Universitat Bielefeld
Forschungsschwerpunkt Mathematisierung —
Strukturbildungsprozesse

Materialien/Preprints XCIX

A General Method for
Fast Multiple Sequence Alignment

Udo Tonges
Soren W. Perrey

Jens Stoye
Andreas W. M. Dress

Bielefeld 1996

Classification code(s) according to the
1980 Mathematics Subject Classification of
Mathematical Reviews:

92-04
92A10
68K05

Forschungsschwerpunkt Mathematisierung — Telefon: (05 21) 1 06-47 64
Strukturbildungsprozesse Fax: (05 21) 1 06-60 07
Universitat Bielefeld

Postfach 10 01 31 e-mail:

D-33501 Bielefeld fspOmathematik.uni-bielefeld.de

A General Method for Fast Multiple Sequence
Alignment

Udo Tonges? Soren W. Perrey! Jens Stoye* Andreas W. M. Dress*

Abstract

We have developed a fast heuristic algorithm for multiple sequence align-
ment which provides near-to-optimal results for sufficiently homologous se-
quences. The algorithm makes use of the standard dynamic programming
procedure by applying it to all pairs of sequences. The resulting score ma-
trices for pairwise alignment give rise to secondary matrices containing the
additional charges imposed by forcing the alignment path to run through a
particular vertex. Such a constraint corresponds to slicing the sequences at
the positions defining that vertex, and aligning the remaining pairs of prefix
and suffix sequences seperately. From these secondary matrices, one can com-
pute — for any given family of sequences — suitable positions for cutting all of
these sequences simultaneously, thus reducing the problem of aligning a family
of n sequences of average length [in a Divide and Conquer fashion to aligning
two families of n sequences of approximately half that length.

In this paper, we explain the method for the case of 3 sequences in detail,
and we demonstrate its potential and its limits by discussing its behaviour for
several test families. A generalization for aligning more than 3 sequences is
lined out, and some actual alignments constructed by our algorithm for various
user-defined parameters are presented.

Key words: dynamic programming; secondary matrix; divide and conquer; pairwise
sequence alignment; multiple sequence alignment

*Research Center for Interdisciplinary Studies on Structure Formation (FSPM), University of
Bielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germany.
e-mail: {toenges,stoye,dress}@mathematik.uni-bielefeld.de

tDepartment of Mathematics, Massey University, Palmerston North, New Zealand. e-mail:
S.W.Perrey@massey.ac.nz

1 Introduction

The construction of biologically plausible alignments for given families of DNA or
protein sequences is one of the major problems in computational molecular biology.
Consequently, the design and study of alignment procedures is presently a very active
area of research, with an abundance of publications and software contributions (see
[48], [34], [9], or [28] for a survey). While some papers (e.g. [27], [26], [8], [20],
[1]) propose procedures to speed up the search for the “true” multiple sequence
alignment, that is, the optimal alignment relative to some predefined optimality
criterion (see below), others ([39], [17], [42], [23], [6]) — like the present one — propose
computationally efficient heuristics for constructing good, though not necessarily
“optimal” alignments.

An often discussed formalization of the multiple alignment problem is the fol-
lowing one: Given n sequences $i, Sg, .., S, of lengths [y, s, .., [, respectively, whose
entries have been taken from a finite alphabet A, and given a weight function

w: (AU{-})" — R,

[13

where “—” denotes the gap letter which is different from all letters of A,
find an n x N matrix M = (my;)i1<k<ni1<j<n for some N < Y7 [, with entries
myg; € AU {—} that minimizes its w-score

N

w(M) =Y w(my, ..., M)

=1

among all such matrices which present an alignment of the sequences sy, ss,...,5,,
that is, which do not contain any column consisting of gaps only and which, for each
row (mgi, Mg, - .., Mgy), reproduce the sequence s, upon eliminating all of its gap
letters (k =1,2,...,n).

Weight functions often used in this context are weighted sum-of-pairs scores, de-
fined by!

w(myj, maj, .., M) = > 6(myj, myr;) + s
k<k'

where the parameters oy, ;s are sequence-dependent weights, and

§:(AU{-})? >R

is a (real-valued) weight function, defined on all possible pairs of matrix entries (cf.
[27], [13], [8]). Obviously, the optimization task is to elongate the given sequences
by inserting gaps, bringing all of them up to the same length (denoted above by N)
and, simultaneously, minimizing the sum over all “column weights”.

'In the formula below, we charge for gaps at the begining or the end of a sequence the same way
we charge for them anywhere inbetween two residues, and we assume additive gap penalties. There
are simple remedies available if other charges are applied. They will be discussed in a separate

paper.

It is well known that this problem can be solved optimally by dynamic program-
ming (cf. [31], [48]). In our algorithm, we use this dynamic programming procedure
by applying it to all pairs of sequences. The resulting score matrices for pairwise
alignment give rise to secondary matrices C(iy, 1,)1<i,<1,,1<i, <1, containing the addi-
tional charges imposed by slicing the sequences s, and s, at the positions 7, and i,,,
respectively, and aligning the remaining pairs of prefix and suffix sequences seper-
ately.

Upon fixing one position where we want to cut one of our sequences — in general
at or, at least, somewhere close to its midpoint —, we search for those positions for
cutting the remaining n — 1 sequences which correspond to a minimal (appropriately
weighted, if neccessary) sum of the corresponding (g) additional secondary charges.

This way, our original problem of aligning a family of n sequences of average
length [can be reduced in a Divide and Conquer fashion to the problem of aligning
two families of n sequences of approximately half that length. Consequently, applying
this step iteratively will eventually result in a collection of multiple alignment prob-
lems involving rather short sequences only, which can then be handled by standard
procedures.

A first outline of this method has recently been presented at the Third Inter-
national Conference on Intelligent Systems for Molecular Biology in Cambridge (cf.
[11]). Here, we give a detailed description of our procedure, and we present some
test cases which allow to evaluate its potential and its limits. We focus in particular
on the quality of the results as measured by the alignment score, and on the time
complezity (measured in CPU time). We also study its dependence on several user-
defined parameters, and on the input order. In an appendix, some actual alignments
constructed by our algorithm are presented.

2 Method

We introduce the algorithm for the case of three sequences. There are several pos-
sibilities to generalize the method to more than three sequences, — a rather natural
one will be mentioned later on, a more thorough discussion is in preparation.

In a way, our method is reminiscent of D.S. Hirschberg’s proposal for calculating
a shortest alignment path of two sequences using memory in the magnitude of only
the length of one of the sequences (cf. [19]). Also, our method of calculating the
degree of deviation from the path of the optimal alignment is similar to a procedure
used in [43].

Let s, s be two sequences with entries from a finite alphabet A and with se-
quence lengths [; = I(s1) and Iy = [(sg), respectively, and let w denote a score
function defined on pairs of sequences calculated by applying the standard (dynamic
programming) alignment scheme. Then, the additional charge Cs, ,[i1, 2] imposed
by slicing the sequences s; and s, at the positions i; and iy, respectively, is defined

by?
051,52[7:1,7:2] = w [SI(S ’il),SQ(S Zg)] + w [51(> 11),82(> Zg)] —w [81,52],

where s;(< ;) denotes the (prefix) subsequence of s, with indices running from 1
to iy and si(> i) denotes the (suffix) subsequence of s, running from iy + 1 to
I (k=1,2).

The matrix C, 5, = (Csy,5,[41,02])1 o5, <) 1<iy<s,» WL call the secondary matrix
of the sequences s, so.

Note that there exists, for every i, at least one position iy(i;) with

051,52[i17i2(i1)] =0:

If an optimal alignment of s; and s, matches the prefix sequence s(< i) with
$o(< i), then put iy(iy) := i3. Obviously, once we know iy(i;), we can find an
optimal alignment of s; and sy by concatenating optimal alignments of s;(< i;) and
s2(< i9) and of s1(> i1) and sy(> i3) which can be computed independently of each
other.

Similarly, if an optimal multiple alignment of s;, so, and s3 matches the prefix
sequence s1(< 41) with so(< #)) and s3(< 44), we can find an optimal multiple
alignment of sq, s5, and s3 by concatenating optimal alignments of s1(< i1), s2(< is),
and s3(< i3) and of s1(> i1), so(> i2), and s3(> i3). Consequently, to construct an
(almost) optimal multiple alignment of s;, so, and s3 by concatenation of (almost)
optimal alignments of appropriately chosen prefix and suffix sequences, we try to
estimate, for a given position i; of s; and any two positions i, and i3 of s, and
sz, respectively, the additional charges imposed by concatenating an alignment of
s1(<iy), so(< ig), and s3(< i3) as well as of s1(> 41), so(> i2), and s3(> i3).

To this end, we use the (weighted) sum of secondary charges over all projec-
tions (i1, 1%2), (i1, 1%3), and (iz,i3) as such an estimate, that is, for any three sequences
S1, S9, 53 and any three integers iy, i, i3 with 0 < i, < I(sx) (k =1,2,3), we put

Cl(iy, ta,13) = Cy solin,0a] - 10+ Cs, sulin, 03] - @13 + O, s5]i2, 73] - 023,

where the coefficients ;9,1 3, and ay3 are appropriately chosen weight factors
reflecting e.g. phylogenetic relationship?.

Next, we put i; := [l;/2] (or close to this value), and use the secondary ma-
trix Coyoy = (Conss @ Y]) 1 cpcrpicy<s, @8 well as the rows (Cy, 4,001, 7)), oy, and
(Cs, 54 [il,y])1<y<l3 of the secondary matrices Cy, 5, and Cj, 4,, respectively, to find

2Here, as above, we charge for gaps at the begining or the end of a sequence the same way we
charge for them anywhere between two residues, and we assume additive gap penalties.

3 How to choose weight factors appropriately for a given task is itself an important and much
studied scientific topic (cf. [3], [35], [45]). In our context, it seems biologically plausible to give higher
weights to the more similar pairs, as having them aligned optimally should be more important than
aligning two fairly unrelated sequences optimally on the expense of worthening a good alignment
of closely related sequences.

those positions iy and i3 which minimize C(iy,4,43). These positions can, in prin-
ciple, be found by exhaustive search over all iy (0 < iy < ly) and i3 (0 < i3 < [3).
Of course, shortcuts can be used, the most obvious one being not to consider any
position i3 for those positions i, for which Cj, ,[i1, 2] is at least as large as the opti-
mum found so far. The speed-up resulting from this simple device alone guarantees
already that the overall time needed for finding the optimal cut positions i, and i3
is a comparatively small fraction, only, of the — also quite small — total time needed
by our algorithm, — so it is definitely not the bottleneck.

We expect these positions to either coincide with @, (i;) and i5(i;) or, at least, to
define slicing positions such that the score of the resulting alignment is not much
above the score of an optimal alignment of sy, s, and s3. The reason for this
expectation is that aligning three sequences optimally, a compromise has to be found
between the three, in general not compatible optimal pairwise alignments and that
the value of C(iy, is, 3) is a good measure for the total “expenses” of the compromise
associated with aligning the sequences by concatenating optimal alignments of the
three prefix and the three suffix sequences resulting from the associated cuts.

Based on this expectation, we iterate our procedure, that is, we replace the
original multiple alignment problem by the two alignment problems posed by the
three prefix sequences s1(< i1), s9(< is), s3(< 43) and by the three suffix sequences
s1(> 1), s2(> i2),s3(> i3), and we go on searching for suitable vertices in their
alignment diagrams to cut them down further into still smaller sequence triples.

Note that, at this stage, the sequences under consideration have only been divided
into several triples of subsequences but have not been aligned so far. This is simply
done as follows: At some iteration step, we stop the dividing process and start using
some score-optimal alignment procedure (e.g. standard dynamic programming, or
faster versions of it, like MSA, cf. [25], [15]) to align the remaining subsequences.

At present, we have investigated combinations of the following two alternatives
as a stopping criterion®:

e a threshold L for the shortest length of the three (sub)sequences under consid-
eration, and

e athreshold D for the number of iteration steps of the dividing process (recursion
depth).

Altogether, this leads to the following general procedure:
Algorithm d&c-align (sq, s2,s3,L, D)

If mingego2p{le} < Lor D=0
then return the optimal alignment of sy, s, s3;

#Other or additional criteria are also conceivable, e.g. one could start the score-optimal procedure
once all three (sub)sequences under consideration are ‘sufficiently homologous’. This in turn could
be defined by some function depending on the length and the pairwise alignment scores of the three
(sub)sequences.

else put iy := [ly/2], and search for indices iy € {0,..,{1} and i3 € {0,..,l5}
which minimize C'(iy, iy, i3);
return the Concatenation of d&c-align (s1(< 41), 52(< 42), s53(<43), L, D — 1)

and d&c-align (s1(> 1), s2(> 12), s3(> i3), L, D — 1);

3 Results

Our alignment algorithm has been applied to several sets of random and of biologi-
cally defined sequences. For defining the weight factors a;; (1,7 € {1,2,3}, i # j),
we have simply used the optimal (distance) score of the pairwise alignment to define

min{w(sy, s2), w(s1, s3), w(s2, 53)}
w(3i7 Sj)

Q5 = ,
so that a; ; <1 for all 4,5 and «; ; = 1 if and only if the pair of sequences (s;, s;) has
the highest similarity (lowest alignment score) of all three possible pairs of sequences
under consideration?.

We have evaluated the quality of the resulting alignments by comparing the scores
to the (formally) optimal scores (obtained by our procedure for L > min{ly, s, [3} or
D =0).

Figures 1 and 2 show the running time (CPU) in seconds versus D = 0,1,...,10
and L = 5,10,20,...,100, respectively. For variable D (Fig.1), we fixed L := 3 in
order not to force the algorithm trying to cut our sequences more often than possible.
For variable L (Fig.2), we fixed D := 10 in order not to stop the algorithm before
the threshold L is reached.

The sequence triples considered are protein sequences (average length [~ 300 :
tyrosine kinase, some actual alignments are given in the appendix; [=~ 900 : glrl-
human, glr2-human, glr3-human; [~ 1000 : P115-Bovin, P115-Rat, P115-Mychr)
and DNA-sequences (I &~ 1300 : human immuno deficiency virus: hivld044, hivld744,
hiv1d868).

As expected, the CPU time needed by our procedure is much smaller than that
needed by standard dynamic programming (that is, the value obtained for L >
min({y, ly,l3) or D := 0). For increasing D with D < 4, the running time decreases
rapidly and becomes almost constant, — in the magnitude of seconds, — for D > 5.
Similarly, for increasing L with L < 30, the running time is almost constant while
for L > 30 it also increases considerably.

rel. Score (%)

3000

T T T T 40 T T T T T T T T T
=300 ~o— o =300 ~o— o
=900 -+ - 12900 —+- NIV
2500 |- 1=1000 -=-- I=1000 -B-- /
1 1=1300 - 30 b 1=1300 - i
2000 i ”s
o 1500 -, 1 @ 20 | SO |
= = N . ST e |
1000 | \.‘\‘.\ i 15 X - x NG //+
\ : 10 + JI = R o P i
0 P
500 Sk sl
0 - T S 0 A S (R T TR
0 2 4 6 8 10 0 10 20 30 40 50 60 70 80 90 100
D L
Figure 1

Figure 2

In Figures 3 and 4, the relative scores, obtained for various values of D (with
fixed L := 3) and L (with fixed D := 10) are shown, that is, the percentage of the
optimal score by which the score actually obtained by our algorithm exceeds the

optimal one. The relative scores increase very slowly for increasing D with D < 5
and for decreasing L with L > 30.

0.45 T T T T 0.45 T T T T T T T T T
=300 —<— : =300 —<—
04 1 |=900 —+-- ; T 04 1% 12900 —+--]
[=1000 -&-- ; .. I=1000 -8--
035 [|=1300 -x— b 0.35 | [=1300 x|
03} 4~ 03|} .
g :
0.25 |- 4 o 025f) | .
5 AT S %
0.2 | S - » 02k = i
0.15 ; E 015 |
) X ' o \ Y,
01| ; 01) <
X RN P —
0.05 0.05 | -
Y R - 0 A VR W —
0 2 4 0 10 20 30 40 50 60 70 80 90 100
D L
Figure 3 Figure 4

Together, these observations suggest that putting L ~ 40 and D > 0 will lead to
a very fast alignment procedure with close to score-optimal results.

We also have investigated the sensitivity of our approach to the input order of
the sequences. The running time and the scores seem to be basically independent of
this order when the sequences under consideration have essentially the same degree
of pairwise homology. If these degrees differ significantly, the input order has some

more influence on the performance and quality of our procedure: in this case, it seems

best to choose for s; the sequence exhibiting least homology relative to the other two
sequences.

Finally, we have investigated whether the alignment scores improve upon relaxing

the restriction imposed by fixing the first cut point 7, on exactly [[;/2]. For some

Time (sec)

small 6 € N (e.g. d =5,...,25), we simply search in each division step for that i; in

the intervall
[1,/2] — 6 < iy < [lh/2] + 9,

which leads to the smallest additional charge C(iy,s,73). As is shown in Figures 5
and 6, there is no substantial influence on running time and obtained relative score

for those sequence triples we have investigated so far (here, we put L := 40 and
D := 10, as suggested above).
18 T T T T 05 T T T T
1=300 —<— 1=300 ~—
16 T e TG e S =900 —+-
e I=1000 -&3-- 04 & X I=1000 -B--]
14 - [=1300 %~ | [=1300 -
12¢ 1 & o3f -
O e a— ™
R - g o2t e 8
8 | - (/I) N Y S
5
6 4 = o1} .
Ar] 0 DO S Gz e b
2 - -
O 1 1 1 1 _01 1 1 1 1
0 5 10 15 20 25 0 5 10 15 20 25
5 5
Figure 5 Figure 6

In the appendix, some actual alignments constructed by our algorithm are presented.

4 Discussion

It is standard practice to use dynamic programming for calculating a global (score-
Joptimal alignment of two sequences. The natural extension of this algorithm to
multiple alignment is limited to small numbers of relatively short sequences because
the search space increases exponentially with the number of sequences under consid-
eration (cf. [25]). Clearly, pairwise alignments (so-called ‘projections’) can be used
for cutting down the computational complexity of the (standard) dynamic program-
ming procedure (cf. [8], [25]). Similarly, secondary matrices resulting from imposing
specific vertices to be traversed by the path through the dynamic programming graph
have also been considered before to reduce the amount of memory required (cf. [19],
[29], [20]).

Yet, the use of secondary matrices of the projections of the multiple alignment
problem in order to presort simultaneously every sequence under consideration into
several subsequences in a “Divide and Conquer” fashion appears to be a novel ap-
proach.

Recently, it was shown that — not unexpectedly — multiple sequence alignment
with the sum-of-pairs score is NP-complete (cf. [47]). Therefore, to align large-size
sets of sequences in reasonable time, one needs fast heuristic algorithms. Unfortu-
nately, most of the more reliable heuristic approaches suffer from high computational

10

costs for large-size problems, while fast heuristics often do not yield plausible results.
So, there is some pressure for developing fast and, simultaneously, sufficiently reliable
heuristics.

In this context, our algorithm offers the following advantages:

e [t is very fast. Even when the input sequences are rather long, the user can
specify the thresholds L and D appropriately in order to cut down the running
time by orders of magnitudes, that is, down to just seconds.

e [t results in near-to-optimal alignments as measured by the alignment score.

e [t uses memory of about the magnitude needed for pairwise alignment even if
the multiple alignment itself (and not only its score) is calculated.

In addition, there exist several ways to generalize our algorithm to a multiple
alignment procedure for more than 3 sequences. One natural and simple extension
of the method outlined above is to compute all pairwise secondary matrices and the
additional charge function

C(il, e ,in) = Z Csk,s;C [ik, ikl] . Oék,k/.
1<k<k'<n

Using a small (sub)sequence length threshold L or a high recursion depth threshold
D, the size of the hypercubes to be solved by dynamic programming (or MSA) can
always be reduced to manageable dimensions. In addition, if a large number of
sequences is to be considered, the design of clever branch and bound methods for
speeding up the search for appropriate slicing points will become more and more
important.

Most multiple alignment procedures align the sequences in a hierarchical order by
first pre-clustering the sequences and then aligning them — or profiles derived from
them — recursively (cf. [42]). To obtain a biologically reasonable alignment, these
clusters should actually reflect phylogenetic relationships between the sequences in
question. Yet, most algorithms for reconstructing phylogenies need aligned sequences
(or distances between the sequences, derived from alignments) as their input.

In other words, (multiple) sequence alignment and the reconstruction of phylo-
genetic relationships require each other. Consequently, it has been argued that both
should be done in synchrony (cf. [16]). As branching points in trees always need
exactly three leaves (or other branching points constructed already) to be specified
as the median (cf. [7]) of those tree vertices, our method — even in its present state
of infancy — might be rather useful in this context (cf. [33], [46]).

Acknowledgements

The authors wish to thank the referees for helpful constructive comments on an
earlier version of this paper. This research is supported by the German Ministry for
Research and Technology (BMBF) under grant number 01 IB 301 B4.

11

Appendix

Finally, we present some actual alignments constructed by our algorithm.

The first example shows alignments of three tyrosine kinase sequences (of lengths
[= 273,15 = 280,13 = 280), obtained with thresholds L = 20, 10,7,5 (D = 10 fixed),
whereby — as we know from running our algorithm with L > 273 (or D = 0) - the
(score-)optimal alignment is obtained for L = 20. In order to compare them easily, we
present the alignments blockwise. Above the alignments, the dividing step numbers
are printed, and the positions different from the optimal alignment are marked by ”x”
below the alignment. Note that there are only three regions (of length 4 or 7) where
the fastest suboptimal version (L = 5) differs from the optimal one. In particular, all
regions of a suboptimal alignment obtained for some threshold L have been aligned
in exactly the same way by all versions L' with L' < L. This can be used to select
the (most probably) correctly aligned regions from a set of suboptimal alignments
constructed by fast versions (L very small) of our procedure.

We have observed that the alignments obtained for small L differ from the optimal
alignment mainly in rather short regions around gaps. This suggest a windowing
approach where, for a sufficiently small window around gaps, an optimal alignment
procedure is applied. We will discuss this idea in a later paper.

As score matrix, we have used PAM250 (with integer entries between 0 and 25),
homogeneous gap penalties of value —8, and gap-to-gap penalties of value 0. In
the following table, the CPU time, the relative score, and the number of alignment
positions different from the optimal alignment are given. The CPU time is measured
in seconds on a Silicon Graphics computer (CPU: MIPS R4000, 100 MHZ, 64 MB
memory, 1 MB cache), and the memory needed is about 250 KB. Note that standard
dynamic programming, obtained by our method for L > 273 (or D := 0), needs 93.41
seconds CPU time on this computer. The commonly used so-called MSA algorithm
needs 7.56 seconds (cf. [8]).

We also have compared our alignments with those constructed by Clustal W and
by Maximum Weight Trace (cf. [42], [23]). Most positions of these alignments are
identical to the score-optimal and almost all of those are contained in long stretches
without gaps. Consequently, once again, most differences occur around gaps.

L 5 7 10 20 60 300
CPU time (in seconds) 0.32 | 0.34 | 0.39 | 0.59 | 1.40 | 93.41
absolute score 7008 | 7011 | 7015 | 7016 | 7016 | 7016
number of non-optimal positions | 17 12 D 0 0 0

12

L=20

L=10

L=7

L=20

L=10

3 2 3
—---GLAKDA--WEIPRESLRLEAKLGQGCFGEVWMGTWND-TTRVAI-KTLKPGTMSPEA
TIYGVSPNYDKWEMERTDITMKHKLGGGQYGEVYEGVWKKYSLTVAV-KTLKEDTMEVEE
---5-S-YY--WKMEASEVMLSTRIGSGSFGTVYKGKWHG-DVAVKILKVVDPTPEQLQA

4 3 4 2 4 3
—---GLAKDA--WEIPRESLRLEAKLGQGCFGEVWMGTWND-TTRVAI-KTLKPGTMSPEA
TIYGVSPNYDKWEMERTDITMKHKLGGGQYGEVYEGVWKKYSLTVAV-KTLKEDTMEVEE
---5-S-YY--WKMEASEVMLSTRIGSGSFGTVYKGKWHG-DVAVKILKVVDPTPEQLQA

4 b 3 5 4 b5 2 5 4 b 3
—---GLAKDA--WEIPRESLRLEAKLGQGCFGEVWMGTWNDTTRV-AI KTLKPGTMSPEA
TIYGVSPNYDKWEMERTDITMKHKLGGGQYGEVYEGVWKKYSLTVAV KTLKEDTMEVEE
---5-S-YY--WKMEASEVMLSTRIGSGSFGTVYKGKWHGDVAVKIL KVVDPTPEQLQA

ko ok ok ok ok ok
5 4 b 3 5 4 5 2 5 4 b 3
—---GLA-KDA-WEIPRESLRLEAKLGQGCFGEVWMGTWNDTTRV-AI KTLKPGTMSPEA
TIYGVSPNYDKWEMERTDITMKHKLGGGQYGEVYEGVWKKYSLTVAV KTLKEDTMEVEE
---5-S-YY--WKMEASEVMLSTRIGSGSFGTVYKGKWHGDVAVKIL KVVDPTPEQLQA
*okok ok kokook ok ok ok ok

1 3 2
FLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVIEYMSKGSLLDFLKGEMGKYLRLPQLVD
FLKEAAVMKEIKHPNLVQLLGVCTREPPFYIITEFMTYGNLLDYLRECNRQEVSAVVLLY
FRNEVAVLRKTRHVNILLFMGYMTKDN-LAIVTQWCEGSSLYKHLHVQETKF-QMFQLID

4 1 4 3 4 2 4
FLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVIEYMSKGSLLDFLKGEMGKYLRLPQLVD
FLKEAAVMKEIKHPNLVQLLGVCTREPPFYIITEFMTYGNLLDYLRECNRQEVSAVVLLY
FRNEVAVLRKTRHVNILLFMGYMTKDN-LAIVTQWCEGSSLYKHLHVQETKF-QMFQLID

5 4 b 1 5 4 5 3 5 4 b5 2 4
FLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVIEYMSKGSLLDFLKGEMGKYLRLPQLVD
FLKEAAVMKEIKHPNLVQLLGVCTREPPFYIITEFMTYGNLLDYLRECNRQEVSAVVLLY
FRNEVAVLRKTRHVNILLFMGYMTKDN-LAIVTQWCEGSSLYKHLHVQETKF-QMFQLID

5 4 b 1 5 4 5 3 5 4 b 2 5 4
FLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVIEYMSKGSLLDFLKGEMGKYLRLPQLVD
FLKEAAVMKEIKHPNLVQLLGVCTREPPFYIITEFMTYGNLLDYLRECNRQEVSAVVLLY
FRNEVAVLRKTRHVNILLFMGYMTKDN-LAIVTQWCEGSSLYKHLHVQETKF-QMFQLID

13

L=20

L=10

L=7

L=20

L=10

3 0 3 2
MAAQIASGMAYVERMNYVHRDLRAANILVGENLVCKVADFGLARLIED-NEYTARQGAKF
MATQISSAMEYLEKKNFIHRDLAARNCLVGENHLVKVADFGLSRLMTG-DTYTAHAGAKF
TARQTAQGMDYLHAKNITIHRDMKSNNIFLHEGLTVKIGDFGLATVKSRWSGSQQVEQPTG

3 4 0 4 3 4 2
MAAQIASGMAYVERMNYVHRDLRAANILVGENLVCKVADFGLARLIED-NEYTARQGAKF
MATQISSAMEYLEKKNFIHRDLAARNCLVGENHLVKVADFGLSRLMTG-DTYTAHAGAKF
TARQTAQGMDYLHAKNITIHRDMKSNNIFLHEGLTVKIGDFGLATVKSRWSGSQQVEQPTG

5 3 5 4 5 0 5 4 5 3 5 4 b 2
MAAQIASGMAYVERMNYVHRDLRAANILVGENLVCKVADFGLARLIED-NEYTARQGAKF
MATQISSAMEYLEKKNFIHRDLAARNCLVGENHLVKVADFGLSRLMTG-DTYTAHAGAKF
TARQTAQGMDYLHAKNITIHRDMKSNNIFLHEGLTVKIGDFGLATVKSRWSGSQQVEQPTG

5 3 5 4 5 0 5 4 5 3 5 4 b 2
MAAQIASGMAYVERMNYVHRDLRAANILVGENLVCKVADFGLARLIED-NEYTARQGAKF
MATQISSAMEYLEKKNFIHRDLAARNCLVGENHLVKVADFGLSRLMTG-DTYTAHAGAKF
TARQTAQGMDYLHAKNIIHRDMKSNNIFLHEGLTVKIGDFGLATVKSRWSGSQQVEQPTG

3 1 3
PIKWTAPEAA-LYG-R-FTIKSDVWSFGILLTELTTKGRVPYPGMVNR-EVLDQVERGY-
PIKWTAPESL-AYN-K-FSIKSDVWAFGVLLWEIATYGMSPYPGIDLS-QVYELLEKDY-
SVLWMAPEVIRMQDDNPFSFQSDVYSYGIVLYELMA-GELPYAHINNRDQIIFMVGRGYA

4 3 4 1 4 3
PIKWTAPEAA-LYG-R-FTIKSDVWSFGILLTELTTKGRVPYPGMVNR-EVLDQVERGY-
PIKWTAPESL-AYN-K-FSIKSDVWAFGVLLWEIATYGMSPYPGIDLS-QVYELLEKDY-
SVLWMAPEVIRMQDDNPFSFQSDVYSYGIVLYELMA-GELPYAHINNRDQIIFMVGRGYA

5 4 5 3 5 4 b 1 4 5 3 b5
PIKWTAPEAA-L-YGR-FTIKSDVWSFGILLTELTTKGRVPYPGMVNR-EVLDQVERGY-
PIKWTAPESL-A-YNK-FSIKSDVWAFGVLLWEIATYGMSPYPGIDLS-QVYELLEKDY-
SVLWMAPEVIRMQDDNPFSFQSDVYSYGIVLYELMA-GELPYAHINNRDQITIFMVGRGYA

5 4 5 3 5 4 b 1 5 4 b 3 5
PIKWTAPEAA-L-YGR-FTIKSDVWSFGILLTELTTKGRVPYPGMVNR-EVLDQVERGY-
PIKWTAPESL-A-YNK-FSIKSDVWAFGVLLWEIATYGMSPYPGIDLS-QVYELLEKDY-
SVLWMAPEVIRMQDDNPFSFQSDVYSYGIVLYELMA-GELPYAHINNRDQIIFMVGRGYA

14

2 3
R--MPCP-PECPESLHDLMCQCWRKDPEERPTFKYLQAQLLPA-CVLEVAE
R--MERP-EGCPEKVYELMRACWQWNPSDRPSFAEIHQAFETM-FQESSIS
SPDLSRLYKNCPKAIKRLVADCVKKVKEERPLFPQILSSIELLQHSLPKIN

4 2 4 3 4
R--MPCP-PECPESLHDLMCQCWRKDPEERPTFKYLQAQL-LPACVLEVAE
R--MERP-EGCPEKVYELMRACWQWNPSDRPSFAEIHQAF-ETMFQESSIS
SPDLSRLYKNCPKAIKRLVADCVKKVKEERPLFPQILSSIELLQHSLPKIN

*ok ok k

4 5 2 5 4 b5 3 5 4 b
R--MPCP-PECPESLHDLMCQCWRKDPEERPTFKYLQAQL-LPACVLEVAE
R--MERP-EGCPEKVYELMRACWQWNPSDRPSFAEIHQAF-ETMFQESSIS
SPDLSRLYKNCPKAIKRLVADCVKKVKEERPLFPQILSSIELLQHSLPKIN

*okok ok

4 5 2 5 4 b5 3 5 4 b
R--MPCP-PECPESLHDLMCQCWRKDPEERPTFKYLQAQL-LPACVLEVAE
R--MERP-EGCPEKVYELMRACWQWNPSDRPSFAEIHQAF-ETMFQESSIS
SPDLSRLYKNCPKAIKRLVADCVKKVKEERPLFPQILSSIELLQHSLPKIN

*ok ok k

Our second example shows results obtained by applying our procedure with L = 5,
10, 20, 40, 60, and 120 to three ATPases of lengths 460, 480, and 509, respectively,
also aligned in [26] (ATPase [chain - Escherichia coli, ATPase [chain - bovine
mitochondria, ATPase « chain - bovine mitochondria). All other parameters are set
to the same values as in the previous example. The following table shows the running
times and score values of the resulting alignments. Note that the last column shows
results of the “classical” dynamic programming procedure for three sequences, as it is
performed by our procedure with L = 600. In contrast, MSA only needs 12.95 seconds,
yielding the same alignment. So, it seems desirable to combine our algorithm with
the ideas and procedures used in MSA, — a task we intend to work on in the near

future.

I 5 10 20 40 60 120 | 600
CPU time (in seconds) | 0.45 | 0.54 | 0.87 | 2.14 | 7.21 | 27.20 | 402.56
absolute score 11439 | 11444 | 11445 | 11449 | 11449 | 11455 | 11455
References

[1] L. Allison. A Fast Algorithm for the Optimal Alignment of Three Strings. J. theor.
Biol., 164:261-269, 1993.

[2] S. F. Altschul. Gap Costs for Multiple Sequence Alignment. J. theor. Biol., 138:297—
309, 1989.

[3] S. F. Altschul, R. J. Carroll, and D. J. Lipman. Weights for Data Related by a Tree.

J. Mol. Biol., 207:647-653, 1989.

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic Local
Alignment Search Tool. J. Mol. Biol., 215:403-410, 1990.

15

[5]
[6]

S. F. Altschul and D. J. Lipman. Trees, Stars, and Multiple Biological Sequence
Alignment. SIAM J. Appl. Math., 49(1):197-209, 1989.

V. Bafna, E. L. Lawler, and P. A. Pevzner. Approximation Algorithms for Multiple
Sequence Alignment. In Crochemore, M. and Gusfield, D., editor, Combinatorial
Pattern Matching, 5th Annual Symposium, CPM 94, Asilomar, CA, USA, June 5-8,
1994. Proceedings, number 807 in Lecture Notes in Computer Science, pages 43-53,
Berlin, 1994. Springer Verlag.

H.-J. Bandelt and J. P. Barthelemy. Medians in Median Graphs. Discrete Applied
Mathematics, 8:131-142, 1984.

H. Carrillo and D. Lipman. The Multiple Sequence Alignment Problem in Biology.
SIAM J. Appl. Math., 48(5):1073-1082, 1988.

S. C. Chan, A. K. C. Wong, and D. K. Y. Chiu. A Survey of Multiple Sequence
Comparison Methods. Bull. Math. Biol., 54(4):563-598, 1992.

R. F. Doolittle, editor. Molecular Evolution: Computer Analysis of Protein and Nu-
cleic Acid Sequences, volume 183 of Methods in Enzymology. Academic Press, Inc.,
San Diego, CA, USA, 1990.

A. W. M. Dress, G. Fiillen, and S. W. Perrey. A Divide and Conquer Approach
to Multiple Alignment. In Proc. of the Third Conference on Intelligent Systems for
Molecular Biology, ISMB 95, pages 107-113. AAAI Press, Menlo Park, CA, USA,
1995.

D.-F. Feng and R. F. Doolittle. Progressive Sequence Alignment as a Prerequisite to
Correct Phylogenetic Trees. J. Mol. Evol., 25:351-360, 1987.

O. Gotoh. Alignment of Three Biological Sequences with an Efficient Traceback Pro-
cedure. J. theor. Biol., 121:327-337, 1986.

M. Gribskov, A. D. McLachlan, and D. Eisenberg. Profile Analysis: Detection of
Distantly Related Proteins. Proc. Natl. Acad. Sci. USA, 84(13):4355-4358, 1987.

S. K. Gupta, J. D. Kececioglu, and A. A. Schaffer. Improving the Practical Space and
Time Efficiency of the Shortest-Paths Approach to Sum-of-Pairs Multiple Sequence
Alignment. J. Comp. Biol., 2(3):459-472, 1995.

J. Hein. Unified Approach to Alignment and Phylogenies. In Doolittle, R. F., editor,
Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences, vol-
ume 183 of Methods in Enzymology, chapter 39, pages 626—-645. Academic Press, Inc.,
San Diego, CA, USA, 1990.

D. G. Higgins and P. M. Sharp. CLUSTAL: A Package for Performing Multiple Se-
quence Alignment on a Microcomputer. Gene, 73:237-244, 1988.

M. Hirosawa, M. Hoshida, M. Ishikawa, and T. Toya. MASCOT: Multiple Alignment
System for Protein Sequences Based on Three-Way Dynamic Programming. CABIOS,
9(2):161-167, 1993.

D. S. Hirschberg. A Linear Space Algorithm for Computing Maximal Common Sub-
sequences. Communications of the ACM, 18(6):341-343, 1975.

X. Huang. Alignment of Three Sequences in Quadratic Space. Applied Computing
Review, 1(2):7-11, 1993.

16

[21]
[22]

23]

M. S. Johnson and R. F. Doolittle. A Method for the Simultaneous Alignment of
Three or More Amino Acid Sequences. J. Mol. Evol., 23:267-278, 1986.

S. Karlin, M. Morris, G. Ghandour, and M.-Y. Leung. Efficient Algorithms for Molec-
ular Sequence Analysis. Proc. Natl. Acad. Sci. USA, 85:841-845, 1988.

J. Kececioglu. The Maximum Weight Trace Problem in Multiple Sequence Alignment.
In Apostolico, A. and Crochemore, M. and Galil, Z. and Manber, U., editor, 4th
Annual Symposium, CPM 93, Padova, Italy, June 2-4, 1993. Proceedings, number
684 in Lecture Notes in Computer Science, pages 106-119, Berlin, 1993. Springer
Verlag.

U. Lessel and D. Schomburg. Similarities Between Protein 3D Structures. Protein
Engng., 7(10):1175-1187, 1994.

D. J. Lipman, S. F. Altschul, and J. D. Kececioglu. A Tool for Multiple Sequence
Alignment. Proc. Natl. Acad. Sci. USA, 86:4412-4415, 1989.

M. Murata. Three-Way Needleman-Wunsch Algorithm. In Doolittle, R. F., editor,
Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences, vol-
ume 183 of Methods in Enzymology, chapter 22, pages 365-375. Academic Press, Inc.,
San Diego, CA, USA, 1990.

M. Murata, J. S. Richardson, and J. L. Sussman. Simultaneous Comparison of Three
Protein Sequences. Proc. Natl. Acad. Sci. USA, 82:3073-3077, 1985.

E. W. Myers. An Overview of Sequence Comparison Algorithms in Molecular Biology.
Technical Report TR 91-29, University of Arizona, Tucson, Department of Computer
Science, 1991.

E. W. Myers and W. Miller. Optimal Alignments in Linear Space. CABIOS, 4(1):11-
17, 1988.

D. Naor and D. L. Brutlag. On Near-Optimal Alignments of Biological Sequences. J.
Comp. Biol., 1(4):349-366, 1994.

S. B. Needleman and C. D. Wunsch. A General Method Applicable to the Search for
Similarities in the Amino Acid Sequence of Two Proteins. J. Mol. Biol., 48:443-453,
1970.

W. R. Pearson and D. J. Lipman. Improved Tools for Biological Sequence Comparison.
Proc. Natl. Acad. Sci. USA, 85:2444-2448, 1988.

D. Sankoff, R. J. Cedergren, and G. LaPalme. Frequency of Insertion-Deletion,
Transversion, and Transition in the Evolution of 5S Ribosomal RNA. J. Mol. Evol.,
7:133-149, 1976.

D. Sankoff and J. B. Kruskal, editors. Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading, MA,
USA, 1983.

P. R. Sibbald and P. Argos. Weighting Aligned Protein or Nucleic Acid Sequences to
Correct for Unequal Representation. J. Mol. Biol., 216:813-818, 1990.

T. F. Smith and M. S. Waterman. Comparison of Biosequences. Adv. Appl. Math.,
2:482-489, 1981.

17

[37]
[38]
[39]
[40]
[41]

[42]

[43]
[44]

[45]

T. F. Smith and M. S. Waterman. Identification of Common Molecular Subsequences.
J. Mol. Biol., 147:195-197, 1981.

W. R. Taylor. Multiple Sequence Alignment by a Pairwise Algorithm. CABIOS,
3:81-87, 1987.

W. R. Taylor. A Flexible Method to Align Large Numbers of Biological Sequences. J.
Mol. Ewvol., 28:161-169, 1988.

W. R. Taylor. Motif-biased Protein Sequence Alignment. J. Comp. Biol., 1(4):297—
310, 1994.

W. R. Taylor and K. Hatrick. Compensating Changes in Protein Multiple Sequence
Alignments. Protein Engng., 7(3):341-348, 1994.

J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: Improving the
Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weight-
ing, Position-Specific Gap Penalties and Weight Matrix Choice. Nucl. Acids Res.,
22(22):4673-4680, 1994.

M. Vingron and P. Argos. Determination of Reliable Regions in Protein Sequence
Alignments. Protein Engng., 3(7):565-569, 1990.

M. Vingron and P. Argos. Motif Recognition and Alignment for Many Sequences by
Comparison of Dot-Matrices. J. Mol. Biol., 218:33-43, 1991.

M. Vingron and P. R. Sibbald. Weighting in Sequence Space: A Comparison of
Methods in Terms of Generalized Sequences. Proc. Natl. Acad. Sci. USA, 90:8777—
8781, 1993.

M. Vingron and A. von Haeseler. Towards Integration of Multiple Alignment and
Phylogenetic Tree Construction. Arbeitspapiere 852, GMD, 1994.

L. Wang and T. Jiang. On the Complexity of Multiple Sequence Alignment. J. Comp.
Biol., 1(4):337-348, 1994.

M. S. Waterman. Introduction to Computational Biology. Maps, Sequences and
Genomes. Chapman & Hall, London, UK, 1995.

M. S. Waterman and M. D. Perlwitz. Line Geometries for Sequence Comparisons.
Bull. Math. Biol., 48(4):567-577, 1984.

M. S. Waterman, T. F. Smith, and W. A. Beyer. Some Biological Sequence Metrics.
Adv. Math., 20:367-387, 1976.

M. S. Waterman and M. Vingron. Sequence Comparison Significance and Poisson
Approximation. Statistical Science, 9(3):367-381, 1994.

18

