a computer and not by the molecules themselves these algorithms are de-signed to analyse, it is not just a presently very fashionable and fund-raisingidea to consider the molecular processes themselves from an algorithmic pointof view { that is, as processes which actually perform more or less well-de�nedcomputations. Indeed, what we see happening presently in the molecular sci-ences is a continuously increasing intermingling of \wet" experimental and\dry" algorithmic approaches, each being used to drastically enhance andpartly control the e�ciency of the other, and we, the Mathematical Pro-gramming community, should better be aware of (a) the enormous potentialexpansion of the applicability of ideas relating traditionally to mathemati-cal computer programming and (b) the changes that this new developmentwill require and bring about. This is evidenced for instance very clearly bythe newly emerging �eld of combinatorial chemistry where Divide&Conquerstrategies are implemented experimentally right at the heart of even the mostbasic experimental set-up.Added in proof: Remarkably, a good survey of these novel techniquesappeared just in time in the April '97 issue of the Scienti�c American (cf.[37]).AcknowledgementThis paper was written while the second and the third named author werehosted by the Biomathematics Research Centre at the Mathematics Depart-ment, University of Canterbury, New Zealand, which is gratefully acknowl-edged.References[1] S.F. Altschul. Gap Costs for Multiple Sequence Alignment. J. Theor.Biol. 138, pages 297{309, 1989.[2] S.F. Altschul, R.J. Carroll, and D.J. Lipman. Weights for Data Relatedby a Tree. J. Mol. Biol., 207, pages 647{653, 1989.31
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