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Abstract. Whole genome comparison based on gene order has become a popular approach in compar-
ative genomics. An important task in this field is the detection of gene clusters, i.e. sets of genes that
occur co-localized in several genomes. For most applications it is preferable to extend this definition to
allow for small deviations in the gene content of the cluster occurrences. However, relaxing the equal-
ity constraint increases the computational complexity of gene cluster detection drastically. Existing
approaches deal with this problem by using simplifying constraints on the cluster definition and/or
allowing only pairwise genome comparison. In this paper we introduce a cluster concept named median

gene clusters that improves over existing models and present efficient algorithms for their computation
that allow for the detection of approximate gene clusters in multiple genomes.

1 Introduction and related work

The increasing availability of completely sequenced and assembled genomes opens the opportunity
to compare whole genomes based on their gene order. It is well known that, during the course of
evolution, rearrangement events, gene loss and gene duplications lead to a divergence of genomes
that initially had the same gene order and gene content. If no selective pressure was acting on
these processes, gene order and content would be randomized over time. Therefore, the existence of
conserved regions is used as a source of information for comparative genomics [5]. For that purpose
genomes are modeled as strings or permutations of integers so that genes belonging to the same
gene family are encoded by the same integer. A recent approach in this context is the computation
of gene clusters, which are sets of genes that occur as single contiguous blocks in several genomes.
Variable gene order and multiple occurrences of the same gene within the blocks are usually allowed.
Gene clusters of this type are known as common intervals and there exist efficient algorithms for
their computation, for example [2, 6, 10, 11, 14, 15].

However, for most applications the requirement of exact occurrences of gene clusters in the
genomes turned out to be too strict. Hence, the concept of approximate gene clusters arose recently,
which allows for small deviations in the gene content of cluster locations. The problem of this model
extension is that the search space of approximate gene cluster detection increases exponentially -
depending on the cluster concept - either with the number of allowed deviations [4] or the number
of compared sequences [9].

One approach to handle deviations of the gene content is by imposing constraints on the cluster
locations: For example, max-gap clusters [3, 9] allow for an arbitrary number of gaps in the cluster
locations, each up to a certain length, but find no approximate locations that have lost some genes
of the cluster. Despite these restrictions the complexity of this problem increases exponentially with
the number of sequences, but is in O(n2) for two sequences, where n is the length of the longest
sequence.

Another approach with a constrained cluster definition is an algorithm presented in [1] that
computes gene clusters with a perfect location (reference interval) in one genome and an approxi-
mate occurrence in another sequence in O(n3 + occ) time using O(n3) space. Computation of gene



clusters restricted in this way is a subproblem of our approach to median gene cluster computation.
We introduce an algorithm that solves this problem in O(n2(1 + δ)2) time and O(n2) space, where
δ ≪ n.

A less constrained model was presented in [13], resulting in a very general gene cluster model,
including most other existing ones. In their approach the authors solve the approximate gene cluster
problem by an integer linear program.

In this paper we introduce a new cluster concept, named median gene clusters, that constrains
only the sum of errors that may occur in the approximate occurrences of a gene cluster. This means
that we take from each genome the best location of a gene cluster and sum over the missing and
interrupting genes in these locations. In the main part of this paper (Sections 3–6) we present an
approach for the efficient computation of all median gene clusters in an arbitrary number of genomes,
in Section 7 we apply our method to different genomic datasets, compare it to the approaches
presented in [9] and [13] and show its applicability to multiple genomes.

2 Basic definitions

In our context a genome is a string of integers over a finite alphabet Σ = {1, . . . , σ}. Genes belonging
to the same gene family are represented by the same integer value. Given a string S, |S| denotes
the length of the string and S[i] refers to its ith character. By S[i, j] we refer to the substring of S
that starts with its ith and ends with its jth character, 1 ≤ i ≤ j ≤ |S|. We define the character

set of a substring S[i, j] of S as

CS(S[i, j]) = {S[m] | i ≤ m ≤ j}.

Inversely, a substring S[i, j] is called a location of a character set C ⊆ Σ if and only if C =
CS(S[i, j]). Substrings S1[i1, j1], . . . , Sk[ik, jk] of two or more strings S1, . . . , Sk of equal character
content CS(S1[i1, j1]) = . . . = CS(Sk[ik, jk]) are called common intervals of S1, . . . , Sk.

To simplify the notation of the following definitions we assume that a sequence S of length
n is extended by a terminal character S[0] = S[n + 1] /∈ Σ. A substring S[i, j] is left-maximal if
S[i − 1] /∈ CS(S[i, j]), right-maximal if S[j + 1] /∈ CS(S[i, j]) and maximal if it is both left- and
right-maximal.

We define the following metric on two character sets C,C ′ ⊆ Σ, called the symmetric set

distance:
D(C,C ′) = |C \ C ′| + |C ′ \ C|.

A d-location of a character set C in a string S is a substring S[i, j] such that D(C, CS(S[i, j])) ≤ d.
A character set C ⊆ Σ is a median of a set of k character sets C1, . . . , Ck ⊆ Σ if and only

if
∑k

l=1 D(C,Cl) ≤
∑k

l=1 D(C ′, Cl) for all C ′ ⊆ Σ. Note that a median in this context is not
necessarily unique. This is due to the fact that for even k a character occurring in the median
can occur in exactly half of the k character sets. When removing this character from the median,
the total distance to the character sets stays unchanged and the remaining characters form an
alternative median.

The problem considered in this paper is the following.

Problem 1. Given k sequences S1, . . . , Sk, a minimum cluster size s and a distance threshold δ,
we want to compute all sets C ⊆ Σ with |C| ≥ s for which there exist S1[i1, j1], ..., Sk [ik, jk] with
pairwise intersecting character sets and C is a median of CS(S1[i1, j1]), ..., CS(Sk[ik, jk]) with

k
∑

l=1

D(C,CS(S[il, jl])) ≤ δ. (1)
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Such a set C is called a median gene cluster of S1, . . . , Sk.

Defining gene cluster properties that are biologically meaningful and algorithmically feasible is
a delicate task (a survey of different cluster properties can be found in [12]). Therefore, variants
of the above problem formulation and additional cluster properties will also be discussed in the
Appendix.

3 A three step approach to median gene clusters

Our strategy for finding all median gene clusters is based on the observation that whenever inequal-
ity (1) holds, the distances between the character sets of the involved substrings are limited by the
following upper bound:

Lemma 1. Let S1, . . . , Sk be sequences with substrings S1[i1, j1], ..., Sk [ik, jk] such that for a given

δ ≥ 0 there exists a C ⊆ Σ with
∑k

l=1 D(C,CS(S[il, jl])) ≤ δ . Then, there is at least one substring

Sm[im, jm], 1 ≤ m ≤ k, with C ′ = CS(Sm[im, jm]) and

k
∑

l=1

D(C ′, CS(Sl[il, jl])) ≤ 2
k − 1

k
δ. (2)

Proof. Among the substrings S1[i1, j1], . . . , Sk[ik, jk] chose Sm[im, jm], 1 ≤ m ≤ k, such that
D(C, CS(Sm[im, jm])) ≤ δ

k
. Let C ′ = CS(Sm[im, jm]). From the triangle inequality we infer:

k
∑

l=1

D(C ′, CS(Sl[il, jl])) ≤
∑

l 6=m

(

D(C ′, C) + D(C, CS(Sl[il, jl]))
)

≤ (k − 2)
δ

k
+

k
∑

l=1

D(C, CS(Sl[il, jl]))

≤ (k − 2)
δ

k
+ δ ≤ 2

k − 1

k
δ.

⊓⊔

Character sets such as the above C ′ are used to filter the search space of potential median gene
clusters and are therefore named cluster filters.

Lemma 1 gives rise to the following approach, consisting of three steps:

1. First, we compute the set of all cluster filters C ′ for S1, . . . , Sk. For that purpose we test for all
substrings of the k sequences whether their corresponding character sets meet the conditions
given by lemma 1.

2. In the second step, for each cluster filter C ′ we compute k-tuples of the form (S1[i1, j1], . . . , Sk[ik, jk])
where at least one of the elements is a location of C ′ and inequality (2) holds.

3. Finally we compute for each k-tuple from Step 2 the median(s) of the corresponding character
sets. Medians that comply with the distance threshold of inequality (1) are reported as median
gene clusters.
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4 Computation of cluster filters (Step 1)

In k sequences of length at most n there are O(kn2) substrings. A naive algorithm can determine the
cluster filters in O(k2n4) time by computing the pairwise distances between all pairs of substrings. In
this section we present two better approaches that are based on the algorithm Connecting Intervals

(CI) [14] for the computation of common intervals in a pair of sequences.

For simplicity we give the detailed description of our algorithm for just two sequences. The
extension to multiple sequences is straightforward and will be briefly addressed in Section 4.4. In
the following let d = 2k−1

k
δ. For k = 2 sequences this cancels out to d = δ. At first, we will review

the basic concepts of the original algorithm CI, before we show in Sections 4.2 and 4.3 how it can
be adapted to find cluster filters.

4.1 The Connecting Intervals algorithm

Algorithm CI, presented in [14], finds all common intervals of two sequences S1 and S2 of length
at most n in O(n2) time and space.

In a preprocessing step an array called POS and a table called NUM are computed. POS is
of length |Σ| and lists for each character c ∈ Σ all positions where it occurs in S2. NUM is a
|S2| × |S2| table such that entry NUM [i, j] contains the number of different characters that occur
in the substring S2[i, j]. For an example, see Figure 1.

NUM [i, j] :

POS[1] = 1
POS[2] = 4, 7, 11
POS[3] = 2, 9
POS[4] = 5, 8
POS[5] = 3, 6, 12
POS[6] = 10

i\
j 1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 5 5 5 5 6 6 6

2 1 2 3 4 4 4 4 4 5 5 5

3 1 2 3 3 3 3 4 5 5 5

4 1 2 3 3 3 4 5 5 5

5 1 2 3 3 4 5 5 5

6 1 2 3 4 5 5 5

7 1 2 3 4 4 5

8 1 2 3 4 5

9 1 2 3 4

10 1 2 3

11 1 2

12 1

Fig. 1. For S2 = (1, 3, 5, 2, 4, 5, 2, 4, 3, 6, 2, 5) with Σ = {1, . . . , 6}, the positions of each occurrence of a character c

are stored in POS[c]. The entries of the table NUM [i, j] equal |CS(S2[i, j])|.

The basic idea of the main algorithm is that while going systematically through all maximal
substrings S1[i, j] of the first sequence, using the array POS one generates and iteratively extends
marked intervals in the second sequence that consist only of characters occurring in the current
interval S1[i, j].

Common intervals are detected by comparing the character content of S1[i, j] and the marked
intervals in S2. Since by construction the character sets of the marked intervals are subsets of
CS(S1[i, j]), this can be tested by comparing their size, using the table NUM , and keeping track
of the current size of CS(S1[i, j]). Only those intervals in S2 that were extended by the latest
character of the current S1[i, j] need to be considered for this test. (Other intervals do not contain
this character and thus have a different character set.) Because of the systematic traversal of the
maximal substrings of S1, where for a fixed i the maximal substrings starting at i are processed one
after the other for increasing values of j, each character is at most |S1| times the latest character
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Algorithm 1 Connecting Intervals with Errors (CIE)
1: build data structures POS and NUM for S2

2: resultSet← ∅
3: for i = 1, . . . , |S1| do

4: for each c ∈ Σ let OCC[c]← 0
5: |OCC| ← 0
6: minDist← 0
7: j = i

8: while j ≤ |S1| and S1(i, j) is left-maximal do

9: c← S1[j]
10: OCC[c]← 1
11: |OCC| ← |OCC| + 1
12: while S1[i, j] is not right-maximal do

13: j ← j + 1
14: end while

15: minDist← minDist + 1
16: for each position p in POS[c] do

17: mark position p in S2

18: find positions l1, . . . , lδ+1 and r1, . . . , rδ+1

19: for each pair (lx, ry) with 1 ≤ x, y ≤ δ + 1 do

20: z ← the number of different unmarked characters in S2[lx + 1, ry − 1]
21: dist← |OCC| −NUM [lx + 1, ry − 1] + 2z

22: if dist < minDist then

23: minDist← dist

24: end if

25: end for

26: end for

27: if minDist ≤ d then

28: resultSet← resultSet ∪ (i, j))
29: end if

30: j ← j + 1
31: end while

32: end for

of a substring of S1. Hence, each position in S2 becomes marked at most |S1| times and each time
extends one marked interval, or merges two intervals or constitutes a new marked interval if its
neighbors are not yet marked. Thus there are at most |S1| · |S2| interval extensions and the same
number of character set comparisons. In total this algorithm takes O(n2) time and O(n2) space.

4.2 An O(n2(n + δ2)) time algorithm for cluster filter detection

Our first algorithm for cluster filter detection is a straightforward extension of Algorithm CI that
we call Connecting Intervals with Errors (CIE). Pseudocode is given in Algorithm 1. It uses the
same preprocessing tables NUM and POS for S2 as described above.

In the main part of the algorithm we iterate through all maximal substrings S1[i, j] of S1. We
refer to the current S1[i, j] as reference interval. With array OCC and counter |OCC| we keep
track of the characters occurring in the current reference interval. In variable minDist we store
the minimal distance found so far between CS(S1[i, j]) and S2. Like in the Connecting Intervals
algorithm for each latest character c in S1[i, j] we mark each position p where this character occurs
in the other sequence (lines 16, 17 of Algorithm 1). But then we have to do some extra work: While
marking a position p in S2, there is no need to keep track of maximal intervals of marked positions.
Instead, positions to the left and right of p with increasing numbers x, y ≥ 1 of unmarked characters
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are computed:

lx(p) = max({l | S2[l, p] contains x different unmarked characters} ∪ {0})

ry(p) = min({r | S2[p, r] contains y different unmarked characters} ∪ {|S2| + 1})

By definition, the intervals S2[lx +1, ry −1] then contain at most x+y−2 characters not occurring
in S1[i, j] and are maximal. Hence, in order to find all occurrences of S1[i, j] around p with up to
δ errors, it suffices to consider intervals S2[lx + 1, ry − 1] with 1 ≤ x, y ≤ δ + 1. An example is
illustrated in Fig 2.

1 2 3 4 5 6 7 8 9 10 11 12

S2 = (1 3 5 2 4 5 2 4 3 6 2 5)

l2 l1 p r1 r2

Fig. 2. For a substring of S1 with character set {2, 3, 4}, its characters are marked in S2. For c = 2 being the latest
marked character and position p = 7, we have l1(7) = 6, l2(7) = 1 and r1(7) = 10, r2(7) = 12. Occurrences around p

with up to δ = 1 errors that need to be checked are S2[2, 9], S2[2, 11], S2[7, 9] and S2[7, 11].

In line 21 we compute the distance of each of these (δ + 1)2 intervals to CS(S1[i, j]), i.e.
D(CS(S1[i, j], CS(S2[lx + 1, ry − 1])). This is equal to the value of |OCC| − NUM [lx + 1, ry − 1]
plus twice the number of different unmarked characters in S2[lx + 1, ry − 1]. In case this value is
smaller than the current value of minDist we update minDist.

Since we are also interested in intervals with missing characters, we need to consider intervals
that do not contain c at all. But for these we know that their distance to the current substring
S1[i, j] equals the distance to the previous S1[i, j

′] plus 1, with j′ < j. We account for this in line 15
by increasing the value of minDist by 1 after each extension of the reference interval. When we
have finished all occurrences of c we check the value of minDist to decide whether the current
S1[i, j] qualifies as a cluster filter.

The crucial part in the analysis of Algorithm CIE is the for loop in line 16. From the analysis
of Algorithm CI it follows immediately that each position p in S2 is marked O(n) times so that in
total we mark O(n2) times a position. For each such position we search for the positions l1, . . . , lδ+1

and r1, . . . , rδ+1 (line 18). Performing this search in single steps takes O(n) time. Then we test
for each of the (δ + 1)2 pairs whether it fulfills the distance constraints (line 22), which can be
done in constant time if we keep track of the number of unmarked characters in the substrings
S2[lx +1, ry −1] while going through the for loop in line 19. In total we thus have an O(n2(n+ δ2))
time algorithm, using O(n2) space for table NUM .

Remark 1. If we assume an upper bound b for the number of repetitions of each character in
sequence S2, the number of steps to locate the positions l1, . . . , lδ+1 and r1, . . . , rδ+1 for a position
p is bounded by O(min{n, bδ}). Hence, the overall runtime decreases to O(n2(1+min{n, bδ}+ δ2)).
This is especially relevant for genetic sequences, where the value of b is usually very small as it
refers to the number of copies of a single gene in a genome.

4.3 An O(n2(1 + δ2)) time algorithm for cluster filter detection

The runtime of the algorithm introduced in the previous section can be reduced to O(n2(1 + δ2))
when additional space of size O(nδ) is available. The speed-up is based on the observation that for
each position p in sequence S2 the values lx and ry are the same for all reference intervals S1[i, j]
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with a common left border. In a preprocessing step we compute for the left-most left border in S1,
i.e. i = 1, for each position p in S2 the values l1, . . . , lδ+1 and r1, . . . , rδ+1. These are stored in two
tables L and R of size δ × |S2| each. The values of these arrays need to be updated each time the
left border i in S1 is moved to the right which happens O(n) times.

The details of the initialization and update of the arrays L and R are given in the following.
For simplicity, as in [6] we re-name the characters in the sequences S1 and S2 by the rank of their
first occurrence in the concatenated string S1[i, |S1|]S2, initially for i = 1, and after each shift
of the left border i. This re-naming is a bijection Rank : Σ → {1, . . . , |Σ|}. The consequence of
the re-naming is that at the time the positions of a character c in S2 are marked, the remaining
unmarked characters c′ are such that Rank(c′) > Rank(c).

The initialization of tables L (and R) is as follows: For each position p in S2, we go to its left
(and right) and look for the first δ + 1 different characters with a rank greater than Rank(S2(p)).
We store as l1, . . . , lδ+1 (and r1, . . . , rδ+1) the positions where a new different character is found.
An example for Rank and the tables L and R is given in Fig. 3.

(a) (b)
Rank[1] = 4
Rank[2] = 1
Rank[3] = 3
Rank[4] = 2
Rank[5] = 5
Rank[6] = 6

1 2 3 4 5 6 7 8 9 10 11 12

L\S′

2 4 3 5 1 2 5 1 2 3 6 1 5

l1 0 1 0 3 3 0 6 6 6 0 10 10

l2 0 0 0 2 2 0 5 2 1 0 9 0

l3 0 0 0 1 1 0 2 1 0 0 8 0

R\S′

2 4 3 5 1 2 5 1 2 3 6 1 5

r1 3 3 10 5 6 10 8 9 10 13 12 13

r2 10 10 13 6 9 13 9 10 12 13 13 13

r3 13 13 13 9 10 13 10 12 13 13 13 13

Fig. 3. Initialization of (a) the rank for all characters and (b) the tables L and R. The characters of S1 =
(2, 4, 2, 3, 4, 1, 4, 5, 4, 3, 6) and S2 = (1, 3, 5, 2, 4, 5, 2, 4, 3, 6, 2, 5) are re-named by the bijection Rank, defined by their
first occurrence in the concatenated string S1[1, 11]S2. The tables L and R are computed for the re-named sequence
S′

2.

When the left border in the substring of S1 is shifted from i to i + 1, the rank for all characters
occurring between i and the next occurrence of the character S1[i] decreases by one while the rank
of cold = S1[i] increases by the number of different characters between the two occurrences. The
tables L and R change in the following way. At positions belonging to occurrences of cold in S2 the
table entries can change completely due to a possibly large change in the character number. We
compute these entries anew by going through S2 once from left to right and once from right to left
and remembering the positions of the δ+1 last read different characters with a rank greater than the
new number of cold. If a character is read more than once we only remember its latest occurrence.
Once we reach a position of cold in S2 we fill the corresponding entries in L (respectively R) with
the remembered positions. For positions in S2 with a character different from cold the entries in L
and R can only change if the rank of the character is smaller than the new value of cold. For these
positions we need to check whether an occurrence of cold is close enough to become an entry in
L and/or R. We test this by going through S2 once from left to right and once from right to left
and remembering the latest position of the character cold in S2. Once we reach a position with a
character of smaller rank than the new value of cold, we go through its entries in L (respectively
R) and insert the remembered position of cold at the right position in the field.
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The initialization takes O(n2δ) time and the update O(nδ) time for each increment of i. Com-
bined with the unmodified rest of Algorithm CIE, the overall runtime becomes O(n2δ+n2(1+δ2)) =
O(n2(1 + δ2)). The space consumption is O(nδ + n2) = O(n2).

4.4 Extension to multiple genomes

In this section we show how the computation of cluster filters can be generalized to more than two
genomes. First note that in order not to miss any possible cluster filter C ′ we have to consider all
substrings of any of the strings S1, . . . , Sk as reference intervals, and not just substrings of S1.

A reference interval Sl[i, j] qualifies as a cluster filter if the sum of the minimal distances to the
other k − 1 sequences does not exceed d = 2k−1

k
δ. The threshold for pairwise distances is still δ,

otherwise the total distance to the median exceeds δ due to the triangle inequality of symmetric set
distance. Hence, we need to examine for the most recently added character Sl[j] all its occurrences
in the other k − 1 sequences and compute for each occurrence the distance of the corresponding
(δ + 1)2 intervals to Sl[i, j]. While doing so, we keep track of the minimum distances found in each
of the k − 1 sequences separately. If in the end they sum up to a value smaller or equal to d we
have found a new cluster filter. Due to this approach we have to store the data structures POS
and NUM and, if required, also L and R for k − 1 sequences at a time.

From these modifications it follows that the runtime multiplies by O(k2) for each of the presented
algorithms while space requirements increase to O(kn2).

5 Collection of δ-locations of cluster filters (Step 2)

In the second step of the overall algorithm, for each cluster filter C ′ its maximal δ-locations in each
of the sequences S1, . . . , Sk are searched in order to form k-tuples (S1[i1, j1], . . . , Sk[ik, jk]) with
pairwise intersecting character sets that satisfy

k
∑

l=1

D(C ′, CS(Sl[il, jl])) ≤ d.

Maximal δ-locations of C ′ can be found efficiently by a modified version of Algorithm 1 that
iterates through a location of C ′ and generates uniquely all maximal δ-locations. Details of the
algorithm are left to the reader.

While the number of maximal δ-locations is in O(kn2), the number of k-tuples can be exponen-
tial in k even for small δ as the following example shows: For δ = 0, s = 3 and k sequences of the
form Sl = (abcxl)

n, 1 ≤ l ≤ k and xi 6= xj for i 6= j, there are O(nk) k-tuples. However, for gene
sequences where |Σ| is in Θ(n) our experience shows that this approach is feasible for reasonable
values of δ.

6 Computation of median gene clusters from k-tuples (Step 3)

The computation of the median of a k-tuple consists of a simple majority vote of the characters
occurring as its elements, i.e. a gene occurring in at least half of the tuple elements becomes an
element of the median. The median of each k-tuple is checked whether it fulfills inequality (1) and
in case it fulfills the distance constraint it is reported as a median gene cluster.

Note that there can be several medians that have to be tested: If k is even, there may be ties
when some character occurs in exactly k/2 of the elements. However, since each tie adds k/2 to
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S1 = (1 2 1 3 1 4 1 5)

S2 = (1 2 4 1 2 1 3)

S3 = (1 3 3 1 2 1 2)

S4 = (1 4 1 1)

1 2 3 4 5

1 1 0 0 0

1 1 0 1 0

1 1 0 0 0

1 0 0 1 0

1 1 0 T 0

Fig. 4. For δ = 3 and the cluster filter C′ = {1, 2}, one of its 3-locations in each of the sequences is given by the
underlined substrings. The tie of the fourth character (denoted by T ) yields the two medians {1, 2} and {1, 2, 4}.

the sum of distances, a median exists only if the number of ties is less than or equal to 2δ
k

. In this

case, there exist 2
2δ
k different medians as the example of Fig. 4 illustrates.

Moreover it can happen that the same character set is generated more than once either by
duplicate k-tuples if more than one of the k-tuple elements is a cluster filter or by different k-
tuples that have the same median by chance. In our implementation we filter away such multiple
occurrences.

7 Experimental results

In an initial test we compared the performance of our two algorithms on several datasets. Surpris-
ingly, we found that running times are highly similar between these algorithms in practice (data
not shown). The following results were achieved using the second of the two algorithms.

To demonstrate the ability of our method we applied it to approximate gene cluster detection in
various genomic datasets. We compared it to previous approaches for gene cluster detection in two
sequences and additionally show its applicability to multiple genomes. All computations reported
in this section were performed with a 1.66 GHz Intel r©Core Duo T2300 processor with 520 Mb of
main memory running under the Suse Linux operating system.

7.1 Comparison to HomologyTeams

We reproduced the gene clusters reported in [9] with our program. The dataset consisting of the
genomes of E. coli and B. subtilis annotated with COG numbers was downloaded from http:

//euler.slu.edu/~goldwasser/homologyteams/. Setting the parameters of our method to s =
4 and δ = 1 we detected 1070 median gene clusters in this dataset, among them the ten operons
studied in [9]. These findings show that our method finds a superset of the gene clusters detected
by the HomologyTeams software. A biological evaluation of the additional gene clusters is currently
in progress.

7.2 Comparison to ILP approach

We downloaded the genome datasets from http://gi.cebitec.uni-bielefeld.de/comet used
in [13]. The dataset consists of the annotated genomes of C. glutamicum and M. tuberculosis where
labeling of genes according to gene family membership already took place.

Our program found the gene cluster reported in [13] in 17 seconds using appropriate values for
the parameters δ and s while the ILP using CPLEX 9.03 took more than one hour on a superior
processor. In order to detect this cluster, an approach based on max-gap clusters needs to set its
gap-size threshold as big as twelve such that the longest gap of unmatched genes can be bridged.

To evaluate our method on a broader basis, we conducted a similar series of experiments as
reported in [13] to find optimal gene clusters for each size between 5 and 150. Since our method finds
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gene clusters based on a distance threshold and not for a certain size, we had to run our algorithm
several times for different minimal cluster sizes and distance thresholds. Despite this overhead our
method was able to find all optimal gene clusters in this size range within 3 hrs and 4 min.

7.3 Experimental results on multiple genomes

Although both of the approaches above are in general applicable to multiple genomes, no experimen-
tal results on the comparison of more than two genomes were shown in the respective publications.
To show the applicability of our method to multiple genomes, we searched for approximate gene
clusters in three bacterial genomes: Bacillus subtilis, Buchnera aphidicola and Escherichia coli with
different combinations of s and δ. Results are shown in Table 1.

s=10, δ=0 s=20, δ=5 s=25, δ=10 s=30, δ=15 s = 35, δ=25

distinct medians 91 152 101 21 1

computation time in sec. 4.7 7.2 12.0 26.1 186.2

Table 1. The number of distinct median gene clusters found for different combinations of s and δ in three bacterial
genomes and the corresponding computation times.

Many of the gene clusters found in this experiment belong to well-conserved ribosomal protein
operons. In order to find other gene clusters, genes associated with ribosomal proteins were masked
in the genomes for an additional test. Distance thresholds needed to be chosen larger for a fixed s
in this setting in order to find gene clusters. For example, with s = 13 and δ = 10, we found five
distinct gene clusters, among them the following gene cluster involved in flagellar biosynthesis:

ylxFfliJfliIfliE fliF fliG fliH fliK ylxG flgE fliL fliM fliY cheY fliZ fliP fliQ fliRB. subtilis

fliP fliK fliMfliJfliE fliF fliG fliH fliI fliN fliO fliQfliL fliRfliPE.coli

fliQyba1 fliMfliJfliE fliF fliG fliH fliI fliN fliP fliRfliKB. aphidicola

Fig. 5. A gene cluster involved in flagellar biosythesis, detected by our method with parameters set to δ = 10 and s

= 13.

8 Conclusion

In this paper we introduced the concept of median gene clusters for the detection of approximate
gene clusters in a set of k genomes based on gene order. We applied a filter method to narrow
down the search space of potential clusters efficiently, allowing for fast detection of gene clusters in
multiple genomes.

Our cluster model improves over max-gap clusters [3, 9] in two ways: The problem of low global
cluster density reported in [12] does not arise as no fixed gap length needs to be specified. Unlike
max-gap clusters our method is capable of finding approximate clusters that contain genes that
are missing in some cluster occurrences. This becomes important in particular for multiple genome
comparison.

10



We also compared our method to an approach using an ILP program for approximate gene
cluster detection. While the underlying cluster models are similar, gene cluster computation was
shown to be more efficient with our approach.

We believe that the main advantage of our method is its applicability to multiple genomes.
Initial results show that the detection of gene clusters in multiple genomes is feasible, supporting
our conjecture that the combinatorial explosion in Step 2 of our method does not occur with real-
world data when parameters are chosen reasonably. A broader analysis of the influence of s and δ
on sensitivity, specificity, and running time of our method is currently in progress. As the method
is fastest when δ is small, we propose for practical applications to iteratively increase δ for some
fixed s until clusters are detected that are potentially biologically meaningful.

In the future, we want to extend our method to detect median gene clusters that occur only
in a subset of the input genomes. We also want to provide a statistical analysis of the detected
clusters to rank the reported clusters according to their significance.
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Appendix: Alternatives

Some variations of the model described in the main part of this paper are discussed in the following.

Transformation set distance

We can define a set distance based on the maximal set difference instead of the symmetric set
difference:

DT (C,C ′) = max{|C \ C ′|, |C ′ \ C|}.
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This distance measure is called the transformation set distance between C and C ′ and is also
a metric. It is easy to derive a simple linear time algorithm that finds for a given character set C
and a sequence S all starting positions of substrings in S that have a transformation set distance
that is smaller or equal to a given distance threshold d. Therefore, we can compute gene cluster
candidates for the transformation set distance in time O(k2n3). But the problem with respect to
application in gene cluster detection is that we lack efficient methods to compute the median of
character sets under transformation set distance.

Center representative

While being computationally tractable, selection of median representatives is probably not the
best approach for gene cluster computation. The problem with median representatives is that the
distances between the median and single objects (in our case sequences) are not directly restricted,
but only via the sum of all distances. Hence, a rather large distance to a single sequence can be
compensated by less than average distances to other sequences. Apparently, this effect can be the
stronger the larger the number of sequences becomes. In an evolutionary context it makes possibly
more sense to limit the distance between each of the sequences and their common ancestor:

max
1≤l≤k

{D′(C,Sl)} ≤ δ.

Such a set C is called a center representative.
The approach described in Sections 4 and 5 is compatible with this new distance threshold.

Step 1 is modified such that we search for substrings with distance at most 2δ to each other
sequence, and in Step 2 we compute the k-tuples according to this distance threshold. This threshold
is stronger than the one for median gene clusters since the value of δ will be chosen relatively small
compared to the one for the median representative because it refers to a single distance and not to
the sum of k distances.

However, the crucial point is that in Step 3 median computation needs to be replaced by the
computation of the center sequence, which is known to be NP-hard [7]. There exist fixed-parameter
algorithms that run in polynomial time for a fixed distance [8], but these are of limited use for this
application.
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