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2 École Polytechnique Fédérale de Lausanne, Switzerland

3 Faculty of Technology and Center for Biotechnology, Bielefeld University, Germany

Abstract. Many important questions in molecular biology, evolution
and biomedicine can be addressed by comparative genomics approaches.
One of the basic tasks when comparing genomes is the definition of mea-
sures of similarity (or dissimilarity) between two genomes, for example
to elucidate the phylogenetic relationships between species.
The power of different genome comparison methods varies with the un-
derlying formal model of a genome. The simplest models impose the
strong restriction that each genome under study must contain the same
genes, each in exactly one copy. More realistic models allow several copies
of a gene in a genome. One speaks of gene families, and comparative ge-
nomics methods that allow this kind of input are called gene family-based.
The most powerful – but also most complex – models avoid this prepro-
cessing of the input data and instead integrate the family assignment
within the comparative analysis. Such methods are called gene family-
free.
In this paper, we study an intermediate approach between family-based
and family-free genomic similarity measures. The model, called gene con-
nections, is on the one hand more flexible than the family-based model,
on the other hand the resulting data structure is less complex than in the
family-free approach. This intermediate status allows us to achieve re-
sults comparable to those for family-free methods, but at running times
similar to those for the family-based approach.
Within the gene connection model, we define three variants of genomic
similarity measures that have different expression power. We give poly-
nomial-time algorithms for two of them, while we show NP-hardness
of the third, most powerful one. We also generalize the measures and
algorithms to make them more robust against recent local disruptions
in gene order. Our theoretical findings are supported by experimental
results, proving the applicability and performance of our newly defined
similarity measures.

1 Introduction

Many important questions in molecular biology, evolution and biomedi-
cine can be addressed by comparative genomics approaches. One of the



basic tasks in this area is the definition of measures of similarity between
two genomes. Direct applications of such measures are the computation
of phylogenetic trees or the reconstruction of ancestral genomes, but also
more indirect tasks like the prediction of orthologous gene pairs (derived
from the same ancestor gene through speciation) or the transfer of gene
function across species profit immensely from accurate genome compari-
son methods.

Indeed, over the past forty-or-so years, many methods have been pro-
posed to quantify the similarity of single genes, mostly based on pairwise
or multiple sequence alignments. However, in many situations similarity
measures based on whole genomes are more meaningful than gene-based
measures, because they give a more representative picture and are more
robust against side effects such as horizontal gene transfer. Therefore, in
this paper we develop and analyze methods for whole genome comparison,
based on the physical structure (gene order) of the genomes.

The most simple picture of a genome is one where in a set of genomes
under study orthologous genes have been identified beforehand, and only
groups of orthologous genes (also known as gene families) are considered
that have exactly one member in each genome. In this model, a variety
of genomic similarity (or distance) measures have been studied and are
relatively easy to compute [1,2,3,4]. However, the singleton gene family is
a great oversimplification compared to what we find in nature. Therefore,
more general models have been devised where several genes from the same
family can exist in one genome. The computation of genomic similarities
in these cases is generally much more difficult, though. In fact, many
problem variants are NP-hard [5,6,7,8,9].

Another biological inaccuracy arises from the fact that a gene family
assignment is not always without dispute, because orthology is usually not
known but just predicted, and most prediction methods require some ar-
bitrary threshold, deciding when two genes belong to the same family and
when not. Therefore gene family-free measures have recently been pro-
posed, based on pairwise similarities between genes [10,11,12,13]. While
the resulting similarity measures are very promising, their computation is
usually not easier than for the family-based models and therefore NP-hard
as well [10,13].

In this paper, we study an intermediate approach between family-
based and family-free genomic similarity measures, gene connections. It
requires some preprocessing of the genes contained in the genomes under
study, but in a less stringent way than in the family-based approach. On
the other hand, the resulting data structure is less complex than in the



family-free approach, where arbitrary (real-valued) similarities between
genes are considered. This intermediate status allows us to achieve results
comparable to those for family-free methods, but at time complexities
similar to those for the family-based approach.

The paper is structured as follows. We first define three new genome
similarity measures based on conserved gene adjacencies (Section 2), fol-
lowed by some pointers to related literature (Section 3). Each of the three
following sections is then devoted to one of the similarity measures. We
show that the first problem can be computed in polynomial time, but is
biologically quite simplistic. The second one, while avoiding some of the
weaknesses of the first, is NP-hard to compute and can therefore not be
applied for genomes of realistic size. The third measure, finally, provides a
compromise between biological relevance and computational complexity.
In Section 7 we compare the results obtained with our similarity measures
experimentally, using a large data set of plant (rosid) genomes. The last
section concludes the paper.

The implemented algorithms used in this work as well as the stud-
ied dataset are available for download from http://bibiserv.cebitec.

uni-bielefeld.de/newdist.

2 Basic Definitions

An alphabet is a finite set of characters. A string over an alphabet A is
a sequence of characters from A. Given a string S, S[i] refers to the ith
character of S and |S| is the length of S, i.e., the number of characters
in S. In a signed string S, each character is labeled with a sign, denoted
sgnS(i) for the character at index position i. A sign is either positive
(+) or negative (−). In comparative genomics, for example, the signs
may indicate the orientations of genes on their genomic sequences, which
themselves are represented as strings. Therefore in this paper we use the
term gene as a synonym for “signed character” and the term genome as
a synonym for “signed string”.

Definition 1 (gene connection graph). Given two genomes S and T ,
a gene connection graph G(S, T ) of S and T is a bipartite graph with one
vertex for each gene of S and one vertex for each gene of T . An edge
between two vertices, one from S and one from T , indicates that there is
some connection between the two genes represented by these vertices.

The term connection in the above definition is not very specific. De-
pending on the data set and context, connections may be defined based on



gene homology, sequence similarity, functional relatedness, or any other
similarity measure between genes.

For ease of notation, we let S[i] denote both the ith gene of genome
S, as well as the vertex of G representing this gene. Similar for T [j]. The
set of edges of a graph G is denoted by E(G). The size of a graph G is
the number of its edges, |G| = |E(G)|. Further, we define a connection
function t that returns for an index position i of S the list t(i) of index
positions in T that are connected to S[i] by an edge in G(S, T ). That is,
t(i) = [j | (i, j) ∈ E(G(S, T )) for 1 ≤ j ≤ |T |]. The function s(j) for an
index position of T is defined analogously.

A pair of adjacent index positions (i, i′) with i′ = i + 1 in a string is
called an adjacency. Note that this definition of adjacency only considers
direct neighborhood of genes (i′ = i + 1), while all our following uses of
this term refer to an extended definition given by Zhu et al. [14], who
introduced generalized gene adjacencies as follows:

Definition 2 (adjacency). Given an integer θ ≥ 1, a pair of index
positions (i, i′) with i′ ≤ i+ θ in a string is a (θ-) adjacency.

In other words, two genes of the same genome form a θ-adjacency if the
number of genes between them is less than θ. In the following we will fre-
quently differentiate between simple adjacencies (θ = 1) and generalized
adjacencies (θ ≥ 1).

As mentioned in the Introduction, in this paper we are interested in
defining measures of similarity to compare pairs of genomes. A simple
approach is based on their number of conserved adjacencies. Although
below we will study different variants of similarities, they all use the
following basic notion of conserved adjacency:

Definition 3 (conserved adjacency). Given two genomes S and T
and a gene connection graph G(S, T ), a pair of adjacencies (i, i′) in S
and (j, j′) in T is called a conserved adjacency, denoted (i, i′||j, j′), if
one of the following two holds:

(a) (i, j) ∈ E(G(S, T )), (i′, j′) ∈ E(G(S, T )), sgnS(i) = sgnT (j) and
sgnS(i′) = sgnT (j′); or

(b) (i, j′) ∈ E(G(S, T )), (i′, j) ∈ E(G(S, T )), sgnS(i) 6= sgnT (j′) and
sgnS(i′) 6= sgnT (j).

For an illustration of these definitions, see Figure 1.
We further denote two conserved adjacencies as conflicting if their

intervals in either genome are overlapping:
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Fig. 1. Gene connection graph of two genomes S = (+a,+b,+c,−d,−e,+f) (top
row) and T = (+t,+u,−v,+w,−x,−y,+z) (bottom row). Conserved 2-adjacencies
are (1, 2||1, 2), (2, 3||2, 4), (3, 4||4, 6) and (5, 6||5, 7). Note that (2, 3||1, 3), (2, 3||2, 3),
(4, 5||6, 7) and (4, 6||5, 6) are no conserved 2-adjacencies because the signs do not match
the definition.

Definition 4 (conflicting conserved adjacencies). Two conserved
adjacencies (i, i′||j, j′) and (k, k′||l, l′) are conflicting if (1) (i, i′||j, j′) 6=
(k, k′||l, l′) and (2) [i, i′ − 1] ∩ [k, k′ − 1] 6= ∅ or [j, j′ − 1] ∩ [l, l′ − 1] 6= ∅.

Subsequently a set of conserved adjacencies is denoted as non-con-
flicting if the above-defined property does not hold between any two of
its members.

In the example of Figure 1, (3, 4||4, 6) and (5, 6||5, 7) are the only
conflicting conserved adjacencies. All other pairs are non-conflicting.

The different similarity measures that we consider in this work are
expressed by the following three problem statements:

Problem 1 (total adjacency model). Given two genomes S and T and a
gene connection graph G(S, T ), count the number of pairs of index posi-
tions (i, i′) in S and (j, j′) in T that form a conserved adjacency. In other
words, compute

adj (S, T ) = |{(i, i′||j, j′) | 1 ≤ i < i′ ≤ |S| and 1 ≤ j < j′ ≤ |T |}|.

Because a gene connection graph G(S, T ) is not limited to one-to-one
connections between genes of genomes S and T , solutions to Problem 1
may biologically not be very plausible. Therefore we define a second mea-
sure, motivated by the one used in [10,11], which asks for one-to-one
correspondences between genes of S and T in its solutions:

Problem 2 (gene matching model). Given two genomes S and T , a gene
connection graph G(S, T ) and a real-valued parameter α ∈ [0, 1], find a



bipartite matching M in G(S, T ) such that the induced sequences SM

and TM maximize the measure

Fα(M) = α · adj (SM , TM ) + (1− α) · edg(M),

where edg(M) = |M | is the size of matching M . (The induced sequences
SM and TM are the subsequences of S and T , respectively, that contain
those characters incident to edges of M .)

As we will see later in this paper, solving Problem 2 is NP-hard even
for simple adjacencies. Therefore we define a third, intermediate measure,
which is more efficient to compute in practice, while producing one-to-one
correspondences between gene extremities. It is defined as the size of the
largest subset of non-conflicting conserved adjacencies found in a pair of
genomes:

Problem 3 (adjacency matching model). Given two genomes S and T and
a gene connection graph G(S, T ), let C be the set of conserved adjacencies
between S and T . Compute the size |C?| of a maximum cardinality set
of non-conflicting conserved adjacencies C? ⊆ C.

3 Related Work

As mentioned above, the gene connection graph input format that we
propose here is an intermediate between gene families and the family-
free model. Indeed, we do not require the gene connection graph to be
transitive, which is the main difference to the gene family graph, where
vertices are assigned to genes and edges are drawn between genes from
different genomes whenever they belong to the same family, thus forming
bipartite cliques. (This graph has not been introduced under this name in
the literature, but is implicitly mentioned already in [15] and later more
explicitly in [10].) On the other end, the gene similarity graph [11] is a
weighted version of the gene connection graph, increasing the expression
power by its ability to represent different strengths of gene connections.

The only previous use of such an intermediate model in comparative
genomics that we are aware of is in the form of indeterminate strings
in [12].

Definition 5 (indeterminate string, signed indeterminate string).
Given an alphabet A, a string S over the power set P(A)\{∅} is called an
indeterminate string over A. In other words, for 1 ≤ i ≤ n, ∅ 6= S[i] ⊆
A. In a signed indeterminate string S, any index position i has a sign
sgnS(i), which therefore is the same for all characters at that position.



Given two genomes S and T and a gene connection graph G(S, T ), it
is easy to create a pair of signed indeterminate strings S′ and T ′ over an
alphabet A′ that contain the same set of conserved adjacencies as S and
T : For any edge e = (S[i], T [j]) of G(S, T ), create one symbol e′ ∈ A′ and
let e′ ∈ S′[i] and e′ ∈ T ′[j]. The signs are just transferred from S and T
to S′ and T ′, respectively: sgnS′ [i] = sgnS [i] for all i, 1 ≤ i ≤ |S|, and
sgnT ′ [j] = sgnT [j] for all j, 1 ≤ j ≤ |T |.

Conversely, given two indeterminate strings S′ and T ′, we can easily
create sequences S and T and the corresponding gene connection graph
with the same set of conserved adjacencies. In order to do this, let A =
{1, 2, . . . , |S′|, 1′, 2′, . . . , |T ′|′}, set S = sgnS′[1]1, . . . , sgnS′[|S′|]|S′|, T =
sgnT ′[1]1

′, . . . , sgnT ′[|T ′|]|T ′|′, and create in G(S, T ) an edge e = (S[i], T [j])
whenever S′[i] ∩ T ′[j] 6= ∅.

Clearly, all the information about conserved adjacencies between these
two representations is identical, while sometimes the graph representation
and sometimes the representation as signed indeterminate string is more
concise.

Indeterminate strings in [12] were used to identify regions of common
gene content (gene clusters) in two genomes, which is important in func-
tional genomics. Here our focus is on conserved adjacencies (which can
be seen as small clusters of just two genes) for defining whole-genome
similarities. Similar measures are known for singleton gene families as the
breakpoint distance [16,17], have been extended to gene families in [15,5,7]
and were defined for the family-free model in [10].

4 An Optimal Solution for Problem 1

In order to solve Problem 1, we construct a list L of edges of G(S, T ) using
connection function t(i) for 1 ≤ i ≤ |S|. In doing so, we assume that the
elements of t(i), 1 ≤ i ≤ |S|, are sorted in increasing order. If this is not
given as input, it can always be achieved by applying counting sort to all
lists t(i) in overall O(|S|+ |T |+ |G(S, T )|) time, which is proportional to
the input size.

We present with Algorithm 1 a solution to Problem 1 for simple ad-
jacencies and subsequently extend this approach for the generalized case.
Our algorithm is a simple, linear time procedure which uses three pointers
e, e′, e′′ into list L. These pointers simultaneously traverse L while re-
porting any pair of adjacent parallel edges (e, e′) or crossing edges (e, e′′).

Correctness. Given a pair (i, j) ∈ L, there are overall four cases for the
signs of index i in S and index j in T , each with two sub-cases for the



Algorithm 1
Input: genomes S and T , gene connection graph G(S, T )
1: Create a list L of all edges (i, j) ∈ E(G(S, T )) ordered by primary index i and

secondary index j
2: Let e′ = (i′, j′) and e′′ = (i′′, j′′) point to the second element of L
3: for each element e = (i, j) of L in sorted order do
4: if sgnS(i) = sgnT (j) then
5: while i′ < i+ 1 or (i′ = i+ 1 and j′ < j + 1) do
6: advance e′ = (i′, j′) by one step in L
7: end while
8: if (i′, j′) = (i+ 1, j + 1) and sgnS(i′) = sgnT (j′) then
9: report the conserved adjacency (i, i′||j, j′)

10: end if
11: else
12: while i′′ < i+ 1 or (i′′ = i+ 1 and j′′ < j − 1) do
13: advance e′′ = (i′′, j′′) by one step in L
14: end while
15: if (i′′, j′′) = (i+ 1, j − 1) and sgnS(i′′) 6= sgnT (j′′) then
16: report the conserved adjacency (i, i′′||j′′, j)
17: end if
18: end if
19: end for

signs of index i+ 1 in S and index j + 1 or index j − 1 in T , listed in the
following.

(1) If sgnS(i) = + and sgnT (j) = +, then we have a conserved adjacency
(i, i+1||j, j+1) if and only if (i+1, j+1) ∈ L and either sgnS(i+1) = +
and sgnT (j + 1) = + or sgnS(i+ 1) = − and sgnT (j + 1) = −.

(2) If sgnS(i) = + and sgnT (j) = −, then we have a conserved adjacency
(i, i+1||j−1, j) if and only if (i+1, j−1) ∈ L and either sgnS(i+1) = +
and sgnT (j − 1) = − or sgnS(i+ 1) = − and sgnT (j − 1) = +.

(3) If sgnS(i) = − and sgnT (j) = +, then we have a conserved adjacency
(i, i+1||j−1, j) if and only if (i+1, j−1) ∈ L and either sgnS(i+1) = −
and sgnT (j − 1) = + or sgnS(i+ 1) = + and sgnT (j − 1) = −.

(4) If sgnS(i) = − and sgnT (j) = −, then we have a conserved adjacency
(i, i+1||j, j+1) if and only if (i+1, j+1) ∈ L and either sgnS(i+1) = −
and sgnT (j + 1) = − or sgnS(i+ 1) = + and sgnT (j + 1) = +.

Clearly, cases 1 and 4 and cases 2 and 3 can be summarized to the two
cases given in Algorithm 1.

Runtime analysis. The list L has length |G(S, T )| and can be constructed
and sorted in linear time O(|S|+|T |+|G(S, T )|), as discussed above. Each
of the three edge pointers e, e′ and e′′ traverses L once from the beginning



to the end, so that the for loop in lines 3–19 takes O(|L|) time. Therefore
the overall running time is O(|S|+ |T |+ |G(S, T )|).

Space analysis. The algorithm needs space only for the two input strings
S and T , the list L and some constant-space variables. Therefore the
space usage is of order O(|S|+ |T |+ |G(S, T )|).

Extension to generalized adjacencies. Algorithm 1’ solves Problem 1
for generalized adjacencies. Following the same strategy as Algorithm 1,
the extension requires next to the main pointer e additional 2θ pointers
into list L that are denoted e′t and e′′t , 1 ≤ t ≤ θ. While it traverses
through each element (i, j) in the list using pointer e, each pointer e′t,
1 ≤ t ≤ θ, is subsequently increased to point to the smallest element
larger than or equal to (i + t, j + 1) in L. A copy ê of pointer e′t is then
used to find candidates (i+ t, j + 1), . . . , (i+ t, j + θ). Likewise, pointers
e′′t , 1 ≤ t ≤ θ, are incremented to the smallest element larger than or
equal to (i+ t, j − θ), whereupon copy ê of e′′t is used to find candidates
(i+ t, j − θ), . . . , (i+ t, j − 1).

All pointers e, e′t, and e′′t , 1 ≤ t ≤ θ are continuously increased,
thus each traversing L once. Any instance of pointer ê visits at most
θ elements in each iteration, thus leading to an overall running time of
O(θ2|G(S, T )|). The running time is asymptotically optimal in the sense
of worst case analysis, since there can be just as many θ-adjacencies in
graph G(S, T ). Algorithm 1’ requires O(θ+ |S|+ |T |+θ2|G(S, T )|) space.

5 Complexity of Problem 2

While one may hope that the intermediate status of the gene connection
graph between the gene family graph and the gene similarity graph allows
more efficient algorithms than for the more complex gene similarity graph,
this is not the case for the gene matching model.

Only for α = 0, we have Fα(M) = edg(M) = |M | and therefore
Problem 2 reduces to computing a maximum bipartite matching, which is
possible in polynomial time [18]. However, this case is not very interesting
because it completely ignores conserved adjacencies and just compares the
gene content of the two genomes. All interesting cases are more difficult
to solve, as the following theorem shows:4

Theorem 1. Problem 2 is NP-hard for 0 < α ≤ 1.
4 A weaker result, namely the NP-hardness of Problem 2 for values of α between 0

and 1/3, can be found in [19].



Algorithm 1’
Input: genomes S and T , gene connection graph G(S, T ), gap threshold θ
1: Create a list L of all edges (i, j) ∈ E(G(S, T )) ordered by primary index i and

secondary index j
2: Let e′t = (i′t, j

′
t) and e′′t = (i′t, j

′
t), 1 ≤ t ≤ θ, point to the second element of L

3: for each element e = (i, j) of L in sorted order do
4: if sgnS(i) = sgnT (j) then
5: for each e′t = (i′t, j

′
t), 1 ≤ t ≤ θ do

6: while i′t < i+ t or (i′t = i+ t and j′t < j + 1) do
7: advance e′t = (i′t, j

′
t) by one step in L

8: end while
9: let ê = (̂ı, ̂)← e′t

10: while ı̂ = i+ t and ̂ ≤ j + θ do
11: if sgnS (̂ı) = sgnT (̂) then
12: report the conserved adjacency (i, ı̂||j, ̂)
13: end if
14: advance ê = (̂ı, ̂) by one step in L
15: end while
16: end for
17: else
18: for each e′′t = (i′′t , j

′′
t ), 1 ≤ t ≤ θ do

19: while i′′t < i+ t or (i′′t = i+ t and j′′t < j − θ) do
20: advance e′′t = (i′′t , j

′′
t ) by one step in L

21: end while
22: let ê = (̂ı, ̂)← e′′t
23: while ı̂ = i+ t and ̂ < j − 1 do
24: if sgnS (̂ı) 6= sgnT (̂) then
25: report the conserved adjacency (i, ı̂||̂, j)
26: end if
27: advance ê = (̂ı, ̂) by one step in L
28: end while
29: end for
30: end if
31: end for



Proof. We will focus on simple adjacencies (θ = 1), as this is sufficient to
prove Theorem 1. Inspired by the proof of Bryant [5] for the family-based
case, we provide a P-reduction from Vertex Cover: Given a graph
G = (V,E) and an integer λ, does there exist a subset V ′ ⊆ V such that
|V ′| = λ and each edge in E is adjacent to at least one vertex in V ′?

Our reduction transforms an instance of Vertex Cover into an in-
stance of the decision version of Problem 2: Given strings S and T , a
gene connection graph G(S, T ), a real value α, 0 < α ≤ 1, and a real
value F ≥ 0, does there exist a bipartite matching M in G(S, T ) such
that Fα(M) ≥ F?

Let G = (V,E) and λ be an instance of Vertex Cover with V =
{v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. Then we construct an alphabet
A of size 2n+ 4m+ 2 given by

A = V ∪ {v′i | vi ∈ V } ∪ E ∪ {e′i | ei ∈ E} ∪ {xi, x′i | 1 ≤ i ≤ m+ 1}.

The two genomes S and T are constructed as follows:

S = v1v
′
1v2v

′
2 . . . vnv

′
nx1x

′
1e1e

′
1x2x

′
2e2e

′
2x3x

′
3 . . . xmx

′
meme

′
mxm+1x

′
m+1

and

T = xm+1x
′
m+1xmx

′
m . . . x2x

′
2x1x

′
1vnEnv′nvn−1En−1v′n−1 . . . v1E1v′1

where Ei is a string of the symbol pairs eje
′
j for the edges ej that are

adjacent to vi. The gene connection graph G(S, T ) has an edge for each
pair of identical symbols S[i] and T [j]. The parameter α may be chosen
arbitrarily within the range 0 < α ≤ 1.

First, we show that among the matchings maximizing the value Fα for
this problem, there is always at least one which is a maximal matching.
Let M be a non-maximal matching in G(S, T ) maximizing Fα and con-
sider an edge ` 6∈ M that may be added to M , forming a new matching
M ′ = M ∪{`}. Clearly, ` can dismiss at most two adjacencies of M in M ′,
so adj(M ′) ≥ adj(M)− 2. But in our construction, where the symbols of
A (except the ei and e′i) are in reverse order in S related to T , and fur-
thermore each ei and each e′i is between xi and xi+1 in S, any new edge `
added to M can dismiss at most one adjacency: If ` is adjacent to a symbol
a and the symbol a′ is adjacent to another edge `′ ∈ M (or vice-versa)
then adj(M ′) = adj(M) + 1. Moreover, if two partner edges `, `′ 6∈ M
are added to M and thus M ′ = M ∪ {`, `′}, then adj(M ′) ≥ adj(M)
and edg(M ′) = edg(M) + 2. Therefore Fα(M ′) > Fα(M) for α < 1 and
Fα(M ′) ≥ Fα(M) for α = 1.



Next, we show that there is a vertex cover of size λ for a graph G if
and only if Problem 2 has a solution with F = α(2m + 1 + (n − λ)) +
(1 − α)(2n + 4m + 2). Note that by construction of S, T and G(S, T ),
conserved adjacencies in a maximal matching are only possible between
pairs of the same symbol of A, i.e. viv

′
i, eie

′
i or xix

′
i. Therefore we can

simplify the notation and represent an adjacency (i, i′||j, j′) by the pair
of elements in S, S[i]S[i′]. Clearly, any maximal matching of G(S, T ) has
|S| = 2n + 4m + 2 edges. Moreover, any maximal matching realizes at
least the 2m+ 1 conserved adjacencies eie

′
i and xix

′
i. The other possible

adjacencies are the viv
′
i. If there exists a solution with value F = α(2m+

1+(n−λ))+(1−α)|S|, then there are at least n−λ adjacencies involving
viv
′
i. These adjacencies are possible if the respective edges of G are covered

by λ vertices. If we do not have a solution with value F , then G does not
have a vertex cover of size λ. ut

Solving Problem 2 for simple adjacencies, we make use of a method
described in [19], that was originally developed for solving the gene family-
free variant of Problem 2. In doing so, it constructs an integer linear pro-
gram (ILP) similar to program FFAdj-Int described in [10]. It includes a
preprocessing algorithm that identifies small components in gene similar-
ity graphs which are part of an optimal solution. This approach enables
the computation of optimal solutions for small and medium-sized gene
similarity graphs. However, as the method is specifically tailored for gene
family-free analysis, it does not perform very efficiently on gene connec-
tion graphs, as we will see in Section 7. We refer to this ILP and its
preprocessing step as Algorithm 2.

We further believe it will be difficult to develop a practical algorithm
solving Problem 2 for generalized adjacencies.

6 Computing Exact Solutions for Problem 3

We present a polynomial time algorithm solving Problem 3 for simple
adjacencies which makes use of the following graph structure:

Definition 6 (conserved adjacencies graph). Given two genomes S
and T and a set C = {(i1, i′1||j1, j′1), . . . , (in, i

′
n||jn, j′n)} of conserved

adjacencies between S and T , the conserved adjacencies graph AC(S, T )
is a bipartite graph with one vertex for each gene adjacency (i, i′) of S
that occurs in C and one vertex for each gene adjacency (j, j′) of T that
occurs in C. The edges correspond to the conserved adjacencies in C.



Pseudocode of our algorithm is shown in Algorithm 3. Clearly its
running time is dominated by the time to compute a maximum matching
in line 3, which in unweighted bipartite graphs with n vertices and m
edges is possible in O(m

√
n) time [18]. In our case n ≤ |S|+ |T | − 2 and

m ≤ n2, therefore Algorithm 3 takes overall O((|S|+ |T |)5/2) time.

Algorithm 3
Input: genomes S and T , gene connection graph G(S, T )
1: Let C be the set of conserved adjacencies reported by Algorithm 1 applied to S, T

and G(S, T )
2: Construct the conserved adjacencies graph A = AC(S, T )
3: Compute a maximum bipartite matching M on A
4: return |M |

Extension to generalized adjacencies. Other than for the first two prob-
lems, the properties of Problem 3 change drastically when generalized
adjacencies are considered. Because a θ-adjacency corresponds to an in-
terval of up to θ+ 1 consecutive genes, the intervals of two θ-adjacencies
for θ ≥ 2 can overlap on more than two genes, or even be contained in
one another. The complexity of Problem 3 for θ ≥ 2 remains an open
question.

Solving Problem 3 for generalized adjacencies, we propose Algorithm 3’
that follows the same strategy as its counterpart for simple adjacencies.
However, while for the latter it was possible to find a maximum subset of
non-conflicting θ-adjacencies using a maximum matching approach, here
we propose an ILP, described in Figure 2. The ILP makes use of two
types of binary variables, a(i, j) for each edge (i, j) in the gene connec-
tion graph G(S, T ), and b(i, i′, j, j′) for each θ-adjacency (i, i′||j, j′) in Cθ.
We say that a binary variable is saturated if it is assigned value 1. While
maximizing the number of saturated b(.) variables (which represents the
output of the program), our ILP imposes matching constraints (C.01)
for the set of edges in selected θ-adjacencies. Further constraints (C.02)
ensure that for each θ-adjacency (i, i′||j, j′) (a) both edges between its
corresponding genes are saturated and (b) no saturated edge is incident
to a gene in interval [i+1, i′−1] of genome S (i.e. a possibly empty inter-
val corresponding to all genes between i and i′) and interval [j+ 1, j′− 1]
of genome T , respectively.



Algorithm 3’
Input: genomes S and T , gene connection graph G(S, T ), gap threshold θ
1: Let Cθ be the set of conserved adjacencies reported by Algorithm 1’ applied to S,
T and G(S, T )

2: Compute a maximum cardinality set of non-conflicting conserved θ-adjacencies
C?θ ⊆ Cθ using the ILP given in Figure 2

3: return |C?θ |

ILP solving Step 2 in Algorithm 3’
Objective:

maximize
∑

(i,i′||j,j′′)∈Cθ

b(i, i′, j, j′)

Constraints:

(C.01) for each i← 1 to |S|,
∑
j∈t(i)

a(i, j) ≤ 1

for each j ← 1 to |T |,
∑
i∈s(j)

a(i, j) ≤ 1

(C.02) for each (i, i′||j, j′) ∈ Cθ
if sgnS(i) = sgnS(i′) then

2 · b(i, i′, j, j′)− a(i, j)− a(i′, j′) ≤ 0
otherwise

2 · b(i, i′, j, j′)− a(i, j′)− a(i′, j) ≤ 0
end if

for each ı̂← [i+ 1, i′ − 1] and each ̂ in t(̂ı)
b(i, i′, j, j′) + a(̂ı, ̂) ≤ 1

for each ̂← [j + 1, j′ − 1] and each ı̂ in s(̂)
b(i, i′, j, j′) + a(̂ı, ̂) ≤ 1

end for

Domains:

(D.01) for each (i, j) ∈ E(G(S, T )), a(i, j) ∈ {0, 1}
(D.02) for each (i, i′||j, j′) ∈ Cθ, b(i, i′, j, j′) ∈ {0, 1}

Fig. 2. Integer linear program for finding a maximum subset of non-conflicting con-
served adjacencies of a given set Cθ.



7 Experimental Results

Genomic dataset. We study genomes of 18 rosid species (see Table 1).
Rosids are a prominent subclass of flowering plants to which also many
agricultural crops belong. The genomic sequences of the studied species
were obtained from Phytozyme [20]5, an online resource of the Joint
Genome Institute providing databases and tools for comparative genomics
analyses of plant genomes. Most of the studied plant genomes are par-
tially assembled, comprising up to 5,000 scaffolds covering one or more
annotated protein coding genes. While the smallest genome in our data
set contains roughly 24,500 genes, the largest spans with 56,000 genes
more than twice as many. Rosids, just like many other plants, met their
evolutionary fate through multiple events of whole genome duplication,
followed by periods of fractionation, in which many duplicated genes were
lost again.

Construction of gene connection and gene family graphs. Next to the
genomic sequences and gene annotations, Phytozyme also provides gene
family information in form of co-orthologous clusters computed by In-
Paranoid [21]. InParanoid follows a seed-based strategy by identifying
pairs of orthologous genes (the “seeds”) through reciprocal best BLASTP
hits. These are subsequently used to recruit inparalogs, eventually form-
ing groups of co-orthologous genes.

We ran BLASTP on all genes of our dataset using an e-value threshold
of 10−5 and otherwise default parameter settings. We then constructed
gene connection graphs for all 153 genome pairs by establishing edges
between vertices whose corresponding genes share reciprocal BLASTP
hits. We refer to these graphs as BLASTP GC graphs. Similarly, we con-
structed pairwise gene family graphs using InParanoid’s homology assign-
ment, which we refer to as InParanoid GF graphs.

Unsurprisingly, the BLASTP GC graphs are much larger in size than
the InParanoid GF graphs. We observed average sizes of 150,000 edges
for the former, whereas the latter graphs had on average only one fifth
of this size. Moreover, only 4% of edges in InParanoid GF graphs were
not contained in their BLASTP GC counterparts. Lacking ground truth
of homologies in our dataset, we take a conservative stance by assuming
that InParanoid’s homology assignment can be considered true, or, in
other words, that it contains only a negligible number of false positives.
However, we conclude from a previous study [38], in which InParanoid

5 The described experiments were performed on data sets of Phytozyme v10.3.



species version # genes # scaffolds reference

A. thaliana TAIR10 27,416 7 [22]
B. rapa FPSc v1.3 40,492 669 [20]

B. stricta v1.2 27,416 854 [20]
C. clementina v1.0 24,533 94 [23]

C. rubella v1.0 26,521 123 [24]
E. grandis v1.1 36,376 1,315 [25]

E. salsugineum v1.0 26,351 61 [26]
F. vesca v1.1 32,831 8 [27]
G. max Wm82.a2 56,044 147 [28]

G. raimondii v2.1 37,505 133 [29]
L. usitatissimum v1.0 43,471 1,028 [30]

M. truncatula Mt4.0v1 50,894 1,033 [31]
P. persica v1.0 27,864 59 [32]

P. trichocarpa v3.0 41,335 379 [33]
P. vulgaris v1.0 27,197 91 [34]

R. communis v0.1 31,221 4,962 [35]
T. cacao v1.1 29,452 99 [36]

V. vinifera Genoscope.12X 26,346 33 [37]

Table 1. The genomic dataset of 18 rosid species used in our experiments.

(as well as all other gene family prediction tools in that study) exhibited
a poor recall, that the homology assignment may be incomplete. That
being said, we regard the edges of BLASTP GC graphs with suspicion.
In doing so, we assume many of them leading to false positive homology
assignments. We perform subsequent analysis to outline a possible pro-
cedure of identifying additional potential homologies that are supported
by conservation in gene order in BLASTP GC graphs.

Implementation. All computations were performed on a Linux machine
using a single 2.3 GHz CPU. We implemented Algorithms 1, 1’, 3, and
3’ in Python. For Algorithm 2 we used the implementation of [19]. In
Algorithm 3, the maximum cardinality matching was computed using an
implementation of Hopcroft and Karp’s algorithm [18] provided by the
Python-based NetworkX6 library. The ILPs of Algorithms 2 and 3’ were
run using CPLEX7, a solver for various types of linear and quadratic
programs.

Runtimes. The runtimes of Algorithms 1 and 3 are shown in Figure 3
(left). The runtime analysis was repeated 5 times and is visualized by
whisker plots. For each of the 153 BLASTP GC graphs in our dataset,

6 http://networkx.github.io/
7 http://www.ibm.com/software/integration/optimization/cplex-optimizer/



the computation was finished in less than 50 CPU seconds. Moreover, our
evaluation reveals that the enumeration of the set of conserved adjacencies
in our dataset requires often more time than the subsequent computation
of the maximum matching for Algorithm 3. The plot on the right side of
Figure 3 shows that the runtimes of Algorithm 1’ for θ = 2, 3, 4 increase
only moderately for higher values of θ.

Comparing our methods to the gene family-free approach, an imple-
mentation of a heuristic method described in [10] failed to return a result
for the gene family free variant of Problem 2 on the BLASTP GC graph
of R. communis and V. vinifera within 36 hours of computation. Sur-
prisingly, running Algorithm 2 with α = 0.1 just as long, we were able
to obtain a suboptimal solution of which CPLEX reported an optimal-
ity gap of only 1.89%. Nevertheless, as a reference for comparison with
our various models it would be even more informative to have optimal
solutions of these problems. We leave it as an open problem whether it is
possible to improve our ILPs in order to achieve this.
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Fig. 3. Left: Runtimes of Algorithms 1 and 3 for all 153 BLASTP GC graphs of the
studied dataset. Right: Runtimes of Algorithm 1’ for θ = 2, 3, 4.

Further, we were able to compute exact results for Problem 3 and
θ = 2 with Algorithm 3’ for all 153 but 19 BLASTP GC graphs and all
but 16 InParanoid GC graphs, limiting computation time to two hours
per graph instance.

Gene connection vs. gene family graphs. The overlap between the set of
conserved simple adjacencies identified in BLASTP GC graphs and in
InParanoid GF graphs is visualized in the left plot of Figure 4. Overall,
70% of the conserved adjacencies of the InParanoid GF graphs were also



found in the BLASTP GC graphs whereas we find in the latter 90% more
conserved adjacencies than in the former. Investigating the high number
of InParanoid adjacencies that are missing in BLASTP GC graphs, we
discovered that many generalized adjacencies of the former span genes
that are connected (and therefore breaking the surrounding adjacency) in
their BLASTP GC counterparts. However, the mean number of connected
intervening genes was only 1.4. In fact, the overlap of 2-adjacencies in
BLASTP GC graphs with 1-adjacencies of InParanoid GF graphs was
at 83% of all adjacencies in the latter (Figure 4, right plot).
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Fig. 4. Overlap of conserved adjacencies between BLASTP GC and InParanoid GF
graphs

Lastly, Figure 5 visualizes the number of non-conflicting conserved
adjacencies in BLASTP GC and InParanoid GF graphs computed for
θ = 1 using Algorithm 3 (left plot) and computed for θ = 2 using Algo-
rithm 3’ (right plot). For the former we observed on average 42% more
non-conflicting conserved adjacencies in BLASTP GC graphs when com-
pared to their InParanoid GF counterparts, whereas for the latter, this
number dropped to 32%. Nevertheless, from θ = 1 to θ = 2 the absolute
number of non-conflicting conserved adjacencies increases on average by
27% for BLASTP GC graphs, respectively by 37% for InParanoid GF
graphs.

8 Conclusion

We have presented new similarity measures for complete genomes, thereby
defining gene connections as an intermediate model of genome similarity
representations, between gene families and the gene family-free approach.
Our theoretical results with some problem variants being polynomial and
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Fig. 5. Numbers of non-conflicting conserved adjacencies in BLASTP GC and InPara-
noid GF graphs for θ = 1 (left) and θ = 2 (right).

others being NP-hard show that we are very close to the hardness bor-
der of similarity computations between genomes with unrestricted gene
content. On the practical side we could show that the computation of ge-
nomic similarities in the gene connection model gives meaningful results
and is possible in reasonable time, if the measures and algorithms are
designed carefully.

A few questions remain open, though. While Problem 3 is polynomial
for θ = 1, the complexity for larger values of θ is unknown. Moreover,
it is always difficult to choose optimal values for parameters like the gap
threshold θ. It will certainly be worthwhile to examine whether parame-
ter estimation methods for generalized adjacencies as the ones developed
in [39] can be adapted to the gene connection model.

Various model extensions can also be envisaged. The adjacency match-
ing model (Problem 3) removes inconsistencies from the output of the
total adjacencies model (Problem 1) by computing a maximum matching
on it. It could be tested whether other criteria to remove genes from the
genomes and thus derive consistent sets of conserved adjacencies yield
even better results. Moreover, the resulting reduced genomes with con-
served adjacencies could be used to predict orthologies between the in-
volved genes, not only to compute genomic similarities.

An alternative objective function for our problem formulations, in-
stead of counting (generalized) gene adjacencies, could be a variant of
the summed adjacency disruption number [40] that also allows to distin-
guish between small and larger distortions in gene order.

Finally, Algorithm 3 can easily be generalized for weighted gene sim-
ilarities (instead of gene connections). It remains to be evaluated if such



a more fine-grained measure in the spirit of a family-free analysis has
advantages compared to the unit-cost measures studied in this paper.
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F. Quetier, L. Navarro, M. Roose, P. Wincker, J. Schmutz, M. Morgante, M. A.
Machado, M. Talón, O. Jaillon, P. Ollitrault, F. Gmitter, and D. Rokhsar. Sequenc-
ing of diverse mandarin, pummelo and orange genomes reveals complex history of
admixture during citrus domestication. Nat. Biotechnol., 32(7):656–662, 2014.

24. T. Slotte, K. M. Hazzouri, J. A. Ågren, D. Koenig, F. Maumus, Y.-L. Guo,
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