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Abstract. There have been many widely used genome rearrangement models, such as reversals, Hannenhalli-
Pevzner, and double-cut and join. Though each one can be precisely defined, the general notion of a model
remains undefined. In this paper, we give a formal set-theoretic definition, which allows us to investigate
and prove relationships between distances under various existing and new models. We also initiate the
formal study of single-cut operations by giving a linear time algorithm for the distance problem under a
new single-cut and join model.

1 Introduction

In 1938, Dobzhansky and Sturtevant first noticed that the pattern of large scale rare events, called genome
rearrangements, can serve as an indicator of the evolutionary distance between two species [9]. With the pio-
neering work of Sankoff and colleagues to formulate the question of evolutionary distance in purely combina-
torial terms [23, 22], the mathematical study of genome rearrangements was initiated. Here, the evolutionary
distance is determined as the smallest number of rearrangements needed to transform one genome (abstracted
as a gene-order) into another. This has given rise to numerous combinatorial problems, including distance,
median, aliquoting, and halving problems, which are used to build phylogenetic trees and infer other kinds of
evolutionary properties.

An underlying challenge of such approaches is to define an appropriate model, which specifies the kinds of
rearrangements allowed. On one hand, the model should be as accurate as possible, including all the possible
underlying biological events and weights which reflect their likelihood. On the other, answering questions like
the median or distance can be computationally intractable for many models. The trade-offs between these, as
well as other, considerations decide which rearrangement model is best suited for the desired type of analysis.

Though the ideas of genomes and rearrangements are inherently biological, they require precise math-
ematical definitions for the purposes of combinatorial analysis. Earlier definitions of genomes as signed
permutations did not generalize well to genomes with duplicates, but recently a more general set-theoretic
definition in terms of adjacencies has become used [5]. However, though particular models, like HP or DCJ,
have their own precise definitions, the notion of a model, in general, remains undefined. In this paper, we give
such a definition and show how current rearrangement models can be defined within our framework. This
allows us to investigate and prove things about the relationship between sorting distances under different
models, which we present in combination with what is already known to give an exposition of current results.

Recently, it was observed that most of the events in a parsimonious evolution scenario between human and
mouse were operations which cut the genome in only one place, such as fusions, fissions, semi-translocations,
and affix reversals (reversals which include a telomere) [7]. Such scenarios have applicability to the break-
point reuse debate [2, 21, 24, 7] since they can suggest a low rate of reuse. In this paper, we initiate the formal
study of such single-cut operations by giving a linear time algorithm to find the minimum distance under
a new single-cut and join (SCJ) model1 and using it to determine the SCJ distance between the human and
several other organisms.

1 Note that here SCJ refers to single-cut and join, as opposed to single-cut or join which was recently introduced by
Feijão and Meidanis [10].



2 Preliminaries

We begin by giving the standard definition of a genome, consistent with [5]. We represent the genes by a
finite subset of the natural numbers, N ⊂ N. For a gene g ∈ N , there is a corresponding head gh and tail
gt, which are together referred to as the extremities of g. The set of all extremities of all genes in N is called
Next. The set {p, q}, where p and q are extremities, is called an adjacency. We denote by Nadj the set of all
possible adjacencies of N . The one-element set {p}, where p is an extremity, is called a telomere. We denote
byNtel the set of all possible telomeres ofN . Telomeres and adjacencies are collectively referred to as points.
A genome G ⊆ Nadj ∪Ntel is a set of points such that each extremity of a gene appears exactly once2:⋃

x∈G

x = Next and for all x, y ∈ G, x ∩ y = ∅

For brevity, we will sometimes use signed permutation notation to describe a uni-chromosomal linear genome,
such as G = (1,−2,−3, 4); however, this is just a notation and the underlying representation of the genome
is always as a set of points. We denote by N(G) the set of genes underlying the genome G. Finally, we define
G to be the set of all possible genomes over all possible gene sets (G is a countable infinite set).

Though this definition of a genome does not immediately reflect the notion of chromosomes or gene-
orders, these are reflected as properties of the genome graph. Given a genome G, its genome graph is an
undirected graph whose vertices are exactly the points of G. The edges are exactly the genes of G, where
edge g connects the two vertices that contain the extremities of g (this may be a loop). It is easy to show that
the genome graph is a collection of cycles and paths [5].

We can now define a chromosome as a connected component in the genome graph. We also say that a
sequence of extremities p1, . . . , pm is ordered if there exists a path which traverses the vertices associated
with the extremities in the given order. Note that questions like the number of chromosomes, whether two
genes lie on the same chromosome, or whether extremities are ordered can all be answered in linear time by
constructing and analyzing the genome graph.

Another useful graph is the adjacency graph [5]. For two genomes A and B, AG(A,B) is an undirected,
bipartite multi-graph whose vertices are the points of A and B. For each x ∈ A and y ∈ B there are |x ∩ y|
edges between x and y. It is not difficult to show that this graph is a vertex-disjoint collection of paths
and even-cycles and can be constructed in linear time [5]. We denote by Cs(A,B), Cl(A,B), and I(A,B)
the number of short cycles (length two), long cycles (length greater than 2), and odd paths in AG(A,B),
respectively. We use the term A-path to refer to a path that has at least one endpoint in A, and BB-path to
one with both endpoints in B.

3 Models, operations, and events

We now present a formal treatment of rearrangement models, beginning with the main definition:

Definition 1 (Rearrangement Models, Operations and Events). A rearrangement operation (also called
a model) is a binary relation R ⊆ G × G. A rearrangement event is a pair R = (G1, G2) ∈ G × G.3 We say
that R is anR event if R ∈ R.

For example, if we have genes {a, b, c} and a genome G = {{ah}, {at, bh}, {bt}, {ch}, {ct}}, then
a possible event is R = (G, {{ah}, {at, bh}, {bt, ch}, {ct}}). This event has the effect of fusing the two
chromosomes of G. On the other hand, a fusion operation R is given by the set of all pairs (G1, G2) such
that there exist extremities x, y ∈ N(G1)ext and G2 ∪ {{x}, {y}} = G1 ∪ {{x, y}}. It is easy to see that

2 Though this paper focuses on genomes without duplicate genes, this definition could be extended to the more general
case by treating the set of genes and its corresponding derivatives as multisets, including the genome.

3 Alternatively, we can treat R as a function in the standard way of viewing relations as functions. Namely, R : G ∪
{∅} −→ G ∪ {∅} where R(C) = G2 if C = G1 and R(C) = ∅ otherwise.
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R is an R-event. Thus the operation R captures the general notion of a fusion as a type of rearrangement,
while the event R captures this particular instance of a fusion. Most current literature does not make a formal
distinction between types of rearrangements (which we call operations) and their particular instances (which
we call events), but this is necessary for defining the notion of a rearrangement model.

Current literature often makes the informal distinction between models, such as DCJ or HP, and opera-
tions, such as reversals or fusions. Operations are considered more biologically atomic, with a model being
a combination of these atomic operations. Here, we maintain this notational consistency; however, we note
that the terms model and operation are mathematically equivalent.

In this paper, we focus on the double-cut and join (DCJ) model and its subsets (referred to as submodels
in the context of models).

Definition 2 (DCJ). Let G1 and G2 be two genomes with equal gene content (N(G1) = N(G2)). Then
(G1, G2) ∈ DCJ if and only if there exist extremities p, q, r, s such that one of the following holds:

(a) G2 ∪ {{p, q}, {r, s}} = G1 ∪ {{p, r}, {q, s}}
(b) G2 ∪ {{p, q}, {r}} = G1 ∪ {{p, r}, {q}}
(c) G2 ∪ {{q}, {r}} = G1 ∪ {{q, r}}
(d) G2 ∪ {{q, r}} = G1 ∪ {{q}, {r}}

This definition is equivalent to the one given in [27, 5]. A more intuitive interpretation of, for example, (a), is
that the event replaces the adjacencies {p, q} and {r, s} in G1 with {p, r} and {q, s} in G2.

Note that an event that satisfies one of the conditions (b)-(d) of the DCJ model only cuts the genome in
one place. These events define the submodel of DCJ called single-cut and join (SCJ), which we will study in
Section 6. Other operations, such as reversals, can be defined in a similar manner, though we do not do it
here for conciseness. We will, however, define how to restrict a model so that it only deals with linear and/or
uni-chromosomal genomes:

Definition 3. Given a model M , let

– Mlin = {(G1, G2) | (G1, G2) ∈M and G1 and G2 are linear}.
– Muni = {(G1, G2) | (G1, G2) ∈M and G1 and G2 are uni-chromosomal}.

There are many questions one can pose within any model, including sorting, distance, median, halving,
or aliquoting. We will focus on the sorting and distance problems here:

Definition 4 (Sorting Sequence and Distance). A sequence of events R1, R2, . . . , Rm sorts G1 into G2 if
G2 = Rm(. . . (R1(G1))). The sorting distance betweenG1 andG2 under a modelR, denoted by dR(G1, G2),
is the length of the shortest sorting sequence such that all Ri are R events. If such a sequence does not exist
then we say dR(G1, G2) =∞.

Given two genomes, we can either find a shortest sorting sequence or just the sorting distance. Since the
number of possible events in each step is polynomial, if we have a polynomial time algorithm for distance,
then we also have one for sorting [13]. That is why when discussing poly-time complexity, we will focus only
on the distance problem. Note however that the precise complexities may differ, as for example is the case
for the reversal model, where the distance can be computed in linear time [4] while the best-known sorting
algorithms have worst-case time complexity O(n3/2

√
log n) [25].

4 Submodels of double-cut and join

Motivated by different biological systems, several distinct rearrangement models have been studied. These
models differ in various aspects, spanning a whole space of genome rearrangement models. The three most
relevant dimensions of this space are (i) the number of chromosomes a genome may have, (ii) the shape that
the chromosomes may have (i.e. linear or circular), and (iii) the maximum number of chromosome cuts (and
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Model
Operation DCJ HP SCJ SCJlin (SCJuni)lin

PROPER TRANSLOCATION • •
SEMI TRANSLOCATION • • • •
PATH FISSION/FUSION • • • •
EXCISION/INTEGRATION •
REVERSAL • • ◦ ◦ ◦
CIRCULARIZATION/LINEARIZATION • •
CYCLE FISSION/FUSION • ◦

Table 1. A description of some of the models in terms of the elementary operations defined in [5]. A dark bullet means
that the operation is fully contained in the model, no bullet means that the operation is disjoint with the model, and an
empty bullet means that some but not all of the operation is contained in the model. Furthermore, each model is precisely
the union of the operations specified by the bullets.

joins) an operation may perform4. This three-dimensional space is visualized in Fig. 1. Each of the corners
of the cube can be formally defined by deriving a submodel from either DCJ or SCJ using the linear and/or
uni-chromosomal restrictions. For example, HP = DCJlin, and the front bottom left corner is (SCJuni)lin One
can also think of these models in terms of the operations they allow, which is shown in Table 1.

Of the corners of the cube visualized in Fig. 1, some are of particular interest and thus have been studied
more than others. The first model to be studied was the REV model, where the only allowed operation was
the reversal. This model can only be used to sort linear uni-chromosomal genomes, since a reversal can never
change the number of chromosomes or make them circular. The biological motivation for this model goes
back to Nadeau and Taylor [19] and it was first formally modeled by Sankoff [22]. The first polynomial-time
algorithm for computing the reversal distance and solving the reversal model was given by Hannenhalli and
Pevzner [13] in 1995.

In the same year, Hannenhalli and Pevzner also looked at a model where multiple linear chromosomes
are allowed, as is often the case in eukaryotic genomes [12]. After its authors, the resulting model is called
the HP model. A combination of work showed that the distance under HP can be computed in poly-time [12,
26, 20, 14, 6].

A more recently introduced model is the double-cut and join (DCJ), which encompasses all events that can
be achieved by first cutting the genome in up to two places, and then rejoining them in different combinations
[27]. Though such a model is less biologically realistic than the HP model, there are fast algorithms for solving
it [5] which have made it useful as an efficient approximation for the HP distance [1, 15, 18]. The DCJ model
is a superset of all the other models in the cube, and is thus the most general.

The REV, HP, and DCJ models are all double-cut models, in that they allow for the cutting of the genome in
two places. However, one can also consider models where only one cut is allowed. These make up the bottom
plane of the cube, with the most general of these being the already defined SCJ model. These models have
not yet been studied, since they are quite restrictive. However, we became aware of their relevance when we
looked at certain rearrangement scenarios in eukaryotic evolution. In particular, while studying rearrangement
scenarios between human and mouse with a minimum number of breakpoint reuses [7] it was observed that
most of the events (213 out of 246) were single-cut (186 semi-translocations and affix reversals, 15 fissions
and 12 fusions). This observation raised our interest in studying SCJ and its submodels.

In Section 6, we give a linear time algorithm for the sorting distance in the SCJ model. When restricted
to linear chromosomes (SCJlin), we have the single-cut equivalent of the HP model, allowing fissions, fusions,
semi-translocations, and affix reversals. The complexity of this model is unknown. The even more restrictive
(SCJuni)lin model consists of only affix reversals, which reverse a prefix/suffix of a chromosome, and is the
single-cut equivalent of the REV model. There is a simple 2-approximation algorithm for the sorting distance,

4 In this paper, we focus on double and single-cut operations. However, more general k-cut operations have also been
considered [3].
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Fig. 1. The space of DCJ genome rearrangement submodels. An arrow on an edge from M to M ′ indicates that there
exists a pair of genomes that are sortable under both models and whose distance under M is strictly more than under M ′.
An edge between M and M ′ with a circular ending at M ′ indicates that if a pair of genomes is sortable under M , then
its distances under M and M ′ are the same.

which increases the number of short cycles by at least one every two steps. However, the complexity of the
problem remains open. It is related to the problem of sorting burnt pancakes [11, 8], which is similar except
that the chromosome has an orientation and only prefix reversals are allowed. The complexity of this problem
is also open.

5 Sorting distance relationships

In this section, we study the relationship between sorting distances under the various models represented in
the cube of Figure 1. We start with an easy observation, which we sometimes may use without explicitly
stating it:

Lemma 1 (Submodel Lemma). For any two models M and M ′ with M ′ ⊆M , and all genomes G1, G2,

dM (G1, G2) ≤ dM ′(G1, G2).

Proof. Any sorting sequence under M ′ is by definition also a sorting sequence under M . ut

Corollary 1. For all genomes G1, G2 and models M ,

– dDCJ(G1, G2) ≤ dSCJ(G1, G2)
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– dM (G1, G2) ≤ dMlin
(G1, G2)

– dM (G1, G2) ≤ dMuni
(G1, G2)

In fact, if you compare two models that are connected by an edge of the cube, then the one that is furthest
from the origin is at least as powerful as the closer one. An interesting question is when the two models are
equally powerful – that is, if a pair of genomes is sortable under both models, then the distances are the same.
We first study if the restriction to linear or uni-chromosomal genomes makes the DCJ or SCJ models less
powerful. Of course, it is clear from the definitions that, for example, a multi-chromosomal genome can be
sorted by SCJ and cannot be sorted by SCJuni. However, we are interested if there are genomes which can be
sorted by both models, but with fewer steps in one than the other.

Lemma 2. There exist two genomes G1 and G2 such that

– dSCJ(G1, G2) < dSCJlin(G1, G2) <∞
– dSCJ(G1, G2) < dSCJuni(G1, G2) <∞
– dDCJ(G1, G2) < dDCJuni(G1, G2) <∞

Proof. Let G1 = (1, 3, 2) and G2 = (1, 2, 3). We can sort G1 into G2 using two SCJ events. First, we make
an excision by replacing points {1h, 3t} and {2h}with {1h} and {2h, 3t}. Second, we make an integration by
replacing points {1h} and {3h, 2t} with {1h, 2t} and {3h}. However, there does not exist a sorting sequence
of length two under either SCJlin, SCJuni, or DCJuni models, though the genomes are clearly sortable under all
these models. ut

To complete the picture, it is already known that there are genomes that are sortable in HP but require more
steps than in DCJ (see [6] for an example).

We next look if the flexibility of double-cut operations makes the models in the top plane more powerful
than their respective counterparts in the bottom plane. There is a simple example that answers this question
in the affirmative.

Lemma 3. There exist two genomes G1 and G2 such that

– dREV(G1, G2) < d(SCJuni)lin(G1, G2) <∞
– dHP(G1, G2) < dSCJlin(G1, G2) <∞
– dDCJuni(G1, G2) < dSCJuni(G1, G2) <∞
– dDCJ(G1, G2) < dSCJ(G1, G2) <∞

Proof. Let G1 = (1,−2, 3) and G2 = (1, 2, 3). We can sort G1 into G2 using just one event in the REV
model, while there is no single SCJ event that does this. However, G1 is sortable into G2 using affix reversals.
The lemma follows by applying the Submodel Lemma. ut

We now compare (SCJuni)lin with SCJlin to determine if the flexibility to create additional chromosomes in
intermediate steps adds power when we are restricted to single-cut operations and linear genomes.

Lemma 4. There exist two genomes G1 and G2 such that

dSCJlin(G1, G2) < d(SCJuni)lin(G1, G2) <∞.

Proof. Let G1 = (1,−2,−3, 4) and G2 = (1, 2, 3, 4). There exists a sorting sequence of length 4 under
SCJlin that makes a fission between −2 and −3, two affix reversals of genes 2 and 3, respectively, and a final
fusion. However, one can check that using only affix reversals the sorting distance is 6. ut

In some cases, however, additional flexibility does not add power to the model. Consider the SCJuni model,
which differs from the (SCJuni)lin model in that, besides affix reversals, it allows the circularization and lin-
earization of the chromosome. This obviously allows sorting a linear chromosome into a circular one, some-
thing that REV does not allow. However, for genomes that are sortable under both models, we can show that
circularization cannot help to decrease the distance.
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Lemma 5. For two uni-chromosomal linear genomes G1 and G2, we have

dSCJuni(G1, G2) = d(SCJuni)lin(G1, G2).

Proof. We show that for any optimal SCJuni sorting scenario that creates a circular chromosome in an inter-
mediate step, there exists a sorting scenario of equal length without a circular chromosome. Since the only
SCJ operation that can be performed on a uni-chromosomal circular genome is to linearize it, we know that
every circularization is immediately followed by a linearization. Thus, w.l.o.g. the situation can be described
as an exchange of a prefix A and a suffix B:

A B → &%
'$

A B → B A

However, the same effect can be achieved by two affix reversals, namely first reversing A and then B:

A B → −A B → −A −B

ut

A similar situation occurs when we add circularization and linearization to the reversal model, though the
proof is more involved:

Lemma 6. For two uni-chromosomal linear genomes G1 and G2, we have

dDCJuni(G1, G2) = dREV(G1, G2).

Proof. Consider an optimal DCJuni sorting sequence S that has the smallest possible number of circulariza-
tions. We show, by contradiction, that this number is zero, proving the lemma. Let L be the genome prior to
the first circularization, let C be the one right after it, let C ′ be the genome right before the first linearization,
and let L′ be the one right after it. Let d be the length of the sorting sequence between C and C ′ (these must
be reversals).

We will apply Theorem 3.2 from [17], which states that the reversal distance between any two circular
chromosomes (C and C ′ in our case) is the same as the reversal distance between their linearizations, if
they share a telomere. If L and L′ share a telomere, then there is a sorting sequence with shorter length that
replaces d+ 2 events between them with d reversals, which contradicts the optimality of S.

Suppose w.l.o.g that the two telomeres of L are {p} and {s}, that {q} is a telomere in L′, that {q, r} is
an adjacency in L, and p, q, r, s are ordered in L. We can perform two reversals on L, the first one replacing
{p} and {q, r} with {q} and {p, r}, and the second replacing {p, r} and {s} with {p, s} and {r}. The effect
on the genome graph can be visualized as follows:

p q r s q p s r
L L’’

Note that if you circularize the resulting genome, L′′, you get C, and L′′ shares a telomere with L′.
Therefore, by the theorem, there exist d reversals that sort L′′ into L′. We can then get a new sorting sequence
that replaces the d+2 events between L and L′ with the two reversals described above followed by d reversals
given by the theorem. This sorting sequence has the same length as S but has one less circularization, a
contradiction. ut

The results of this section are compactly summarized in Figure 1 by marking the endpoints on the edges
of the cube. The Submodel Lemma implies other results which we have not explicitly stated but that can be
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deduced by looking at the endpoints of the edges. For instance, there are genomes that are sortable under
SCJuni that require less steps under SCJlin. Additionally some models which are not subsets of each other (like
SCJ and HP) are incomparable. That is, there are genomes that are sortable under SCJ but require less steps
under HP, and there are other genomes for which the opposite holds. The examples of (1, 3, 2) and (1,−2, 3)
are enough to prove incomparability of SCJ with REV and with HP.

There is one edge of the cube with no marked endpoints, which represents the question of whether HP
is more powerful to sort uni-chromosomal genomes than REV. Note that this is not trivial, because under
HP we can split chromosomes in intermediate steps, which proved to give SCJlin more power than (SCJuni)lin
(Lemma 4). To the best of our knowledge, this question remains open.

6 Single-cut and join

We have already motivated the study of the sorting distance under the SCJ model, and in this section we give
a linear time algorithm to compute it. Let A and B be two arbitrary genomes with the same underlying set of
genes, N . We will use the following potential function in our analysis

Φ(A,B) = |N | − I(A,B)/2− Cs(A,B) + Cl(A,B)

First, we show that the potential function is 0 if and only if the two genomes are the same:

Lemma 7. A = B if and only if Φ(A,B) = 0.

Proof. The only if direction follows trivially from the definition of the adjacency graph. The if direction
follows from a simple counting argument. Let a be the number of adjacencies in A, and t be the number of
telomeres. By definition, a + t/2 = |N |. Since each short cycle accounts for one adjacency of A, and each
odd path accounts for two telomeres of A, we have that Cs(A,B) + I(A,B)/2 ≤ a+ t/2 = |N |. Therefore,
for the equality of the lemma to hold, we must have Cl(A,B) = 0, Cs(A,B) = a, and I(A,B) = t. This
further implies, since each path is responsible for at least one telomere, and there are the same number of
telomeres as paths, that all the paths must have length 1. Since AG(A,B) contains only paths of length 1 and
short cycles, we conclude that the points of A must be the same as the points of B. ut

We can show using simple case analysis that Φ can decrease by at most one after any single event (proof
omitted).

Lemma 8. For all SCJ events R, Φ(R(A), B)− Φ(A,B) ≥ −1.

Combined with the fact that Φ cannot be negative, this gives a lower bound of Φ(A,B) on the sorting distance.
We now consider Algorithm 1, whose cases are also illustrated in Figure 2.

Lemma 9. Algorithm 1 terminates and outputs an SCJ sorting scenario of length Φ(A,B).

Proof. First, we observe that one of the cases always applies since if A 6= B then there must be at least one
path of length greater than one or a long cycle. One can also verify that in each case, (A,A′) is an SCJ event.
Finally, we show that Φ(A′, B)− Φ(A,B) = −1:

Case 1: A short cycle is created and the length of P decreases by two.
Case 2: An even path (P ) is removed and a short cycle is created.
Case 3: An even path (P ) is replaced by two odd paths.
Case 4: A long cycle is replaced by an even path.

ut

Thus, we have

Theorem 1. dSCJ(A,B) = Φ(A,B) = |N | − I(A,B)/2− Cs(A,B) + Cl(A,B).
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Algorithm 1 Algorithm for sorting under SCJ

while A 6= B do
if there exists an A-path P with length > 3 then

Let p, q, r be the first three edges (from an arbitrary A end P ).
Let A′ = A \ {{p}, {q, r}} ∪ {{r}, {p, q}}.

else if there exists an A-path P with length of 2 then
Let p and q be its two edges.
Let A′ = A \ {{p}, {q}} ∪ {{p, q}}.

else if there exists a BB-path P then
Let p and q be the first two edges (from an arbitrary end of P ).
Let A′ = A \ {{p, q}} ∪ {{p}, {q}}.

else if there exists a long cycle then
Let {p, q} be a vertex of the cycle in A.
Let A′ = A \ {{p, q}} ∪ {{p}, {q}}.

end if
Print A′.
Let A = A′.

end while

p

p
q

q r

r

p

p
q

q p q

p q

p q

p q

Case 1 Case 2 Case 3 Case 4

AG(A,B)

AG(A’,B)

Fig. 2. The four cases of Algorithm 1.

Corollary 2. dSCJ(A,B) is computable in O(|N |) time.

Note the similarity to the formula for the DCJ distance [5]:

dDCJ(A,B) = |N | − I(A,B)/2− Cs(A,B)− Cl(A,B)

Thus the difference between the SCJ and DCJ distances is 2Cl(A,B).

7 Experimental results

We performed six different comparisons, all with respect to the human. In the first, we took the 281 synteny
blocks of the mouse-human comparison done in [21]. In the other five, we used the 1359 synteny blocks of
the chimp, rhesus monkey, mouse, rat, and dog used in [16]. For each comparison, we computed the SCJ,
DCJ, and HP distances. The HP distance was computed using GRIMM [26]. The results are shown in Table 2.

One immediately sees that the SCJ scenarios are far from parsimonious relative to the HP model. However,
we stress that the goal of the SCJ model is to explore the importance of double-cut operations in evolution,
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Model Ratio
Organism #Blocks DCJ HP SCJ SCJ/ HP

Mouse [21] 281 246 246 300 1.2
Chimp 1359 22 23 58 2.5
Rhesus Monkey 1359 106 110 224 2.0
Mouse [16] 1359 408 409 642 1.6
Rat 1359 707 753 1291 1.7
Dog 1359 291 295 523 1.8

Table 2. Rearrangement distances under different models from different organisms to the human.

and not to be a realistic evolutionary model. It can be an indicator of how many double-cut operations are
really an advantage and how many are just an alternative that can be avoided. For example, consider that
the difference between the HP and SCJ distances is 150% in the chimp-human comparison, and 60% in the
mouse[16]-human comparison. This might suggest that somehow single-cut operations play a lesser part in
the chimp-human evolution than in the mouse-human evolution. We also notice that the ratio of the SCJ to
HP distance in the mouse-human comparison is much lower (1.2 vs. 1.6) using the synteny blocks of [21]
than using the synteny blocks of [16]. This suggests the sensitivity of this kind of breakpoint reuse analysis
to synteny block partition.

In Section 5, we showed that there exist genomes for which the SCJ distance is smaller than the HP distance
(for example 1, 3, 2). However, in all the experimental results, the HP distance is always much smaller. This
suggests that the SCJ operations not allowed by HP, such as excissions, integrations, circularizations, and
linearizations, are infrequent relative to fissions, fusions, translocations, and reversals.

8 Conclusion

In this paper, we gave a formal set-theoretic definition of rearrangement models and operations, and used
it to compare the power of various submodels of DCJ with uni-chromosomal and/or linear restrictions. We
hope that the formal foundation for the notion of models will eventually lead to further insights into their
relationships.

We also initiated the formal study of single-cut operations by giving a linear time algorithm for computing
the distance under a new single-cut and join model. Many interesting algorithmic questions remain open,
including the complexity of sorting using linear SCJ operations, and sorting using affix reversals.
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