
Computing the rearrangement distance of
natural genomes

Leonard Bohnenkämper[0000−0003−4508−0078], Maŕılia D. V.
Braga[0000−0003−3558−6059], Daniel Doerr[0000−0002−3720−6227], and

Jens Stoye[0000−0002−4656−7155]

Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University,
Bielefeld, Germany

Abstract. The computation of genomic distances has been a very active
field of computational comparative genomics over the last 25 years. Sub-
stantial results include the polynomial-time computability of the inver-
sion distance by Hannenhalli and Pevzner in 1995 and the introduction
of the double-cut and join (DCJ) distance by Yancopoulos, Attie and
Friedberg in 2005. Both results, however, rely on the assumption that
the genomes under comparison contain the same set of unique markers
(syntenic genomic regions, sometimes also referred to as genes). In 2015,
Shao, Lin and Moret relax this condition by allowing for duplicate mark-
ers in the analysis. This generalized version of the genomic distance prob-
lem is NP-hard, and they give an ILP solution that is efficient enough to
be applied to real-world datasets. A restriction of their approach is that
it can be applied only to balanced genomes, that have equal numbers of
duplicates of any marker. Therefore it still needs a delicate preprocessing
of the input data in which excessive copies of unbalanced markers have
to be removed.
In this paper we present an algorithm solving the genomic distance prob-
lem for natural genomes, in which any marker may occur an arbitrary
number of times. Our method is based on a new graph data structure,
the multi-relational diagram, that allows an elegant extension of the ILP
by Shao, Lin and Moret to count runs of markers that are under- or
over-represented in one genome with respect to the other and need to be
inserted or deleted, respectively. With this extension, previous restric-
tions on the genome configurations are lifted, for the first time enabling
an uncompromising rearrangement analysis. Any marker sequence can
directly be used for the distance calculation.
The evaluation of our approach shows that it can be used to analyze
genomes with up to a few ten thousand markers, which we demonstrate
on simulated and real data.

Keywords: Comparative genomics · Genome rearrangement · DCJ-
indel distance.

1 Introduction

The study of genome rearrangements has a long tradition in comparative ge-
nomics. A central question is how many (and what kind of) mutations have

occurred between the genomic sequences of two individual genomes. In order
to avoid disturbances due to minor local effects, often the basic units in such
comparisons are syntenic regions identified between the genomes under study,
much larger than the individual DNA bases. We refer to such regions as genomic
markers, or simply markers, although often one also finds the term genes.

Following the initial statement as an edit distance problem [15], a compre-
hensive trail of literature has addressed the problem of computing the num-
ber of rearrangements between two genomes in the past 25 years. In a seminal
paper in 1995, Hannenhalli and Pevzner [12] introduced the first polynomial
time algorithm for the computation of the inversion distance of transforming
one chromosome into another one by means of segmental inversions. Later, the
same authors generalized their results to the HP model [11] which is capable of
handling multi-chromosomal genomes and accounts for additional genome rear-
rangements. Another breakthrough was the introduction of the double cut and
join (DCJ) model [2, 18], that is able to capture many genome rearrangements
and whose genomic distance is computable in linear time. The model is based on
a simple operation in which the genome sequence is cut twice between two con-
secutive markers and re-assembled by joining the resulting four loose cut-ends
in a different combination.

A prerequisite for applying the DCJ model in practice to study rearrange-
ments in genomes of two related species is that their genomic marker sets must
be identical and that any marker occurs exactly once in each genome. This
severely limits its applicability in practice. Linear time extensions of the DCJ
model allow markers to occur in only one of the two genomes, computing a ge-
nomic distance that minimizes the sum of DCJ and insertion/deletion (indel)
events [5, 9]. Still, markers are required to be singleton, i.e., no duplicates can
occur. When duplicates are allowed, the problem is more intrincate and all ap-
proaches proposed so far are NP-hard, see for instance [1, 6, 7, 14, 16, 17]. From
the practical side, more recently, Shao et al. [17] presented an integer linear
programming (ILP) formulation for computing the DCJ distance in presence of
duplicates, but restricted to balanced genomes, where both genomes have equal
numbers of duplicates. A generalization to unbalanced genomes was presented
by Lyubetsky et al. [13], but their approach does not seem to be applicable to
real data sets, see Section 4.1 for details.

In this paper we present the first feasible exact algorithm for solving the
NP-hard problem of computing the distance under a general genome model
where any marker may occur an arbitrary number of times in any of the two
genomes, called natural genomes. Specifically, we adopt the maximal matches
model where only markers appearing more often in one genome than in the
other can be deleted or inserted. Our ILP formulation is based on the one from
Shao et al. [17], but with an efficient extension that allows to count runs of
markers that are under- or over-represented in one genome with respect to the
other, so that the pre-existing model of minimizing the distance allowing DCJ
and indel operations [5] can be adapted to our problem. With this extension, once

2

we have the genome markers, no other restriction on the genome configurations
is imposed.

The evaluation of our approach shows that it can be used to analyze genomes
with up to a few ten thousand markers, provided the number of duplicates is
not too large.

An extended version of this paper containing omitted proofs and additional
results appeared as an arxiv preprint [3]. The complete source code of our ILP
implementation and the simulation software used for generating the benchmark-
ing data in Section 4.2 are available from https://gitlab.ub.uni-bielefeld.

de/gi/ding.

2 Preliminaries

A genome is a set of chromosomes and each chromosome can be linear or circular.
Each marker in a chromosome is an oriented DNA fragment. The representation
of a marker m in a chromosome can be the symbol m itself, if it is read in direct
orientation, or the symbol m, if it is read in reverse orientation. We represent a
chromosome S of a genome A by a string s, obtained by the concatenation of
all symbols in S, read in any of the two directions. If S is circular, we can start
to read it at any marker and the string s is flanked by parentheses.

Given two genomes A and B, let U be the set of all markers that occur in
both genomes. For each marker m ∈ U, let ΦA(m) be the number of occurrences
of m in genome A and ΦB(m) be the number of occurrences of m in genome
B. We can then define ∆Φ(m) = ΦA(m) − ΦB(m). If both ΦA(m) > 0 and
ΦB(m) > 0, m is called a common marker. We denote by G ⊆ U the set of
common markers of A and B. The markers in U\G are called exclusive markers.
For example, if we have two unichromosomal linear genomes A = {13254354}
and B = {1623173413}, then U = {1, 2, 3, 4, 5, 6, 7} and G = {1, 2, 3, 4}.
Furthermore, ∆Φ(1) = 1− 3 = −2, ∆Φ(2) = 1− 1 = 0, ∆Φ(3) = 2− 3 = −1,
∆Φ(4)=2−1=1, ∆Φ(5)=2, and ∆Φ(6) = ∆Φ(7) = −1.

2.1 The DCJ-indel model

A genome can be transformed or sorted into another genome with the following
types of mutations:

– A double-cut-and-join (DCJ) is the operation that cuts a genome at two
different positions (possibly in two different chromosomes), creating four
open ends, and joins these open ends in a different way. This can represent
many different rearrangements, such as inversions, translocations, fusions
and fissions. For example, a DCJ can cut linear chromosome 124356 before
and after 43, creating the segments 12•, •43• and •56, where the symbol •
represents the open ends. By joining the first with the third and the second
with the fourth open end, we invert 43 and obtain 123456.

3

– Since the genomes can have distinct multiplicity of markers, we also need
to consider insertions and deletions of segments of contiguous markers [5,9,
19]. We refer to insertions and deletions collectively as indels. For example,
the deletion of segment 5262 from linear chromosome 12352624 results
in 1234. Indels have two restrictions: (i) only markers that have positive ∆Φ
can be deleted; and (ii) only markers that have negative ∆Φ can be inserted.

In this paper, we are interested in computing the DCJ-indel distance between
two genomes A and B, that is denoted by didDCJ(A,B) and corresponds to the
minimum number of DCJs and indels required to sort A into B. We separate
the instances of the problem in three types:

1. Singular genomes: the genomes contain no duplicate markers, that is, each
common marker1 is singular in each genome. Formally, we have that, for
each m ∈ G, ΦA(m) = ΦB(m) = 1. The distance between singular genomes
can be easily computed in linear time [2, 5, 9].

2. Balanced genomes: the genomes contain no exclusive markers, but can have
duplicates, and the number of duplicates in each genome is the same. For-
mally, we have U = G and, for each m ∈ U, ΦA(m) = ΦB(m). Computing the
distance for this set of instances is NP-hard, and an ILP formulation was
given in [17].

3. Natural genomes: these genomes can have exclusive markers and duplicates,
with no restrictions on the number of copies. Since these are generalizations
of balanced genomes, computing the distance for this set of instances is also
NP-hard. In the present work we present an efficient ILP formulation for
computing the distance in this case.

2.2 DCJ-indel distance of singular genomes

First we recall the problem when common duplicates do not occur, that is,
when we have singular genomes. We will summarize the linear time approach to
compute the DCJ-indel distance in this case that was presented in [5], already
adapted to the notation required for presenting the new results of this paper.

Relational diagram. For computing a genomic distance it is useful to represent
the relation between two genomes in some graph structure [2,4,5,10,11]. Here we
adopt a variation of this structure, defined as follows. For each marker m, denote
its two extremities by mt (tail) and mh (head). Given two singular genomes A
and B, the relational diagram R(A,B) has a set of vertices V = V (A) ∪ V (B),
where V (A) has a vertex for each extremity of each marker of genome A and
V (B) has a vertex for each extremity of each marker of genome B. Due to the
1-to-1 correspondence between the vertices of R(A,B) and the occurrences of
marker extremities in A and B, we can identify each extremity with its corre-
sponding vertex. It is convenient to represent vertices in V (A) in an upper line,

1 The exclusive markers are not restricted to be singular, because it is mathematically
trivial to transform them into singular markers when they occur in multiple copies.

4

respecting the order in which they appear in each chromosome of A, and the
vertices in V (B) in a lower line, respecting the order in which they appear in
each chromosome of B.

If the marker extremities γ1 and γ2 are adjacent in a chromosome of A, we
have an adjacency edge connecting them. Similarly, if the marker extremities γ′1
and γ′2 are adjacent in a chromosome of B, we have an adjacency edge connecting
them. Marker extremities located at chromosome ends are called telomeres and
are not connected to any adjacency edge. In contrast, each extremity that is
not a telomere is connected to exactly one adjacency edge. Denote by EAadj
and by EBadj the adjacency edges in A and in B, respectively. In addition, for
each common marker m ∈ G, we have two extremity edges, one connecting the
vertex mh from V (A) to the vertex mh from V (B) and the other connecting
the vertex mt from V (A) to the vertex mt from V (B). Denote by Eγ the set
of extremity edges. Finally, for each occurrence of an exclusive marker in U\G,
we have an indel edge connecting the vertices representing its two extremities.
Denote by EAid and by EBid the indel edges in A and in B. Each vertex is then
connected either to an extremity edge or to an indel edge.

All vertices have degree one or two, therefore R(A,B) is a simple collection
of cycles and paths. A path that has one endpoint in genome A and the other in
genome B is called an AB-path. In the same way, both endpoints of an AA-path
are in A and both endpoints of a BB-path are in B. A cycle contains either zero
or an even number of extremity edges. When a cycle has at least two extremity
edges, it is called an AB-cycle. Moreover, a path (respectively cycle) of R(A,B)
composed exclusively of indel and adjacency edges in one of the two genomes
corresponds to a whole linear (respectively circular) chromosome and is called a
linear (respectively circular) singleton in that genome. Actually, linear singletons
are particular cases of AA-paths or BB-paths. An example of a relational diagram
is given in Fig. 1.

······ ······ ······

······ ······ ······

�
�
�
�

······

······

J
J
J
J

�
�
�
�······ ······

r r r r r r r r r r r rA 1t 1h6h 6t 5t 5h3t 3h 4t 4h2t 2h

r r r r r r r r r r r r r r r r
B 1t 1h7t 7h2t 2h3t 3h4t 4h5t 5h 7t 7h8h 8t

Fig. 1. For genomes A = {1653, 42} and B = {172345, 78}, the relational diagram
contains one cycle, two AB-paths (represented in blue), one AA-path and one BB-path
(both represented in red). Short dotted horizontal edges are adjacency edges, long
horizontal edges are indel edges, top-down edges are extremity edges.

The numbers of telomeres and of AB-paths in R(A,B) are even. The DCJ-
cost [5] of a DCJ operation ρ, denoted by ‖ρ‖, is defined as follows. If it either
increases the number of AB-cycles by one, or the number of AB-paths by two,
ρ is optimal and has ‖ρ‖ = 0. If it does not affect the number of AB-cycles and
AB-paths in the diagram, ρ is neutral and has ‖ρ‖ = 1. If it either decreases the

5

number of AB-cycles by one, or the number of AB-paths by two, ρ is counter-
optimal and has ‖ρ‖ = 2.

Runs and indel-potential. The approach that uses DCJ operations to group
exclusive markers for minimizing indels depends on the following concepts.

Given two genomes A and B and a component C of R(A,B), a run [5] is a
maximal subpath of C, in which the first and the last edges are indel edges, and
all indel edges belong to the same genome. It can be an A-run when its indel
edges are in genome A, or a B-run when its indel edges are in genome B. We
denote by Λ(C) the number of runs in component C. If Λ(C) ≥ 1 the component
C is said to be indel-enclosing, otherwise Λ(C) = 0 and C is said to be indel-free.

While sorting components separately with optimal DCJs only, runs can be
merged (when two runs become a single one), and also accumulated together
(when all its indel edges alternate with adjacency edges only and the run can be
inserted or deleted at once) [5]. The indel-potential of a component C, denoted
by λ(C), is the minimum number of indels derived from C after this process and
can be directly computed from Λ(C):

λ(C) =

 0 , if Λ(C) = 0 (C is indel-free);⌈
Λ(C)+1

2

⌉
, if Λ(C) ≥ 1 (C is indel-enclosing).

Let λ0 and λ1 be, respectively, the sum of the indel-potentials for the com-
ponents of the relational diagram before and after a DCJ ρ. The indel-cost
of ρ is then ∆λ(ρ) = λ1 − λ0, and the DCJ-indel cost of ρ is defined as
∆d(ρ) = ‖ρ‖+∆λ(ρ). While sorting components separately, it has been shown
that by using neutral or counter-optimal DCJs one can never achieve ∆d < 0 [5].
This gives the following result:

Lemma 1 (from [2, 5]). Given two singular genomes A and B, whose rela-
tional diagram R(A,B) has c AB-cycles and i AB-paths, we have

didDCJ(A,B) ≤ |G| − c− i

2
+
∑

C∈R(A,B)

λ(C) .

Distance of circular genomes. For singular circular genomes, the graph
R(A,B) is composed of cycles only. In this case the upper bound given by
Lemma 1 is tight and leads to a simplified formula [5]:

didDCJ(A,B) = |G| − c +
∑

C∈R(A,B)

λ(C) .

Recombinations and linear genomes. For singular linear genomes, the upper
bound given by Lemma 1 is achieved when the components of R(A,B) are sorted
separately. However, there are optimal or neutral DCJ operations, called recom-
binations, that act on two paths and have ∆d < 0. Such path recombinations

6

are said to be deducting. The total number of types of deducting recombinations
is relatively small. By exhaustively exploring the space of recombination types,
it is possible to identify groups of chained recombinations (listed in Table 3 of
the extended version of this manuscript [3]), so that the sources of each group
are the original paths of the graph. In other words, a path that is a resultant of
a group is never a source of another group. This results in a greedy approach
(detailed in [3, 5]) that optimally finds the value δ ≥ 0 to be deducted.

Theorem 1 (adapted from [5]). Given two singular linear genomes A and B,
whose relational diagram R(A,B) has c AB-cycles and i AB-paths, and letting δ
be the value obtained by maximizing deductions of path recombinations, we have

didDCJ(A,B) = |G| − c− i

2
+
∑

C∈R(A,B)

λ(C)− δ .

3 DCJ-indel distance of natural genomes

In this work we are interested in comparing two natural genomes A and B. First
we note that it is possible to transform A and B into matched singular genomes
A‡ and B‡ as follows. For each common marker m ∈ G, if ΦA ≤ ΦB , we should
determine which occurrence of m in B matches each occurrence of m in A, or
if ΦB < ΦA, which occurrence of m in A matches each occurrence of m in B.
The matched occurrences receive the same identifier (for example, by adding the
same index) in A‡ and in B‡. Examples are given in Fig. 2 (top and center).
Observe that, after this procedure, the number of common markers between any
pair of matched genomes A‡ and B‡ is

n∗ =
∑
m∈G

min{ΦA(m), ΦB(m)} .

Let M be the set of all possible pairs of matched singular genomes obtained
from natural genomes A and B. The DCJ-indel distance of A and B is then
defined as

didDCJ(A,B) = min
(A‡,B‡)∈M

{didDCJ(A‡, B‡)} .

3.1 Multi-relational diagram

While the original relational diagram clearly depends on the singularity of com-
mon markers, when they appear in multiple copies we can obtain a data struc-
ture that integrates the properties of all possible relational diagrams of matched
genomes. The multi-relational diagram MR(A,B) of two natural genomes A
and B also has a set V (A) with a vertex for each of the two extremities of each
marker occurrence of genome A and a set V (B) with a vertex for each of the
two extremities of each marker occurrence of genome B.

7

········· ········· ········· ········· ········· ·········

········· ········· ········· ········· ········· ·········

J
J
J
J········· ·········

·········

·········

J
J
J
J

r r r r r r r r r r r r r r r r1t
1

1h
1

3t
1

3h
1

2t
1

2h
1 5h 5t 4h

1
4t
1

3t
2

3h
2 5t 5h 4t 4h

r r r r r r r r r r r r r r r r r r r r
1t 1h 6t 6h 2t

1
2h
1

3t
1

3h
1

1t
1

1h
1 7t 7h 3t

2
3h
2

4t
1

4h
1 1t 1h 3t 3h

didDCJ = 5 − 0 − 2
2

+ 1 + 3 = 8

········· ········· ········· ·········

········· ········· ········· ········· ········· ·········

········· ········· ·········

········· ········· ·········

r r r r r r r r r r r r r r r r1t
1

1h
1

3t
1

3h
1

2t
1

2h
1 5h 5t 4h 4t 3t

2
3h
2 5t 5h 4t

1
4h
1

r r r r r r r r r r r r r r r r r r r r
1t
1

1h
1 6t 6h 2t

1
2h
1

3t
2

3h
2 1t 1h 7t 7h 3t

1
3h
1

4t
1

4h
1 1t 1h 3t 3h

didDCJ = 5 − 2 − 2
2

+ 1 + 2 + 2 = 7

··········· ··········· ··········· ··········· ··········· ···········

··········· ··········· ··········· ··········· ··········· ···········

··········· ··········· ··········· ···········

··········· ··········· ··········· ··········· ··········· ···········

···········

··········· ··········· ···········

··········· ··········· ···········

··········· ··········· ···········

r r r r r r r r r r r r r r r rA 1t 1h 3t 3h 2t 2h 5h 5t 4h 4t 3t 3h 5t 5h 4t 4h

r r r r r r r r r r r r r r r r r r r r
B 1t 1h 6t 6h 2t 2h 3t 3h 1t 1h 7t 7h 3t 3h 4t 4h 1t 1h 3t 3h

Fig. 2. Natural genomes A = 13254354 and B = 1623173413 can give rise to
many distinct pairs of matched singular genomes. The relational diagrams of two of
these pairs are represented here, in the top and center. In the bottom we show the
multi-relational diagram MR(A,B). The decomposition that gives the diagram in the
top is represented in red/orange. Similarly, the decomposition that gives the diagram
in the center is represented in blue/cyan. Edges that are in both decompositions have
two colors.

Again, sets EAadj and EBadj contain adjacency edges connecting adjacent ex-
tremities of markers in A and in B. But here the set Eγ contains, for each marker
m ∈ G, an extremity edge connecting each vertex in V (A) that represents an
occurrence of mt to each vertex in V (B) that represents an occurrence of mt, and
an extremity edge connecting each vertex in V (A) that represents an occurrence
of mh to each vertex in V (B) that represents an occurrence of mh. Furthermore,
for each marker m ∈ U with ΦA(m) > ΦB(m), the set EAid contains one indel edge
connecting the vertices representing the two extremities of the same occurrence
of m in A. Similarly, for each marker m′ ∈ U with ΦB(m′) > ΦA(m′), the set EBid
contains one indel edge connecting the vertices representing the two extremities
of the same occurrence of m′ in B. An example of a multi-relational diagram is
given in Fig. 2 (bottom).

Consistent decompositions. Note that if A and B are singular genomes,
MR(A,B) reduces to the ordinary R(A,B). On the other hand, in the presence
of duplicate common markers, MR(A,B) may contain vertices of degree larger
than two. A decomposition is a collection of vertex-disjoint components, that can
be cycles and/or paths, covering all vertices of MR(A,B). There can be multiple

8

ways of selecting a decomposition, and we need to find one that allows to match
occurrences of a marker in genome A with occurrences of the same marker in
genome B.

Let m(A) and m(B) be, respectively, occurrences of the same marker m in

genomes A and B. The extremity edge that connects mh
(A) to mh

(B) and the

extremity edge that connects mt
(A) to mt

(B) are called siblings. A set ED ⊆ Eγ
is a sibling-set if it is exclusively composed of pairs of siblings and does not
contain any pair of incident edges. Thus, a maximal sibling-set ED corresponds
to a maximal matching of occurrences of common markers in both genomes.

The set of edges D induced by a maximal sibling-set ED is said to be a
consistent decomposition of MR(A,B) and can be obtained as follows. In the
beginning, D is the union of ED with the sets of adjacency edges EAadj and

EBadj . Then, for each indel edge e, if its two endpoints have degree one or zero
in D, then e is added to D. Note that the consistent decomposition D covers
all vertices of MR(A,B) and is composed of cycles and paths, allowing us to
compute the value

didDCJ(D) = n∗ − cD −
iD
2

+
∑
C∈D

λ(C)− δD ,

where cD and iD are the numbers of AB-cycles and AB-paths in D, respectively,
and δD is the optimal deduction of recombinations of paths from D. Since n∗
is constant for any consistent decomposition, we can separate the part of the
formula that depends on D, called weight of D:

w(D) = cD +
iD
2
−
∑
C∈D

λ(C) + δD .

Theorem 2. Given two natural genomes A and B, the DCJ-indel distance of
A and B can be computed by the following equation:

didDCJ(A,B) = min
D∈D
{didDCJ(D)} = n∗ −max

D∈D
{w(D)} ,

where D is the set of all consistent decompositions of MR(A,B).

Proof. In the extended version of this manuscript.

A consistent decomposition D such that didDCJ(D) = didDCJ(A,B) is said to be
optimal. Computing the DCJ-indel distance between two natural genomes A and
B, or, equivalently, finding an optimal consistent decomposition of MR(A,B) is
an NP-hard problem. In Section 4 we will describe an efficient ILP formulation
to solve it. Before that, we need to introduce a transformation of MR(A,B) that
is necessary for our ILP.

3.2 Capping

The ends of linear chromosomes produce some difficulties for the decomposi-
tion. Fortunately there is an elegant technique to overcome this problem, called

9

capping [11]. It consists of modifying the genomes by adding artificial singular
common markers, also called caps, that circularize all linear chromosomes, so
that their relational diagram is composed of cycles only, but, if the capping is
optimal, the genomic distance is preserved.

Singular genomes. An optimal capping that transforms singular genomes A
and B into singular circular genomes A◦ and B◦ can be obtained after greedily
identifying the recombination groups following a top-down order of Table 3 of the
extended version of this manuscript [3]. The optimal ∆d for each recombination
group is achieved by linking the groups as indicated in Table 5 of the extended
version, where we also prove the following theorem.

Theorem 3. Let κA and κB be, respectively, the total numbers of linear chro-
mosomes in singular genomes A and B. We can obtain an optimal capping of
A and B with exactly

p∗ = max{κA, κB}
caps and a∗ = |κA − κB | artificial adjacencies between caps.

Capped multi-relational diagram. We can transform MR(A,B) into the
capped multi-relational diagram MR◦(A,B) as follows. First we need to create
4p∗ new vertices, named ◦1A, ◦2A, . . . , ◦

2p∗
A and ◦1B , ◦2B , . . . , ◦

2p∗
B , each one represent-

ing a cap extremity. Each of the 2κA telomeres of A is connected by an adjacency
edge to a distinct cap extremity among ◦1A, ◦2A, . . . , ◦

2κA
A . Similarly, each of the

2κB telomeres of B is connected by an adjacency edge to a distinct cap extremity
among ◦1B , ◦2B , . . . , ◦

2κB
B . Moreover, if κA < κB , for i = 2κA+1, 2κA+3, . . . , 2κB−1,

connect ◦iA to ◦i+1
A by an artificial adjacency edge. Otherwise, if κB < κA, for

j = 2κB + 1, 2κB + 3, . . . , 2κA − 1, connect ◦jB to ◦j+1
B by an artificial adjacency

edge. All these new adjacency edges and artificial adjacency edges are added to
EAadj and EBadj , respectively.

We also connect each ◦iA, 1 ≤ i ≤ 2p∗, by a cap extremity edge to each ◦jB ,
1 ≤ j ≤ 2p∗, and denote by E◦ the set of cap extremity edges. A set E′D ⊆ E◦
is a capping-set if it does not contain any pair of incident edges. A consistent
decomposition D of MR◦(A,B) is induced by a maximal sibling-set ED ⊆ Eγ
and a maximal capping-set E′D ⊆ E◦ and is composed of vertex disjoint cycles
covering all vertices of MR◦(A,B). We then have didDCJ(D) = n∗ + p∗ − w(D),
where the weight of D can be computed by the simpler formula

w(D) = cD −
∑
C∈D

λ(C) .

Finally, let D◦ be the set of all consistent decompositions of MR◦(A,B). Then

didDCJ(A,B) = n∗ + p∗ − max
D∈D◦

{w(D)} .

Note that the 2p∗ cap extremities added to each genome correspond to p∗
implicit caps. Furthermore, the number of artificial adjacency edges added to

10

the genome with less linear chromosomes is a∗ = |κA − κB |. Since each pair
of matched singular genomes (A‡, B‡) ∈ M can be optimally capped with this
number of caps and artificial adjacencies, it is clear that at least one optimal
capping of each (A‡, B‡) corresponds to a consistent decomposition D ∈ D◦.

4 An algorithm to compute the DCJ-indel distance of
natural genomes

An ILP formulation for computing the distance of two balanced genomes A and
B was given by Shao et al. in [17]. In this section we describe an extension of that
formulation for computing the DCJ-indel distance of natural genomes A and B,
based on consistent cycle decompositions of MR◦(A,B). The main difference
is that here we need to address the challenge of computing the indel-potential
λ(C) for each cycle C of each decomposition. Note that a cycle C of R(A,B)
has either 0, or 1, or an even number of runs, therefore its indel-potential can
be computed as follows:

λ(C) =

 Λ(C) , if Λ(C) ≤ 1;

Λ(C)
2 + 1 , if Λ(C) ≥ 2.

The formula above can be redesigned to a simpler one, that is easier to
implement in the ILP. First, let a transition in a cycle C be an indel-free segment
of C that is between a run in one genome and a run in the other genome and
denote by ℵ(C) the number of transitions in C. Observe that, if C is indel-free,
then obviously ℵ(C) = 0. If C has a single run, then we also have ℵ(C) = 0. On
the other hand, if C has at least 2 runs, then ℵ(C) = Λ(C). Our new formula is
then split into a part that simply tests whether C is indel-enclosing and a part
that depends on the number of transitions ℵ(C).

Proposition 1. Given the function r(C) defined as r(C) = 1 if Λ(C) ≥ 1,
otherwise r(C) = 0, the indel-potential λ(C) can be computed from the number
of transitions ℵ(C) with the formula

λ(C) =
ℵ(C)

2
+ r(C) .

Note that
∑
C∈Dr(C) = crD + sD, where crD and sD are the number of indel-

enclosing AB-cycles and the number of circular singletons in D, respectively.
Now, we need to find a consistent decomposition D of MR◦(A,B) maximizing
its weight

w(D) = cD −
∑
C∈D

λ(C) = cD −

(
crD + sD +

∑
C∈D

ℵ(C)

2

)
= cr̃D − sD −

∑
C∈D

ℵ(C)

2
,

where cr̃D = cD − crD is the number of indel-free AB-cycles in D.

11

4.1 ILP formulation

Our formulation (shown in Algorithm 1) searches for an optimal consistent cycle
decomposition of MR◦(A,B) = (V,E), where the set of edges E is the union of
all disjoint sets of the distinct types of edges, E = Eγ∪E◦∪EAadj∪EBadj∪EAid∪EBid.

In the first part we use the same strategy as Shao et al. [17]. A binary
variable xe (D.01) is introduced for every edge e, indicating whether e is part
of the computed decomposition. Constraint C.01 ensures that adjacency edges
are in all decompositions, Constraint C.02 ensures that each vertex of each
decomposition has degree 2, and Constraint C.03 ensures that an extremity
edge is selected only together with its sibling. Counting the number of cycles in
each decomposition is achieved by assigning a unique identifier i to each vertex
vi that is then used to label each cycle with the numerically smallest identifier
of any contained vertex (see Constraint C.04, Domain D.02). A vertex vi is then
marked by variable zi (D.03) as representative of a cycle if its cycle label yi
is equal to i (C.06). However, unlike Shao et al., we permit each variable yi
to take on value 0 which, by Constraint C.05, will be enforced whenever the
corresponding cycle is indel-enclosing. Since the smallest label of any vertex is 1
(cf. D.02), any cycle with label 0 will not be counted.

The second part is our extension for counting transitions. We introduce bi-
nary variables rv (D.04) to label runs. To this end, Constraint C.07 ensures that
each vertex v is labeled 0 if v is part of an A-run and otherwise it is labeled 1
indicating its participation in a B-run. Transitions between A- and B-runs in
a cycle are then recorded by binary variable te (D.05). If a transition occurs
between any neighboring pair of vertices u, v ∈ V of a cycle, Constraint C.08

causes transition variable t{u,v} to be set to 1. We avoid an excess of co-optimal
solutions by canonizing the locations in which such transitions may take place.
More specifically, Constraint C.09 prohibits label changes in adjacencies not di-
rectly connected to an indel and Constraint C.10 in edges other than adjacencies
of genome A, resulting in all A-runs containing as few vertices as possible.

In the third part we add a new constraint and a new domain to our ILP,
so that we can count the number of circular singletons. Let K be the circular
chromosomes in both genomes and Ekid be the set of indel edges of a circular
chromosome k ∈ K. For each circular chromosome we introduce a decision vari-
able sk (D.06), that is 1 if k is a circular singleton and 0 otherwise. A circular
chromosome is then a singleton if all its indel edges are set (see Constraint C.11).

The objective of our ILP is to maximize the weight of a consistent decomposi-
ton, that is equivalent to maximizing the number of indel-free cycles, counted by
the sum over variables zi, while simultaneously minimizing the number of tran-
sitions in indel-enclosing AB-cycles, calculated by half the sum over variables te,
and the number of circular singletons, calculated by the sum over variables sk.

Implementation. We implemented the construction of the ILP as a python
application, available at https://gitlab.ub.uni-bielefeld.de/gi/ding.

Comparison to the approach by Lyubetsky et al. As mentioned in the
Introduction, another ILP for the comparison of genomes with unequal content

12

Algorithm 1 ILP for the computation of the DCJ-indel distance of natural
genomes

Objective:

Maximize
∑

1≤i≤|V |

zi −
1

2

∑
e∈E

te −
∑
k∈K

sk

Constraints:
(C.01) xe = 1 ∀ e ∈ EAadj ∪ E

B
adj

(C.02)
∑

{u,v}∈E

x{u,v} = 2 ∀ u ∈ V

(C.03) xe = xd ∀ e, d ∈ Eγ such that
e and d are siblings

(C.04) yi ≤ yj + i(1− x{vi,vj}) ∀ {vi, vj} ∈ E ,
(C.05) yi ≤ i(1− x{vi,vj}) ∀ {vi, vj} ∈ EAid ∪ E

B
id

(C.06) i · zi ≤ yi ∀ 1 ≤ i ≤ |V |

Domains:
(D.01) xe ∈ {0, 1} ∀ e ∈ E
(D.02) 0 ≤ yi ≤ i ∀ 1 ≤ i ≤ |V |
(D.03) zi ∈ {0, 1} ∀ 1 ≤ i ≤ |V |
(D.04) rv ∈ {0, 1} ∀ v ∈ V
(D.05) te ∈ {0, 1} ∀ e ∈ E
(D.06) sk ∈ {0, 1} ∀ k ∈ K

(C.07) rv ≤ 1− x{u,v} ∀ {u, v} ∈ EAid ,
rv′ ≥ x{u′,v′} ∀ {u′, v′} ∈ EBid

(C.08) t{u,v} ≥ rv − ru − (1− x{u,v}) ∀ {u, v} ∈ E
(C.09)

∑
{v,w}∈EA

id

x{v,w} − t{u,v} ≥ 0 ∀ {u, v} ∈ EAadj

(C.10) te = 0 ∀ e ∈ E \ EAadj
(C.11)

∑
e∈Ek

id

xe − |k| ≤ sk ∀k ∈ K

and paralogs was presented by Lyubetsky et al. [13]. In order to compare our
method to theirs, we ran our ILP using CPLEX on a single thread with the
two small artificial examples given in that paper on page 8. The results show
that both ILPs give the same correct distances and our ILP runs much faster,
as shown in Table 1.

Table 1. Comparison of running times and memory usage to the ILP in [13].

#marker running time as our our peak
dataset #markers

occurrences reported in [13] running time memory

Example 1 5/5 9/9 “about 1.5h” .16s 13200kb
Example 2 10/10 11/11 “about 3h” .05s 13960kb

4.2 Performance benchmark

For benchmarking purposes, we used gurobi 9.0 as solver. In all our experiments,
we ran gurobi on a single thread. Details on how the simulated data is generated
are given in the extended version of this manuscript.

In order to evaluate the impact of the number of duplicate occurrences on
the running time, we keep the number of simulated DCJ events fixed to 10,000
and vary parameters that affect the number of duplicate occurrences.

13

Our ILP solves the decomposition problem efficiently for real-sized genomes
under small to moderate numbers of duplicate occurrences: the solving times for
genome pairs with less than 10,000 duplicate occurrences (∼ 50% of the genome
size) shown in Figure 3 are with few exceptions below 5 minutes and exhibit a
linear increase, but the solving time is expected to boost dramatically with higher
numbers of duplicate occurrences. To further exploit the conditions under which
the ILP is no longer solvable with reasonable compute resources we continued the
experiment with even higher amounts of duplicate occurrences and instructed
gurobi to terminate within 1 hour of computation. We then partitioned the
simulated data set into 8 intervals of length 500 according to the observed number
of duplicate occurrences. For each interval, we determined the average as well
as the maximal multiplicity of any duplicate marker and examined the average
optimality gap, i.e., the difference in percentage between the best primal and
the best dual solution computed within the time limit. The results are shown
in Table 2 and emphasize the impact of duplicate occurrences in the solving
time: below 14,000 duplicate occurrences, the optimality gap remains small and
sometimes even the exact solution is computed, whereas above that threshold
the gap widens very quickly.

2000 3000 4000 5000 6000 7000 8000 9000 10000
#Duplicate occurrences per genome

0

50

100

150

200

250

300

350

400

So
lv

in
g

tim
e

[s
]

Fig. 3. Solving times for genomes
with varying number of dupli-
cate occurrences, totaling 20,000
marker occurrences per genome.

#Dupl.
occur-
rences

avg. mult.
of dupl.
markers

max.
multi-
plicity

avg.
opt.

gap (%)

11500..11999 2.206 8 0.000
12000..12499 2.219 8 0.031
12500..12999 2.217 7 0.025
13000..13499 2.233 9 0.108
13500..13999 2.247 8 0.812
14000..14499 2.260 8 1.177
14500..14999 2.274 8 81.865
15000..15499 2.276 9 33.102

Table 2. Average optimality gap for simulated
genome pairs grouped by number of duplicate
occurrences after 1h of running time.

Additionally, we ran three experiments, in each varying one of the following
parameters while keeping the others fixed: (i) genome size, (ii) number of sim-
ulated DCJs and indels, and (iii) number of linear chromosomes. The results,
given in the extended version of this manuscript, indicate that the number of
linear chromosomes also has a considerable impact in the running time, while
the other two have minor effect.

4.3 Real data analysis

Recently, the first three high-resolution haplotype-resolved human genomes have
been published [8]. The study reports an average number of 156 inversions per
genome, of which 121 are characterized as simple and 35 as copy-variable inver-
sions. Here, we demonstrate the applicability of our approach to the study of

14

real data by calculating the DCJ-indel distance between one of these haplotypes
(HG00514.h0) and the human reference sequence (GRCh38). After the construc-
tion of a genomic marker set, we represented each chromosome of both genomes
as marker sequence, with the largest chromosome (chr. 1) comprising close to
18,000 markers. We then ran our ILP for the computation of the DCJ-indel
distance on each pair of chromosomes independently. We were able to obtain
exact solutions for 17 chromosomes within few minutes and two more within a
few days. However, the remaining four comparisons did not complete within a
timelimit of 3 days. Still, after that time, their optimality gaps were below 0.1%.
The calculated DCJ-indel distances ranged between 1.3% and 7.7% of the length
of the marker sequences, with the number of runs accounting for at least 48.7%
of the distance. Further details on the data set, the construction of the genomic
markers, and the calculated DCJ-indel distances are described in Appendix A
of the extended version of this paper.

5 Conclusion

By extending the DCJ-indel model to allow for duplicate markers, we intro-
duced a rearrangement model that is capable of handling natural genomes, i.e.,
genomes that contain shared, individual, and duplicated markers. In other words,
under this model genomes require no further processing nor manipulation once
genomic markers and their homologies are inferred. The DCJ-indel distance of
natural genomes being NP-hard, we presented a fast method for its calculation
in form of an integer linear program. Our program is capable of handling real-
sized genomes, as evidenced in simulation and real data experiments. It can be
applied universally in comparative genomics and enables uncompromising anal-
yses of genome rearrangements. We hope that such analyses will provide further
insights into the underlying mutational mechanisms. Conversely, we expect the
here presented model to be extended and specialized in future to reflect the
insights gained by these analyses.

References

1. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: On the approxima-
bility of comparing genomes with duplicates. J. Graph Algorithms Appl. 13(1),
19–53 (2009), (A preliminary version appeared in Proc. of WALCOM 2008.)

2. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In:
Proceedings of the 6th International Conference on Algorithms in Bioinformatics
(WABI 2006). LNBI, vol. 4175, pp. 163–173. Springer Verlag (2006)

3. Bohnenkämper, L., Braga, M.D.V., Doerr, D., Stoye, J.: Computing the rearrange-
ment distance of natural genomes. arXiv 2001.02139 (2020)

4. Braga, M.D.V.: An overview of genomic distances modeled with indels. In: Proceed-
ings of the Conference on Computability in Europe (CiE 2013). LNCS, vol. 7921,
pp. 22–31. Springer Verlag (2013)

5. Braga, M.D.V., Willing, E., Stoye, J.: Double cut and join with insertions and dele-
tions. Journal of Computational Biology 18(9), 1167–1184 (2011), (A preliminary
version appeared in Proc. of WABI 2010.)

15

6. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D.,
Nadeau, J.H. (eds.) Comparative Genomics, pp. 207–211. Kluwer Academic Pub-
lishers (2000)

7. Bulteau, L., Jiang, M.: Inapproximability of (1,2)-exemplar distance. IEEE/ACM
Trans. Comput. Biol. Bioinf. 10(6), 1384–1390 (2013), (A preliminary version ap-
peared in Proc. of ISBRA 2012.)

8. Chaisson, M.J.P. et al.: Multi-platform discovery of haplotype-resolved structural
variation in human genomes. Nature Communications 10(1), 1–16 (Apr 2019)

9. Compeau, P.E.C.: DCJ-indel sorting revisited. Algorithms for Molecular Biology
8, 6 (2013), (A preliminary version appeared in Proc. of WABI 2012.)

10. Friedberg, R., Darling, A.E., Yancopoulos, S.: Genome rearrangement by the dou-
ble cut and join operation. In: Keith, J.M. (ed.) Bioinformatics, Volume I: Data,
Sequence Analysis, and Evolution, Methods in Molecular Biology, vol. 452, pp.
385–416. Humana Press (2008)

11. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm
for genomic distance problem). In: Proceedings of the 36th Annual Symposium
of the Foundations of Computer Science (FOCS 1995). pp. 581–592. IEEE Press
(1995)

12. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial al-
gorithm for sorting signed permutations by reversals. Journal of the ACM 46(1),
1–27 (1999), (A preliminary version appeared in Proc. of STOC 1995.)

13. Lyubetsky, V., Gershgorin, R., Gorbunov, K.: Chromosome structures: reduction
of certain problems with unequal gene contemnt and gene paralogs to integer linear
programming. BMC Bioinformatics 18, 537 (2017)

14. Martinez, F.V., Feijão, P., Braga, M.D.V., Stoye, J.: On the family-free DCJ dis-
tance and similarity. Algorithms for Molecular Biology 10, 13 (2015), (A prelim-
inary version appeared in Proc. of WABI 2014.)

15. Sankoff, D.: Edit distance for genome comparison based on non-local operations.
In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) Proceedings of the
Third Annual Symposium on Combinatorial Pattern Matching, CPM 1992. LNCS,
vol. 644, pp. 121–135. Springer Verlag, Berlin (1992)

16. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11),
909–917 (1999)

17. Shao, M., Lin, Y., Moret, B.M.E.: An exact algorithm to compute the double-cut-
and-join distance for genomes with duplicate genes. J. Comp. Biol. 22(5), 425–435
(2015), (A preliminary version appeared in Proc. of RECOMB 2014.)

18. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–
3346 (2005)

19. Yancopoulos, S., Friedberg, R.: DCJ path formulation for genome transformations
which include insertions, deletions, and duplications. Journal of Computational
Biology 16(10), 1311–1338 (2009), (A preliminary version appeared in Proc. of
RECOMB-CG 2008.)

16

