
Universit�at BielefeldForschungsschwerpunkt Mathematisierung |StrukturbildungsprozesseMaterialien/Preprints XCIXA General Method forFast Multiple Sequence AlignmentUdo T�ongesS�oren W. PerreyJens StoyeAndreas W. M. Dress

Bielefeld 1996

Classi�cation code(s) according to the1980 Mathematics Subject Classi�cation ofMathematical Reviews:92-0492A1068K05

Forschungsschwerpunkt Mathematisierung | Telefon: (05 21) 1 06-47 64Strukturbildungsprozesse Fax: (05 21) 1 06-60 07Universit�at BielefeldPostfach 10 01 31 e-mail:D-33501 Bielefeld fsp@mathematik.uni-bielefeld.de

A General Method for Fast Multiple SequenceAlignmentUdo T�onges�, S�oren W. Perreyy, Jens Stoye�, Andreas W. M. Dress�AbstractWe have developed a fast heuristic algorithm for multiple sequence align-ment which provides near-to-optimal results for su�ciently homologous se-quences. The algorithm makes use of the standard dynamic programmingprocedure by applying it to all pairs of sequences. The resulting score ma-trices for pairwise alignment give rise to secondary matrices containing theadditional charges imposed by forcing the alignment path to run through aparticular vertex. Such a constraint corresponds to slicing the sequences atthe positions de�ning that vertex, and aligning the remaining pairs of pre�xand su�x sequences seperately. From these secondary matrices, one can com-pute { for any given family of sequences { suitable positions for cutting all ofthese sequences simultaneously, thus reducing the problem of aligning a familyof n sequences of average length l in a Divide and Conquer fashion to aligningtwo families of n sequences of approximately half that length.In this paper, we explain the method for the case of 3 sequences in detail,and we demonstrate its potential and its limits by discussing its behaviour forseveral test families. A generalization for aligning more than 3 sequences islined out, and some actual alignments constructed by our algorithm for varioususer-de�ned parameters are presented.Key words: dynamic programming; secondary matrix; divide and conquer; pairwisesequence alignment; multiple sequence alignment
�Research Center for Interdisciplinary Studies on Structure Formation (FSPM), University ofBielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germany.e-mail: ftoenges,stoye,dressg@mathematik.uni-bielefeld.deyDepartment of Mathematics, Massey University, Palmerston North, New Zealand. e-mail:S.W.Perrey@massey.ac.nz 3

1 IntroductionThe construction of biologically plausible alignments for given families of DNA orprotein sequences is one of the major problems in computational molecular biology.Consequently, the design and study of alignment procedures is presently a very activearea of research, with an abundance of publications and software contributions (see[48], [34], [9], or [28] for a survey). While some papers (e.g. [27], [26], [8], [20],[1]) propose procedures to speed up the search for the \true" multiple sequencealignment, that is, the optimal alignment relative to some prede�ned optimalitycriterion (see below), others ([39], [17], [42], [23], [6]) { like the present one { proposecomputationally e�cient heuristics for constructing good, though not necessarily\optimal" alignments.An often discussed formalization of the multiple alignment problem is the fol-lowing one: Given n sequences s1; s2; ::; sn of lengths l1; l2; ::; ln, respectively, whoseentries have been taken from a �nite alphabet A; and given a weight functionw : (A [f�g)n �! R;where \�" denotes the gap letter which is di�erent from all letters of A,�nd an n � N matrix M = (mkj)1�k�n;1�j�N for some N � Pnk=1 lk with entriesmkj 2 A [f�g that minimizes its w-scorew(M) := NXj=1w(m1j; : : : ; mnj)among all such matrices which present an alignment of the sequences s1, s2,: : :,sn,that is, which do not contain any column consisting of gaps only and which, for eachrow (mk1; mk2; : : : ; mkN), reproduce the sequence sk upon eliminating all of its gapletters (k = 1; 2; : : : ; n).Weight functions often used in this context are weighted sum-of-pairs scores, de-�ned by1 w(m1j; m2j; ::; mnj) := Xk<k0 �(mkj; mk0j) � �k;k0;where the parameters �k;k0 are sequence-dependent weights, and� : (A [f�g)2 ! Ris a (real-valued) weight function, de�ned on all possible pairs of matrix entries (cf.[27], [13], [8]). Obviously, the optimization task is to elongate the given sequencesby inserting gaps, bringing all of them up to the same length (denoted above by N)and, simultaneously, minimizing the sum over all \column weights".1In the formula below, we charge for gaps at the begining or the end of a sequence the same waywe charge for them anywhere inbetween two residues, and we assume additive gap penalties. Thereare simple remedies available if other charges are applied. They will be discussed in a separatepaper. 4

It is well known that this problem can be solved optimally by dynamic program-ming (cf. [31], [48]). In our algorithm, we use this dynamic programming procedureby applying it to all pairs of sequences. The resulting score matrices for pairwisealignment give rise to secondary matrices C(i� ; i�)1�i��l� ;1�i��l� containing the addi-tional charges imposed by slicing the sequences s� and s� at the positions i� and i�,respectively, and aligning the remaining pairs of pre�x and su�x sequences seper-ately.Upon �xing one position where we want to cut one of our sequences { in generalat or, at least, somewhere close to its midpoint {, we search for those positions forcutting the remaining n� 1 sequences which correspond to a minimal (appropriatelyweighted, if neccessary) sum of the corresponding �n2� additional secondary charges.This way, our original problem of aligning a family of n sequences of averagelength l can be reduced in a Divide and Conquer fashion to the problem of aligningtwo families of n sequences of approximately half that length. Consequently, applyingthis step iteratively will eventually result in a collection of multiple alignment prob-lems involving rather short sequences only, which can then be handled by standardprocedures.A �rst outline of this method has recently been presented at the Third Inter-national Conference on Intelligent Systems for Molecular Biology in Cambridge (cf.[11]). Here, we give a detailed description of our procedure, and we present sometest cases which allow to evaluate its potential and its limits. We focus in particularon the quality of the results as measured by the alignment score, and on the timecomplexity (measured in CPU time). We also study its dependence on several user-de�ned parameters, and on the input order. In an appendix, some actual alignmentsconstructed by our algorithm are presented.2 MethodWe introduce the algorithm for the case of three sequences. There are several pos-sibilities to generalize the method to more than three sequences, { a rather naturalone will be mentioned later on, a more thorough discussion is in preparation.In a way, our method is reminiscent of D.S. Hirschberg's proposal for calculatinga shortest alignment path of two sequences using memory in the magnitude of onlythe length of one of the sequences (cf. [19]). Also, our method of calculating thedegree of deviation from the path of the optimal alignment is similar to a procedureused in [43].Let s1; s2 be two sequences with entries from a �nite alphabet A and with se-quence lengths l1 = l(s1) and l2 = l(s2), respectively, and let w denote a scorefunction de�ned on pairs of sequences calculated by applying the standard (dynamicprogramming) alignment scheme. Then, the additional charge Cs1;s2[i1; i2] imposedby slicing the sequences s1 and s2 at the positions i1 and i2, respectively, is de�ned5

by2 Cs1;s2[i1; i2] := w [s1(� i1); s2(� i2)] + w [s1(> i1); s2(> i2)]� w [s1; s2];where sk(� ik) denotes the (pre�x) subsequence of sk with indices running from 1to ik and sk(> ik) denotes the (su�x) subsequence of sk running from ik + 1 tolk (k = 1; 2).The matrix Cs1;s2 = (Cs1;s2[i1; i2])1�i1�l1;1�i2�l2 , we'll call the secondary matrixof the sequences s1; s2.Note that there exists, for every i1, at least one position i2(i1) withCs1;s2[i1; i2(i1)] = 0 :If an optimal alignment of s1 and s2 matches the pre�x sequence s1(� i1) withs2(� i2), then put i2(i1) := i2. Obviously, once we know i2(i1), we can �nd anoptimal alignment of s1 and s2 by concatenating optimal alignments of s1(� i1) ands2(� i2) and of s1(> i1) and s2(> i2) which can be computed independently of eachother.Similarly, if an optimal multiple alignment of s1, s2, and s3 matches the pre�xsequence s1(� i1) with s2(� i02) and s3(� i03), we can �nd an optimal multiplealignment of s1, s2, and s3 by concatenating optimal alignments of s1(� i1), s2(� i2),and s3(� i3) and of s1(> i1), s2(> i2), and s3(> i3). Consequently, to construct an(almost) optimal multiple alignment of s1, s2, and s3 by concatenation of (almost)optimal alignments of appropriately chosen pre�x and su�x sequences, we try toestimate, for a given position i1 of s1 and any two positions i2 and i3 of s2 ands3, respectively, the additional charges imposed by concatenating an alignment ofs1(� i1), s2(� i2), and s3(� i3) as well as of s1(> i1), s2(> i2), and s3(> i3).To this end, we use the (weighted) sum of secondary charges over all projec-tions (i1; i2); (i1; i3); and (i2; i3) as such an estimate, that is, for any three sequencess1; s2; s3 and any three integers i1; i2; i3 with 0 � ik � l(sk) (k = 1; 2; 3); we putC(i1; i2; i3) := Cs1;s2[i1; i2] � �1;2 + Cs1;s3[i1; i3] � �1;3 + Cs2;s3[i2; i3] � �2;3;where the coe�cients �1;2; �1;3, and �2;3 are appropriately chosen weight factorsreecting e.g. phylogenetic relationship3.Next, we put i1 := dl1=2e (or close to this value), and use the secondary ma-trix Cs2;s3 = (Cs2;s3[x; y])1�x�l2;1�y�l3 as well as the rows (Cs1;s2[i1; x])1�x�l2 and(Cs1;s3[i1; y])1�y�l3 of the secondary matrices Cs1;s2 and Cs1;s3, respectively, to �nd2Here, as above, we charge for gaps at the begining or the end of a sequence the same way wecharge for them anywhere between two residues, and we assume additive gap penalties.3 How to choose weight factors appropriately for a given task is itself an important and muchstudied scienti�c topic (cf. [3], [35], [45]). In our context, it seems biologically plausible to give higherweights to the more similar pairs, as having them aligned optimally should be more important thanaligning two fairly unrelated sequences optimally on the expense of worthening a good alignmentof closely related sequences. 6

those positions i2 and i3 which minimize C(i1; i2; i3). These positions can, in prin-ciple, be found by exhaustive search over all i2 (0 � i2 � l2) and i3 (0 � i3 � l3).Of course, shortcuts can be used, the most obvious one being not to consider anyposition i3 for those positions i2, for which Cs1;s2[i1; i2] is at least as large as the opti-mum found so far. The speed-up resulting from this simple device alone guaranteesalready that the overall time needed for �nding the optimal cut positions i2 and i3is a comparatively small fraction, only, of the { also quite small { total time neededby our algorithm, { so it is de�nitely not the bottleneck.We expect these positions to either coincide with i02(i1) and i03(i1) or, at least, tode�ne slicing positions such that the score of the resulting alignment is not muchabove the score of an optimal alignment of s1, s2, and s3. The reason for thisexpectation is that aligning three sequences optimally, a compromise has to be foundbetween the three, in general not compatible optimal pairwise alignments and thatthe value of C(i1; i2; i3) is a good measure for the total \expenses" of the compromiseassociated with aligning the sequences by concatenating optimal alignments of thethree pre�x and the three su�x sequences resulting from the associated cuts.Based on this expectation, we iterate our procedure, that is, we replace theoriginal multiple alignment problem by the two alignment problems posed by thethree pre�x sequences s1(� i1); s2(� i2); s3(� i3) and by the three su�x sequencess1(> i1); s2(> i2); s3(> i3); and we go on searching for suitable vertices in theiralignment diagrams to cut them down further into still smaller sequence triples.Note that, at this stage, the sequences under consideration have only been dividedinto several triples of subsequences but have not been aligned so far. This is simplydone as follows: At some iteration step, we stop the dividing process and start usingsome score-optimal alignment procedure (e.g. standard dynamic programming, orfaster versions of it, like MSA, cf. [25], [15]) to align the remaining subsequences.At present, we have investigated combinations of the following two alternativesas a stopping criterion4:� a threshold L for the shortest length of the three (sub)sequences under consid-eration, and� a thresholdD for the number of iteration steps of the dividing process (recursiondepth).Altogether, this leads to the following general procedure:Algorithm d&c-align (s1; s2; s3; L;D)If mink2f0;1;2gflkg � L or D = 0then return the optimal alignment of s1; s2; s3;4Other or additional criteria are also conceivable, e.g. one could start the score-optimal procedureonce all three (sub)sequences under consideration are `su�ciently homologous'. This in turn couldbe de�ned by some function depending on the length and the pairwise alignment scores of the three(sub)sequences. 7

else put i1 := dl0=2e, and search for indices i2 2 f0; ::; l1g and i3 2 f0; ::; l2gwhich minimize C(i1; i2; i3);return the Concatenation of d&c-align (s1(� i1); s2(� i2); s3(� i3); L;D � 1)and d&c-align (s1(> i1); s2(> i2); s3(> i3); L;D � 1);3 ResultsOur alignment algorithm has been applied to several sets of random and of biologi-cally de�ned sequences. For de�ning the weight factors �i;j (i; j 2 f1; 2; 3g; i 6= j);we have simply used the optimal (distance) score of the pairwise alignment to de�ne�i;j := minfw(s1; s2); w(s1; s3); w(s2; s3)gw(si; sj) ;so that �i;j � 1 for all i; j and �i;j = 1 if and only if the pair of sequences (si; sj) hasthe highest similarity (lowest alignment score) of all three possible pairs of sequencesunder consideration3.We have evaluated the quality of the resulting alignments by comparing the scoresto the (formally) optimal scores (obtained by our procedure for L � minfl1; l2; l3g orD = 0).Figures 1 and 2 show the running time (CPU) in seconds versus D = 0; 1; : : : ; 10and L = 5; 10; 20; : : : ; 100, respectively. For variable D (Fig.1), we �xed L := 3 inorder not to force the algorithm trying to cut our sequences more often than possible.For variable L (Fig.2), we �xed D := 10 in order not to stop the algorithm beforethe threshold L is reached.The sequence triples considered are protein sequences (average length l � 300 :tyrosine kinase, some actual alignments are given in the appendix; l � 900 : glr1-human, glr2-human, glr3-human; l � 1000 : P115-Bovin, P115-Rat, P115-Mychr)and DNA-sequences (l � 1300 : human immuno de�ciency virus: hiv1d044, hiv1d744,hiv1d868).As expected, the CPU time needed by our procedure is much smaller than thatneeded by standard dynamic programming (that is, the value obtained for L �min(l1; l2; l3) or D := 0). For increasing D with D � 4; the running time decreasesrapidly and becomes almost constant, { in the magnitude of seconds, { for D � 5.Similarly, for increasing L with L � 30; the running time is almost constant whilefor L � 30 it also increases considerably.
8

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10

T
im

e
(s

ec
)

D

l=300
l=900

l=1000
l=1300

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
)

L

l=300
l=900

l=1000
l=1300

Figure 1 Figure 2In Figures 3 and 4, the relative scores, obtained for various values of D (with�xed L := 3) and L (with �xed D := 10) are shown, that is, the percentage of theoptimal score by which the score actually obtained by our algorithm exceeds theoptimal one. The relative scores increase very slowly for increasing D with D � 5and for decreasing L with L � 30.
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 2 4 6 8 10

re
l.

S
co

re
 (

%
)

D

l=300
l=900

l=1000
l=1300

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60 70 80 90 100

re
l.

S
co

re
 (

%
)

L

l=300
l=900

l=1000
l=1300

Figure 3 Figure 4Together, these observations suggest that putting L � 40 and D� 0 will lead toa very fast alignment procedure with close to score-optimal results.We also have investigated the sensitivity of our approach to the input order ofthe sequences. The running time and the scores seem to be basically independent ofthis order when the sequences under consideration have essentially the same degreeof pairwise homology. If these degrees di�er signi�cantly, the input order has somemore inuence on the performance and quality of our procedure: in this case, it seemsbest to choose for s1 the sequence exhibiting least homology relative to the other twosequences.Finally, we have investigated whether the alignment scores improve upon relaxingthe restriction imposed by �xing the �rst cut point i1 on exactly dl1=2e. For some9

small � 2 N (e.g. � = 5; : : : ; 25), we simply search in each division step for that i1 inthe intervall dl1=2e � � � i1 � dl1=2e+ �;which leads to the smallest additional charge C(i1; i2; i3). As is shown in Figures 5and 6, there is no substantial inuence on running time and obtained relative scorefor those sequence triples we have investigated so far (here, we put L := 40 andD := 10, as suggested above).
0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25

T
im

e
(s

ec
)

δ

l=300
l=900

l=1000
l=1300

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25

re
l.-

S
co

re
 (

%
)

δ

l=300
l=900

l=1000
l=1300

Figure 5 Figure 6In the appendix, some actual alignments constructed by our algorithm are presented.4 DiscussionIt is standard practice to use dynamic programming for calculating a global (score-)optimal alignment of two sequences. The natural extension of this algorithm tomultiple alignment is limited to small numbers of relatively short sequences becausethe search space increases exponentially with the number of sequences under consid-eration (cf. [25]). Clearly, pairwise alignments (so-called `projections') can be usedfor cutting down the computational complexity of the (standard) dynamic program-ming procedure (cf. [8], [25]). Similarly, secondary matrices resulting from imposingspeci�c vertices to be traversed by the path through the dynamic programming graphhave also been considered before to reduce the amount of memory required (cf. [19],[29], [20]).Yet, the use of secondary matrices of the projections of the multiple alignmentproblem in order to presort simultaneously every sequence under consideration intoseveral subsequences in a \Divide and Conquer" fashion appears to be a novel ap-proach.Recently, it was shown that { not unexpectedly { multiple sequence alignmentwith the sum-of-pairs score is NP-complete (cf. [47]). Therefore, to align large-sizesets of sequences in reasonable time, one needs fast heuristic algorithms. Unfortu-nately, most of the more reliable heuristic approaches su�er from high computational10

costs for large-size problems, while fast heuristics often do not yield plausible results.So, there is some pressure for developing fast and, simultaneously, su�ciently reliableheuristics.In this context, our algorithm o�ers the following advantages:� It is very fast. Even when the input sequences are rather long, the user canspecify the thresholds L and D appropriately in order to cut down the runningtime by orders of magnitudes, that is, down to just seconds.� It results in near-to-optimal alignments as measured by the alignment score.� It uses memory of about the magnitude needed for pairwise alignment even ifthe multiple alignment itself (and not only its score) is calculated.In addition, there exist several ways to generalize our algorithm to a multiplealignment procedure for more than 3 sequences. One natural and simple extensionof the method outlined above is to compute all pairwise secondary matrices and theadditional charge functionC(i1; : : : ; in) := X1�k<k0�nCsk;s0k [ik; ik0] � �k;k0:Using a small (sub)sequence length threshold L or a high recursion depth thresholdD, the size of the hypercubes to be solved by dynamic programming (or MSA) canalways be reduced to manageable dimensions. In addition, if a large number ofsequences is to be considered, the design of clever branch and bound methods forspeeding up the search for appropriate slicing points will become more and moreimportant.Most multiple alignment procedures align the sequences in a hierarchical order by�rst pre-clustering the sequences and then aligning them { or pro�les derived fromthem { recursively (cf. [42]). To obtain a biologically reasonable alignment, theseclusters should actually reect phylogenetic relationships between the sequences inquestion. Yet, most algorithms for reconstructing phylogenies need aligned sequences(or distances between the sequences, derived from alignments) as their input.In other words, (multiple) sequence alignment and the reconstruction of phylo-genetic relationships require each other. Consequently, it has been argued that bothshould be done in synchrony (cf. [16]). As branching points in trees always needexactly three leaves (or other branching points constructed already) to be speci�edas the median (cf. [7]) of those tree vertices, our method { even in its present stateof infancy { might be rather useful in this context (cf. [33], [46]).AcknowledgementsThe authors wish to thank the referees for helpful constructive comments on anearlier version of this paper. This research is supported by the German Ministry forResearch and Technology (BMBF) under grant number 01 IB 301 B4.11

AppendixFinally, we present some actual alignments constructed by our algorithm.The �rst example shows alignments of three tyrosine kinase sequences (of lengthsl1 = 273; l2 = 280; l3 = 280), obtained with thresholds L = 20; 10; 7; 5 (D = 10 �xed),whereby { as we know from running our algorithm with L � 273 (or D = 0) { the(score-)optimal alignment is obtained for L = 20. In order to compare them easily, wepresent the alignments blockwise. Above the alignments, the dividing step numbersare printed, and the positions di�erent from the optimal alignment are marked by "�"below the alignment. Note that there are only three regions (of length 4 or 7) wherethe fastest suboptimal version (L = 5) di�ers from the optimal one. In particular, allregions of a suboptimal alignment obtained for some threshold L have been alignedin exactly the same way by all versions L0 with L0 < L. This can be used to selectthe (most probably) correctly aligned regions from a set of suboptimal alignmentsconstructed by fast versions (L very small) of our procedure.We have observed that the alignments obtained for small L di�er from the optimalalignment mainly in rather short regions around gaps. This suggest a windowingapproach where, for a su�ciently small window around gaps, an optimal alignmentprocedure is applied. We will discuss this idea in a later paper.As score matrix, we have used PAM250 (with integer entries between 0 and 25),homogeneous gap penalties of value �8, and gap-to-gap penalties of value 0. Inthe following table, the CPU time, the relative score, and the number of alignmentpositions di�erent from the optimal alignment are given. The CPU time is measuredin seconds on a Silicon Graphics computer (CPU: MIPS R4000, 100 MHZ, 64 MBmemory, 1 MB cache), and the memory needed is about 250 KB. Note that standarddynamic programming, obtained by our method for L � 273 (or D := 0), needs 93.41seconds CPU time on this computer. The commonly used so-called MSA algorithmneeds 7.56 seconds (cf. [8]).We also have compared our alignments with those constructed by Clustal W andby Maximum Weight Trace (cf. [42], [23]). Most positions of these alignments areidentical to the score-optimal and almost all of those are contained in long stretcheswithout gaps. Consequently, once again, most di�erences occur around gaps.L 5 7 10 20 60 300CPU time (in seconds) 0.32 0.34 0.39 0.59 1.40 93.41absolute score 7008 7011 7015 7016 7016 7016number of non-optimal positions 17 12 5 0 0 0
12

3 2 3---GLAKDA--WEIPRESLRLEAKLGQGCFGEVWMGTWND-TTRVAI-KTLKPGTMSPEAL=20 TIYGVSPNYDKWEMERTDITMKHKLGGGQYGEVYEGVWKKYSLTVAV-KTLKEDTMEVEE---S-S-YY--WKMEASEVMLSTRIGSGSFGTVYKGKWHG-DVAVKILKVVDPTPEQLQA4 3 4 2 4 3---GLAKDA--WEIPRESLRLEAKLGQGCFGEVWMGTWND-TTRVAI-KTLKPGTMSPEAL=10 TIYGVSPNYDKWEMERTDITMKHKLGGGQYGEVYEGVWKKYSLTVAV-KTLKEDTMEVEE---S-S-YY--WKMEASEVMLSTRIGSGSFGTVYKGKWHG-DVAVKILKVVDPTPEQLQA4 5 3 5 4 5 2 5 4 5 3---GLAKDA--WEIPRESLRLEAKLGQGCFGEVWMGTWNDTTRV-AI KTLKPGTMSPEAL=7 TIYGVSPNYDKWEMERTDITMKHKLGGGQYGEVYEGVWKKYSLTVAV KTLKEDTMEVEE---S-S-YY--WKMEASEVMLSTRIGSGSFGTVYKGKWHGDVAVKIL KVVDPTPEQLQA*******5 4 5 3 5 4 5 2 5 4 5 3---GLA-KDA-WEIPRESLRLEAKLGQGCFGEVWMGTWNDTTRV-AI KTLKPGTMSPEAL=5 TIYGVSPNYDKWEMERTDITMKHKLGGGQYGEVYEGVWKKYSLTVAV KTLKEDTMEVEE---S-S-YY--WKMEASEVMLSTRIGSGSFGTVYKGKWHGDVAVKIL KVVDPTPEQLQA**** *******1 3 2FLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVIEYMSKGSLLDFLKGEMGKYLRLPQLVDL=20 FLKEAAVMKEIKHPNLVQLLGVCTREPPFYIITEFMTYGNLLDYLRECNRQEVSAVVLLYFRNEVAVLRKTRHVNILLFMGYMTKDN-LAIVTQWCEGSSLYKHLHVQETKF-QMFQLID4 1 4 3 4 2 4FLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVIEYMSKGSLLDFLKGEMGKYLRLPQLVDL=10 FLKEAAVMKEIKHPNLVQLLGVCTREPPFYIITEFMTYGNLLDYLRECNRQEVSAVVLLYFRNEVAVLRKTRHVNILLFMGYMTKDN-LAIVTQWCEGSSLYKHLHVQETKF-QMFQLID5 4 5 1 5 4 5 3 5 4 5 2 4FLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVIEYMSKGSLLDFLKGEMGKYLRLPQLVDL=7 FLKEAAVMKEIKHPNLVQLLGVCTREPPFYIITEFMTYGNLLDYLRECNRQEVSAVVLLYFRNEVAVLRKTRHVNILLFMGYMTKDN-LAIVTQWCEGSSLYKHLHVQETKF-QMFQLID5 4 5 1 5 4 5 3 5 4 5 2 5 4FLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVIEYMSKGSLLDFLKGEMGKYLRLPQLVDL=5 FLKEAAVMKEIKHPNLVQLLGVCTREPPFYIITEFMTYGNLLDYLRECNRQEVSAVVLLYFRNEVAVLRKTRHVNILLFMGYMTKDN-LAIVTQWCEGSSLYKHLHVQETKF-QMFQLID

13

3 0 3 2MAAQIASGMAYVERMNYVHRDLRAANILVGENLVCKVADFGLARLIED-NEYTARQGAKFL=20 MATQISSAMEYLEKKNFIHRDLAARNCLVGENHLVKVADFGLSRLMTG-DTYTAHAGAKFIARQTAQGMDYLHAKNIIHRDMKSNNIFLHEGLTVKIGDFGLATVKSRWSGSQQVEQPTG3 4 0 4 3 4 2MAAQIASGMAYVERMNYVHRDLRAANILVGENLVCKVADFGLARLIED-NEYTARQGAKFL=10 MATQISSAMEYLEKKNFIHRDLAARNCLVGENHLVKVADFGLSRLMTG-DTYTAHAGAKFIARQTAQGMDYLHAKNIIHRDMKSNNIFLHEGLTVKIGDFGLATVKSRWSGSQQVEQPTG5 3 5 4 5 0 5 4 5 3 5 4 5 2MAAQIASGMAYVERMNYVHRDLRAANILVGENLVCKVADFGLARLIED-NEYTARQGAKFL=7 MATQISSAMEYLEKKNFIHRDLAARNCLVGENHLVKVADFGLSRLMTG-DTYTAHAGAKFIARQTAQGMDYLHAKNIIHRDMKSNNIFLHEGLTVKIGDFGLATVKSRWSGSQQVEQPTG5 3 5 4 5 0 5 4 5 3 5 4 5 2MAAQIASGMAYVERMNYVHRDLRAANILVGENLVCKVADFGLARLIED-NEYTARQGAKFL=5 MATQISSAMEYLEKKNFIHRDLAARNCLVGENHLVKVADFGLSRLMTG-DTYTAHAGAKFIARQTAQGMDYLHAKNIIHRDMKSNNIFLHEGLTVKIGDFGLATVKSRWSGSQQVEQPTG3 1 3PIKWTAPEAA-LYG-R-FTIKSDVWSFGILLTELTTKGRVPYPGMVNR-EVLDQVERGY-L=20 PIKWTAPESL-AYN-K-FSIKSDVWAFGVLLWEIATYGMSPYPGIDLS-QVYELLEKDY-SVLWMAPEVIRMQDDNPFSFQSDVYSYGIVLYELMA-GELPYAHINNRDQIIFMVGRGYA4 3 4 1 4 3PIKWTAPEAA-LYG-R-FTIKSDVWSFGILLTELTTKGRVPYPGMVNR-EVLDQVERGY-L=10 PIKWTAPESL-AYN-K-FSIKSDVWAFGVLLWEIATYGMSPYPGIDLS-QVYELLEKDY-SVLWMAPEVIRMQDDNPFSFQSDVYSYGIVLYELMA-GELPYAHINNRDQIIFMVGRGYA5 4 5 3 5 4 5 1 4 5 3 5PIKWTAPEAA-L-YGR-FTIKSDVWSFGILLTELTTKGRVPYPGMVNR-EVLDQVERGY-L=7 PIKWTAPESL-A-YNK-FSIKSDVWAFGVLLWEIATYGMSPYPGIDLS-QVYELLEKDY-SVLWMAPEVIRMQDDNPFSFQSDVYSYGIVLYELMA-GELPYAHINNRDQIIFMVGRGYA5 4 5 3 5 4 5 1 5 4 5 3 5PIKWTAPEAA-L-YGR-FTIKSDVWSFGILLTELTTKGRVPYPGMVNR-EVLDQVERGY-L=5 PIKWTAPESL-A-YNK-FSIKSDVWAFGVLLWEIATYGMSPYPGIDLS-QVYELLEKDY-SVLWMAPEVIRMQDDNPFSFQSDVYSYGIVLYELMA-GELPYAHINNRDQIIFMVGRGYA

14

2 3R--MPCP-PECPESLHDLMCQCWRKDPEERPTFKYLQAQLLPA-CVLEVAEL=20 R--MERP-EGCPEKVYELMRACWQWNPSDRPSFAEIHQAFETM-FQESSISSPDLSRLYKNCPKAIKRLVADCVKKVKEERPLFPQILSSIELLQHSLPKIN4 2 4 3 4R--MPCP-PECPESLHDLMCQCWRKDPEERPTFKYLQAQL-LPACVLEVAEL=10 R--MERP-EGCPEKVYELMRACWQWNPSDRPSFAEIHQAF-ETMFQESSISSPDLSRLYKNCPKAIKRLVADCVKKVKEERPLFPQILSSIELLQHSLPKIN****4 5 2 5 4 5 3 5 4 5R--MPCP-PECPESLHDLMCQCWRKDPEERPTFKYLQAQL-LPACVLEVAEL=7 R--MERP-EGCPEKVYELMRACWQWNPSDRPSFAEIHQAF-ETMFQESSISSPDLSRLYKNCPKAIKRLVADCVKKVKEERPLFPQILSSIELLQHSLPKIN****4 5 2 5 4 5 3 5 4 5R--MPCP-PECPESLHDLMCQCWRKDPEERPTFKYLQAQL-LPACVLEVAEL=5 R--MERP-EGCPEKVYELMRACWQWNPSDRPSFAEIHQAF-ETMFQESSISSPDLSRLYKNCPKAIKRLVADCVKKVKEERPLFPQILSSIELLQHSLPKIN****Our second example shows results obtained by applying our procedure with L = 5,10, 20, 40, 60, and 120 to three ATPases of lengths 460, 480, and 509, respectively,also aligned in [26] (ATPase � chain - Escherichia coli, ATPase � chain - bovinemitochondria, ATPase � chain - bovine mitochondria). All other parameters are setto the same values as in the previous example. The following table shows the runningtimes and score values of the resulting alignments. Note that the last column showsresults of the \classical" dynamic programming procedure for three sequences, as it isperformed by our procedure with L = 600. In contrast, MSA only needs 12.95 seconds,yielding the same alignment. So, it seems desirable to combine our algorithm withthe ideas and procedures used in MSA, { a task we intend to work on in the nearfuture.L 5 10 20 40 60 120 600CPU time (in seconds) 0.45 0.54 0.87 2.14 7.21 27.20 402.56absolute score 11439 11444 11445 11449 11449 11455 11455References[1] L. Allison. A Fast Algorithm for the Optimal Alignment of Three Strings. J. theor.Biol., 164:261{269, 1993.[2] S. F. Altschul. Gap Costs for Multiple Sequence Alignment. J. theor. Biol., 138:297{309, 1989.[3] S. F. Altschul, R. J. Carroll, and D. J. Lipman. Weights for Data Related by a Tree.J. Mol. Biol., 207:647{653, 1989.[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic LocalAlignment Search Tool. J. Mol. Biol., 215:403{410, 1990.15

[5] S. F. Altschul and D. J. Lipman. Trees, Stars, and Multiple Biological SequenceAlignment. SIAM J. Appl. Math., 49(1):197{209, 1989.[6] V. Bafna, E. L. Lawler, and P. A. Pevzner. Approximation Algorithms for MultipleSequence Alignment. In Crochemore, M. and Gus�eld, D., editor, CombinatorialPattern Matching, 5th Annual Symposium, CPM 94, Asilomar, CA, USA, June 5-8,1994. Proceedings, number 807 in Lecture Notes in Computer Science, pages 43{53,Berlin, 1994. Springer Verlag.[7] H.-J. Bandelt and J. P. Barthelemy. Medians in Median Graphs. Discrete AppliedMathematics, 8:131{142, 1984.[8] H. Carrillo and D. Lipman. The Multiple Sequence Alignment Problem in Biology.SIAM J. Appl. Math., 48(5):1073{1082, 1988.[9] S. C. Chan, A. K. C. Wong, and D. K. Y. Chiu. A Survey of Multiple SequenceComparison Methods. Bull. Math. Biol., 54(4):563{598, 1992.[10] R. F. Doolittle, editor. Molecular Evolution: Computer Analysis of Protein and Nu-cleic Acid Sequences, volume 183 of Methods in Enzymology. Academic Press, Inc.,San Diego, CA, USA, 1990.[11] A. W. M. Dress, G. F�ullen, and S. W. Perrey. A Divide and Conquer Approachto Multiple Alignment. In Proc. of the Third Conference on Intelligent Systems forMolecular Biology, ISMB 95, pages 107{113. AAAI Press, Menlo Park, CA, USA,1995.[12] D.-F. Feng and R. F. Doolittle. Progressive Sequence Alignment as a Prerequisite toCorrect Phylogenetic Trees. J. Mol. Evol., 25:351{360, 1987.[13] O. Gotoh. Alignment of Three Biological Sequences with an E�cient Traceback Pro-cedure. J. theor. Biol., 121:327{337, 1986.[14] M. Gribskov, A. D. McLachlan, and D. Eisenberg. Pro�le Analysis: Detection ofDistantly Related Proteins. Proc. Natl. Acad. Sci. USA, 84(13):4355{4358, 1987.[15] S. K. Gupta, J. D. Kececioglu, and A. A. Sch�a�er. Improving the Practical Space andTime E�ciency of the Shortest-Paths Approach to Sum-of-Pairs Multiple SequenceAlignment. J. Comp. Biol., 2(3):459{472, 1995.[16] J. Hein. Uni�ed Approach to Alignment and Phylogenies. In Doolittle, R. F., editor,Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences, vol-ume 183 of Methods in Enzymology, chapter 39, pages 626{645. Academic Press, Inc.,San Diego, CA, USA, 1990.[17] D. G. Higgins and P. M. Sharp. CLUSTAL: A Package for Performing Multiple Se-quence Alignment on a Microcomputer. Gene, 73:237{244, 1988.[18] M. Hirosawa, M. Hoshida, M. Ishikawa, and T. Toya. MASCOT: Multiple AlignmentSystem for Protein Sequences Based on Three-Way Dynamic Programming. CABIOS,9(2):161{167, 1993.[19] D. S. Hirschberg. A Linear Space Algorithm for Computing Maximal Common Sub-sequences. Communications of the ACM, 18(6):341{343, 1975.[20] X. Huang. Alignment of Three Sequences in Quadratic Space. Applied ComputingReview, 1(2):7{11, 1993. 16

[21] M. S. Johnson and R. F. Doolittle. A Method for the Simultaneous Alignment ofThree or More Amino Acid Sequences. J. Mol. Evol., 23:267{278, 1986.[22] S. Karlin, M. Morris, G. Ghandour, and M.-Y. Leung. E�cient Algorithms for Molec-ular Sequence Analysis. Proc. Natl. Acad. Sci. USA, 85:841{845, 1988.[23] J. Kececioglu. The Maximum Weight Trace Problem in Multiple Sequence Alignment.In Apostolico, A. and Crochemore, M. and Galil, Z. and Manber, U., editor, 4thAnnual Symposium, CPM 93, Padova, Italy, June 2-4, 1993. Proceedings, number684 in Lecture Notes in Computer Science, pages 106{119, Berlin, 1993. SpringerVerlag.[24] U. Lessel and D. Schomburg. Similarities Between Protein 3D Structures. ProteinEngng., 7(10):1175{1187, 1994.[25] D. J. Lipman, S. F. Altschul, and J. D. Kececioglu. A Tool for Multiple SequenceAlignment. Proc. Natl. Acad. Sci. USA, 86:4412{4415, 1989.[26] M. Murata. Three-Way Needleman-Wunsch Algorithm. In Doolittle, R. F., editor,Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences, vol-ume 183 of Methods in Enzymology, chapter 22, pages 365{375. Academic Press, Inc.,San Diego, CA, USA, 1990.[27] M. Murata, J. S. Richardson, and J. L. Sussman. Simultaneous Comparison of ThreeProtein Sequences. Proc. Natl. Acad. Sci. USA, 82:3073{3077, 1985.[28] E. W. Myers. An Overview of Sequence Comparison Algorithms in Molecular Biology.Technical Report TR 91-29, University of Arizona, Tucson, Department of ComputerScience, 1991.[29] E. W. Myers and W. Miller. Optimal Alignments in Linear Space. CABIOS, 4(1):11{17, 1988.[30] D. Naor and D. L. Brutlag. On Near-Optimal Alignments of Biological Sequences. J.Comp. Biol., 1(4):349{366, 1994.[31] S. B. Needleman and C. D. Wunsch. A General Method Applicable to the Search forSimilarities in the Amino Acid Sequence of Two Proteins. J. Mol. Biol., 48:443{453,1970.[32] W. R. Pearson and D. J. Lipman. Improved Tools for Biological Sequence Comparison.Proc. Natl. Acad. Sci. USA, 85:2444{2448, 1988.[33] D. Sanko�, R. J. Cedergren, and G. LaPalme. Frequency of Insertion-Deletion,Transversion, and Transition in the Evolution of 5S Ribosomal RNA. J. Mol. Evol.,7:133{149, 1976.[34] D. Sanko� and J. B. Kruskal, editors. Time Warps, String Edits, and Macromolecules:The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading, MA,USA, 1983.[35] P. R. Sibbald and P. Argos. Weighting Aligned Protein or Nucleic Acid Sequences toCorrect for Unequal Representation. J. Mol. Biol., 216:813{818, 1990.[36] T. F. Smith and M. S. Waterman. Comparison of Biosequences. Adv. Appl. Math.,2:482{489, 1981. 17

[37] T. F. Smith and M. S. Waterman. Identi�cation of Common Molecular Subsequences.J. Mol. Biol., 147:195{197, 1981.[38] W. R. Taylor. Multiple Sequence Alignment by a Pairwise Algorithm. CABIOS,3:81{87, 1987.[39] W. R. Taylor. A Flexible Method to Align Large Numbers of Biological Sequences. J.Mol. Evol., 28:161{169, 1988.[40] W. R. Taylor. Motif-biased Protein Sequence Alignment. J. Comp. Biol., 1(4):297{310, 1994.[41] W. R. Taylor and K. Hatrick. Compensating Changes in Protein Multiple SequenceAlignments. Protein Engng., 7(3):341{348, 1994.[42] J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: Improving theSensitivity of Progressive Multiple Sequence Alignment through Sequence Weight-ing, Position-Speci�c Gap Penalties and Weight Matrix Choice. Nucl. Acids Res.,22(22):4673{4680, 1994.[43] M. Vingron and P. Argos. Determination of Reliable Regions in Protein SequenceAlignments. Protein Engng., 3(7):565{569, 1990.[44] M. Vingron and P. Argos. Motif Recognition and Alignment for Many Sequences byComparison of Dot-Matrices. J. Mol. Biol., 218:33{43, 1991.[45] M. Vingron and P. R. Sibbald. Weighting in Sequence Space: A Comparison ofMethods in Terms of Generalized Sequences. Proc. Natl. Acad. Sci. USA, 90:8777{8781, 1993.[46] M. Vingron and A. von Haeseler. Towards Integration of Multiple Alignment andPhylogenetic Tree Construction. Arbeitspapiere 852, GMD, 1994.[47] L. Wang and T. Jiang. On the Complexity of Multiple Sequence Alignment. J. Comp.Biol., 1(4):337{348, 1994.[48] M. S. Waterman. Introduction to Computational Biology. Maps, Sequences andGenomes. Chapman & Hall, London, UK, 1995.[49] M. S. Waterman and M. D. Perlwitz. Line Geometries for Sequence Comparisons.Bull. Math. Biol., 48(4):567{577, 1984.[50] M. S. Waterman, T. F. Smith, and W. A. Beyer. Some Biological Sequence Metrics.Adv. Math., 20:367{387, 1976.[51] M. S. Waterman and M. Vingron. Sequence Comparison Signi�cance and PoissonApproximation. Statistical Science, 9(3):367{381, 1994.
18

