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Abstract. In comparative genomics, various combinatorial models can be used
to specify gene clusters — groups of genes that are co-located in a set of genomes.
Several approaches have been proposed to reconstruct putative ancestral gene
clusters based on the gene order of contemporary species. One prevalent and
natural reconstruction criterion is consistency: For a set of reconstructed gene
clusters, there should exist a gene order that comprises all given clusters.
In this paper, we discuss the consistency problem for different gene cluster mod-
els on sequences with restricted gene multiplicities. Our results range from linear-
time algorithms for the simple model of adjacencies to NP completeness for more
complex models like common intervals.

1 Introduction

The exploration of the ancestral history of different species can give valuable informa-
tion about their evolution. In whole-genome comparison, one commonly considers the
order of the genes or other markers within the genome to study changes and similarities
in the structure of different genomes.

Genes belonging to the same gene family are represented by the same identifier. To
simplify matters, the term ‘gene’ will be used to refer to the corresponding gene family
identifier. One simple way to model genomes is to use permutations. However, this ap-
proach includes the assumption that every gene occurs exactly once in each considered
genome. To allow for duplications and deletions, a relaxation to sequences of genes is
necessary. A convenient way to account for the orientation of a gene within the genome
is to use signed permutations or signed sequences, respectively.

Evolutionary processes can rearrange a gene order. The gene composition of some
regions, however, is preserved and can be found in several related genomes. These seg-
ments, denoted as gene clusters, often contain functionally or evolutionarily associated
genes [14, 16]. Whenever the genomes of several species comprise the same gene clus-
ter, it was presumably inherited from a common ancestor. Recent studies [1, 2, 7, 19]
build on this idea to reconstruct ancient gene clusters and to infer ancient gene orders.
More precisely, the internal nodes of a given phylogenetic tree are labeled with sets
of gene clusters, based on the gene orders of contemporary species at the leaves of the
tree. Beside the pure identification of gene clusters, such reconstructed scenarios for the
origin of the clusters and the development of the gene order can give valuable informa-
tion about underlying evolutionary processes, the ancestral history of the species, and
functional and evolutionary relations of genes.



Proposed reconstruction approaches differ in the underlying models for gene order
and gene clusters, and in the applied methodology. However, a general aim is to ensure
consistency: For a set of putative ancient gene clusters, there should exist at least one
gene order that comprises all given clusters. Otherwise, the reconstruction result would
be inconsistent with respect to the genome model.

The goal of reconstructing consistent labelings was first introduced by Bergeron et
al. [2] who presented an algorithm that reconstructs sets of framed common intervals on
permutations. Adam et al. [1] applied the parsimony principle as an objective function
to reconstruct common intervals on permutations. A heuristic is used to reach consis-
tency. Recently, Chauve and Tannier [7] proposed a methodology to reconstruct the
gene order of the amniote genome, based on consistent labelings of common intervals
and adjacencies. In our previous work [19], we introduced an algorithmical framework
that is not restricted to a specific model but instead follows an oracle-based approach to
compute most parsimonious consistent labelings for various models.

All of the above methods have been successfully applied to real data and proven
to yield reasonable and valuable results. They all rely on permutation-based models,
which enable efficient algorithms and data structures. In particular, the verification of
consistency can be solved in polynomial time and space using data structures like PQ-
trees or PC-trees [10]. Some reconstruction approaches could be easily adapted to the
model of sequences without duplications which allows genes to be missing in some
genomes but still requires each gene to occur at most once in each genome.

In this paper, we discuss consistency for sequence-based gene cluster models. Par-
ticularly, we consider the simple model of adjacencies, the classical model of common
intervals [20], and two variants of the latter. For each of these models we address the
problem: Given a set of gene clusters and a maximum copy number for each gene, de-
cide whether there exists a valid gene order that contains all the clusters. Our results
range from algorithms that verify consistency for adjacencies in linear time to the con-
firmation of NP completeness for the more complex models.

The paper has been organized in the following way. First, we formally introduce
the Consistency Problem in Section 2. Then, in Section 3, we give an efficient solution
for the gene cluster model of both signed and unsigned adjacencies. In Section 4, we
present NP completeness results for the model of common intervals and its variants,
before we finish with some discussions and conclusions in Section 5. The technical
details of the NP completeness proofs can be found in [21, Appendix A].

2 The Consistency Problem

Assume a set of putative gene clusters, assigned to an ancestral node in a given tree.
These ancient clusters in turn imply a set of putative ancient genomes: all those which
contain all the given clusters. Depending on the gene cluster model used, this set of
genomes can be empty if some of the clusters derived from different contemporary
species are in contradiction with others. For example, when we model gene order as per-
mutations, there is no valid gene order comprising the three adjacencies {a, b}, {a, c}
and {a, d}, because, according to the model, gene a can only occur once and thus only
be neighbor of two other genes.
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. . .,2,1,3,. . .
⇒ {1,2}, {1,3}

. . .,2,1,4,. . .
⇒ {1,2}, {1,4}

. . .,3,1,4,. . .
⇒ {1,3}, {1,4}

{1,2}
{1,3}
{1,4}

⇒ . . .,2,1,3,. . .,1,4,. . .

Fig. 1. Example for an artifact that arises when gene clusters are reconstructed on the basis of
gene orders, where any gene can occur arbitrarily often. Any most parsimonious labeling would
assign all three adjacencies to the lowermost internal node, implying at least two copies of gene 1.

In a more general case, we represent genomes as sequences of genes or other ge-
nomic markers. In a sequence, any element can occur multiple times or not at all, which
in the context of gene order comparison corresponds to paralogous genes and gene
deletions, respectively.

If we allow each gene to appear arbitrarily often in any genome, the question for
consistency would become redundant: Any set of gene clusters is consistent since there
is a valid gene order containing all assigned clusters. For instance, we can simply create
a short sequence of genes according to each cluster separately and then concatenate
these sequences to an absurd yet valid gene order. Such a construction is possible for any
gene cluster model. As a consequence, consistency always holds and does not contribute
to a specification of reasonable reconstruction results.

Even if we replace the naive concatenation approach and instead construct prefer-
ably compact valid gene orders, we cannot avoid to include some genes multiple times.
In some cases, this causes side effects. In the example given in Figure 1, the classical
parsimony principle is applied to assign gene clusters to the inner nodes of a given tree,
minimizing the number of gains and losses of clusters. Although a gene is contained
in all input genomes only once, it is reconstructed to occur multiple times for ancestral
nodes. In this simple example, we consider a subsequence of only three genes in each
input genome and obtain a segment of five genes for the examined internal node. In
general, such artifacts imply unnaturally long genomes for higher levels in the tree.

To preclude this unwanted effect, we refine the concept of consistency. Instead of
simply restricting the total length of a genome, we limit the multiplicity of each indi-
vidual gene.

In the following problem definition, we intentionally refrain from specifying a con-
crete model of gene clusters and instead use the imprecise notion of a sequence con-
taining a cluster. For instance, in the simple model of gene adjacencies, a sequence g
contains a gene cluster {a, b} if and only if the genes a and b occur adjacently in g.

Definition 1 (Consistency Problem). Let GN := {1, . . . , N} be the set of genes and
m : GN → N assign a maximum copy number to each gene. Further, let C be a set of
gene clusters. The consistency problem is to decide if C is consistent with respect to m,
i.e. whether there exists a sequence s over GN for which the following properties hold:

(i) s contains each gene g at most m(g) times, and
(ii) s contains all gene clusters c ∈ C.
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Whenever we want to consider consistency as a reconstruction criterion, we have to
provide a solution for the above problem. As we will see in the following sections, the
problem complexity highly depends on the specific cluster definition.

In our framework, we assume that the gene multiplicities are given. Nevertheless,
we want to sketch some ways to specify m(g) for the internal nodes in the phylogenetic
tree.

For some specific datasets, we can rely on knowledge about the genomic history.
For instance, several studies suggest two whole genome duplications in the evolution of
the Chordate genome in the teleost fishes lineage [13]. Such information can be used to
deduce the ancestral number of genes.

Otherwise, the most accurate but also elaborate approach would be to deploy gene-
tree species-tree reconciliation [17] to reconstruct the history of the genes in terms of
speciation events, gene duplications and gene losses. Less extensive and more suitable
for our needs, one could also utilize approaches which do not require any further data
or pre-knowledge. Probability-based methods [8] could be applied to effectively and re-
liably infer ancestral gene multiplicities mv(g) for all internal nodes v, given the copy
number at the leaves. Or, we could apply the concept of parsimony and minimize the
amount of copy number differences. A less restrictive solution is to define the multiplic-
ity of a gene g for node u in a bottom-up fashion as the maximum over the multiplicities
of its child nodes v1, . . . , vk : mu(g) := max

i=1,...,k

(
mvi(g)

)
.

Instead of performing a separate preprocessing step to fix the thresholds in advance,
one could also try to include the gene multiplicity into the overall objective of the re-
construction. However, in general, optimizing for a combination including an original
objective, consistency, and the gene copy number would be an intricate task due to the
strong interdependencies of the subcriteria.

3 An Efficient Solution for Adjacencies

Probably the simplest formalization of co-localization of genes is the concept of ad-
jacencies, i.e. two directly neighboring genes. This elementary pattern of gene order
conservation, also known as gene pairs or neighboring genes, has been widely used
in whole genome comparison. Especially in the field of gene order reconstruction, this
model is one of the most prevalent concepts [4, 7, 15].

3.1 Unsigned Adjacencies

In the following, we formalize the concept of adjacencies and present a method to ef-
ficiently solve the consistency problem for adjacencies on sequences, i.e. to decide if
there exists a sequence that contains a set of given adjacencies while considering each
gene g at most m(g) times. To model the problem, we use a graph theoretic approach.

Definition 2 (Unsigned Adjacencies on Sequences). Let GN := {1, . . . , N} be a set
of genes. An adjacency {a, b} of the genes a, b ∈ GN is contained in a sequence s over
GN if and only if a and b occur adjacently at least once in s.
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Fig. 2. An example to illustrate the proof of Lemma 1. Consider the set of genes G7 with the
multiplicities m(g) = 2 for g ∈ {2, 5} and otherwise m(g) = 1, and the set C =

{
{1, 2},

{1, 3}, {2, 3}, {2, 4}, {5, 6}, {5, 7}, {6, 7}
}

of unsigned adjacencies. The gene order graph
G7(C) is depicted including the extensions described in the proof. The solid edges corre-
spond to the original edges as defined by the given adjacencies, and the dashed lines rep-
resent the auxiliary edges. The obtained extended graph contains, for instance, the Eulerian
cycle (v0, v2, v1, v3, v2, v4, v0, v5, v6, v7, v5, v0), which corresponds to the valid gene order
(2, 1, 3, 2, 4, 5, 6, 7, 5).

Definition 3 (Gene Order Graph). Let GN = {1, . . . , N} be a set of genes and C be a
set of pairs {a, b} with a, b ∈ GN . Then, the gene order graph of C, denoted by GN (C),
is the graph with the vertex set {vg | g ∈ GN} and the edge set

{
{va, vb} | {a, b} ∈ C

}
.

The gene order graph of a set of adjacencies C can be constructed in O(N + |C|)
time and space. In this process, we keep track of the degree of each node vg , denoted by
deg(vg). Then, the following lemma allows us to check for consistency of C in O(N)
steps and thus in a total running time and with a space requirement of O(N + |C|).

Lemma 1. Let GN = {1, . . . , N} be a set of genes and let m : GN → N assign
a maximum copy number to each gene. Further, let C be a set of pairs {a, b} with
a, b ∈ GN and GN (C) = (V,E) be the gene order graph of C. Then, C is consistent
with respect to m if and only if the following conditions hold:

(i) deg(vg) ≤ 2m(g) for all vertices vg ∈ V , and
(ii)

∑
vg∈c

(
2m(g)− deg(vg)

)
> 0 for each connected component c in GN (C).

Proof. Assume we have given GN , m, C and GN (C) as required by the lemma. We
extend the gene order graph GN = (V,E) to a multigraph HN = (V ′, E′), where the
new vertex set contains one additional node v0, i.e. V ′ = V ∪ {v0}. The multiset of
edges E′ contains all edges in E with multiplicity one and further auxiliary edges: For
each vertex vg 6= v0 with deg(vg) < 2m(g) we add the edge {v0, vg} with multiplicity
2m(g)− deg(vg) to E′.

If condition (i) of the lemma holds, then all nodes in the obtained extended graph
have even degree: All vertices vg 6= v0 are filled up to a degree of 2m(g) and v0
is incident to

∑
vg∈V

(
2m(g)− deg(vg)

)
=
∑

vg∈V 2m(g) − 2|C| edges. Further,
condition (ii) implies that for each connected component of GN , in the extended graph,
at least one edge connects this subgraph to v0. Hence, HN is connected.

Conditions (i) and (ii) imply that HN is Eulerian. That means, there is a path starting
and ending in v0 which contains all edges, especially the edges of the original gene order
graph, exactly once. Since each node vg 6= v0 has a degree of 2m(g), it is traversed
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exactly m(g) times. Each such Eulerian path corresponds to a sequence of genes that
contains all adjacencies in C and each gene g exactly m(g) times, as exemplified in
Figure 2. Thus, C is consistent with respect to m.

On the contrary, if condition (i) is not satisfied, there is at least one gene g that is
contained in more given adjacencies than its multiplicity m(g) allows. And, if condition
(ii) does not hold for any connected component c, the maximal number of adjacencies
of all genes in c is exhausted and the genes cannot be put into a linear order, i.e. a cycle
containing v0, with the remaining genes. In both cases, the existence of a valid gene
order is precluded and thus, consistency is disproven. ut

3.2 Signed Adjacencies

A slightly more sophisticated variant of the adjacency model is motivated by the ob-
servation that the orientation of genes can play a role in co-expression and also in gene
order conservation [11].

Definition 4 (Signed Adjacencies on Signed Sequences). Let GN := {1, . . . , N} be
a set of genes. A signed adjacency {a, b} of the genes a, b ∈ {g,−g | g ∈ GN} is
contained in a sequence s over GN if and only if a is directly followed by −b, or b by
−a at least once in s.

Example 1. Consider the model of signed adjacencies for N = 4. The signed adjacency
{2,−3} is contained in both sequences s1 = (1, 2, 3, 4) and s2 = (4, 1,−3,−2). No
other signed adjacencies of the genes 2 and 3 are contained in any of the two sequences.

We transfer the general idea from the unsigned to the signed case. To this end, we
adjust the definition of the gene order graph. Now, each gene g is represented by two
nodes in the graph, where each such pair is connected by m(g) edges.

Definition 5 (Signed Gene Order Graph). Let GN = {1, . . . , N} be a set of genes
and let m : GN → N assign a maximum copy number to each gene. Further, let C
be a set of pairs {a, b} with a, b ∈ {g,−g | g ∈ GN}. Then, the signed gene or-
der graph of C, denoted by Gs

N (C), is the multigraph with the vertex set {vg, v−g |
g ∈ GN} and the multiset of edges

{
{vg, v−g} with multiplicity m(g) | g ∈ GN

}
∪{

{va, vb} with multiplicity one | {a, b} ∈ C
}

.

Similarly to the unsigned case, we can construct the graph in O(N + |C|) time.

Lemma 2. Let GN = {1, . . . , N} be a set of genes and let m : GN → N assign a
maximum copy number to each gene. Further, let C be a set of signed adjacencies {a, b}
with a, b ∈ {g,−g | g ∈ GN} and Gs

N (C) = (V,E) be the signed gene order graph of
C. Then, C is consistent with respect to m if and only if the following conditions hold:

(i) deg(vg) ≤ 2m(|g|) for all vertices vg ∈ V , and
(ii)

∑
vg∈c

(
2m(|g|)− deg(vg)

)
> 0 for each connected component c in Gs

N (C).
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(a) (b)

Fig. 3. Illustration of the relation of improper and proper Eulerian cycles in an extended signed
gene order graph as described in the proof of Lemma 2.

Proof. We proceed analogously to the unsigned case described in the proof of Lemma 1:
We extend the signed gene order graph Gs

N = (V,E) to a multigraph Hs
N = (V ′, E′),

where the new vertex set contains one additional node v0, i.e. V ′ = V ∪ {v0}. The
multiset of edges E′ contains all edges in E with multiplicity one and further auxiliary
edges: For each vertex vg 6= v0 with deg(vg) < 2m(|g|) we add the edge {v0, vg} with
multiplicity 2m(|g|)− deg(vg) to E′.

Then, again, the conditions (i) and (ii) of Lemma 2 imply the existence of an
Eulerian path in Hs

N (C). But in this case, the correspondence of such a path to a
valid gene order is not trivial. When the pair of nodes representing gene g is tra-
versed by a path (. . . , v−g, vg, . . .), this relates to a signed gene order (. . . , g, . . .),
whereas a path (. . . , vg, v−g, . . .) correlates to a signed gene order (. . . ,−g, . . .). By
definition, Hs

N (C) includes m(|g|) edges {vg, v−g}. An Eulerian cycle passes each
of these edges, but not necessarily in the above mentioned way. It might also be of
the form (. . . , vf , v−g, vg, v−g, vh . . .) with f 6= g 6= h, which does not represent a
signed gene order. In this case, m(|g|) ≥ 2 and due to the construction of the ex-
tended graph, there are m(|g|) edges {vg, v−g} and at least m(|g|) edges {vg, vh}
with h 6= −g. Hence, the considered Eulerian cycle has to pass node vg again in the
form . . . , vi, vg, vj , . . . with i 6= −g 6= j, as shown in Figure 3(a). However, when-
ever this situation arises, it is always possible to construct an alternative Eulerian cycle
(v0, . . . , v−g, vg, . . . , v−g, vg, . . . , v0), as depicted in Figure 3(b). If this modification
is performed for all such improperties, the obtained Eulerian cycle is proper in the sense
that it represents a signed gene order (. . . , g, . . . , g, . . .). Thus, conditions (i) and (ii)
imply not only the existence of an Eulerian path but also the existence of a valid signed
gene order and hence consistency of C with respect to m. The reverse direction of the
lemma holds analogously to Lemma 1. ut

Based on the definition of a gene order graph, Lemmas 1 and 2 provide algorithms
to solve the consistency problem on adjacencies on sequences in time and space linear
in the number of genes and in the number of given adjacencies. Both the models and the
lemmas can easily be modified to allow one circular gene order or even several circular
chromosomes. Only the connectivity requirement has to be relaxed correspondingly.

4 NP Completeness for Common Intervals

To find larger conserved regions, we now address a model for gene clusters that, in con-
trast to adjacencies, generally span more than two genes: Common intervals, segments
of the genome containing the same set of genes in an arbitrary order but not interrupted
by other genes.
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4.1 Basic Common Intervals

In line with other studies, we base our definition on the notion of character sets, which
enables us to formalize the cluster model in a straightforward way. Since we will utilize
this term for models on signed sequences later on, we directly define it for the general,
signed case. Although, in our framework, a common interval is defined on a single gene
order, we stick to the term common to not confuse the reader familiar with this gene
cluster model by redefining the same concept under a different name.

Definition 6 (Character Set). Let s = (a1, . . . , a|s|) be a signed sequence. Then, the
character set of s, denoted CS(s), is the set of all elements in s: CS(s) :=

{
|a| | a ∈

{a1, . . . , a|s|}
}
.

Definition 7 (Common Intervals on Sequences). Let GN := {1, . . . , N} be a set of
genes. Then, a common interval c ⊆ GN with |c| > 1 is contained in a sequence s over
GN if and only if s contains a substring s′ such that CS(s′) = c.

Recall that we want to find an answer to the question: Given a set of common
intervals C and a multiplicity threshold function m, is there a valid gene order that
contains all elements of C and meets the restrictions imposed by m? As we will show
now, this problem is NP complete.

Theorem 1. The consistency problem for common intervals on sequences is NP com-
plete.

Proof (Sketch). One can easily formulate an algorithm that verifies a given solution, i.e.
a proper gene order, for correctness in polynomial time, which shows that the problem
belongs to the complexity class NP.

NP hardness is proven by reduction from the following variant of the Hamiltonian
cycle problem: Let G = (V ∪W,E) be a connected, undirected, bipartite graph with
|V | = |W | ≥ 3, E ⊆

{
{v, w} | v ∈ V,w ∈ W

}
and deg(u) = |{e ∈ E|u ∈ e}| ≤ 3

for all u ∈ V ∪W . Decide whether there exists a Hamiltonian cycle in G, i.e. a path
in G that starts and ends in the same vertex v′ ∈ V and in-between contains each
vertex v ∈ V \{v′} exactly once. This problem is known to be NP complete [12]. By
reducing it to the consistency problem for common intervals in polynomial time, we get
NP hardness of the latter problem.

For a given graph as stated in the problem definition, we construct an instance of
the consistency problem as follows: For each node, depending on its degree, and for
each edge, depending on the graph structure, we add certain elements to the set of
genes and define certain common intervals. We restrict the multiplicity of the genes
such that common intervals have to overlap in a valid gene order in specific substrings.
Each of these substrings corresponds to a node or an edge in the graph, and overlapping
substrings correspond to paths in the graph. Finally, we show that the substrings can be
combined to a complete, valid sequence if and only if there is a Hamiltonian cycle in
the graph. Details are given in [21, Appendix A.2]. ut
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4.2 Variants of Common Intervals

Beside its classical definition, there are different generalizations of common intervals
on sequences discussed in the literature, such as r-window clusters and max-gap clus-
ters [9], or approximate gene clusters [6,18]. Since the consistency problem is NP com-
plete for basic common intervals, any generalization is NP hard as well.

In contrast to generalizations, there are also other cluster models which are restricted
variants of common intervals. In the following, we will discuss such models, in partic-
ular framed and nested common intervals.

Framed Common Intervals

This gene cluster model, common intervals framed by two genes whose orientations
have to be conserved, has first been introduced on permutations as conserved inter-
vals [3]. In gene order reconstruction, framed common intervals on permutations have
been the first model to formally state the problem of finding putative ancestral sets of
gene clusters preserving consistency [2].

Definition 8 (Framed Common Intervals on Signed Sequences). Let GN :=
{1, . . . , N} be a set of genes. A framed common interval [a I b] consists of two extrem-
ities a and b with |a|, |b| ∈ GN , and a set of inner elements I ⊆ GN . We say that [a I b]
is contained in a signed sequence s, if and only if in s, a is followed by b or −b by −a,
and the character set of the substring between the extremities is equal to I .

According to this definition, a gene can be extremity and inner element, or even left
and right extremity at the same time. Apart from that, analogously to basic common in-
tervals, a cluster can occur multiple times in one genome, and one gene can be contained
several times in one cluster occurrence, as illustrated by the following example.

Example 2. Consider the model of framed common intervals for N = 6 and sequence
s = (5, 4,−2,−1, 2,−3, 6). Beside others, the framed common interval [4 {1, 2}−3],
is contained in s as illustrated by the box diagram below, where the occurrences of the
extremeties and the inner elements are surrounded by rectangles:

s = ( +5, +4, −2, −1, +2, −3, +6 ) .

The obvious relationship of basic and framed common intervals allows to infer an
important correlation of these models with respect to the consistency problem: Any
instance of this problem for common intervals can be reduced to an instance for framed
common intervals. Based on this, we can deduce the following statement.

Theorem 2. The consistency problem for framed common intervals on signed sequences
is NP complete.

Proof (Sketch). To show NP hardness, we reduce the consistency problem for common
intervals to the consistency problem for framed common intervals in polynomial time.
To this end, we introduce two additional genes with a certain multiplicity and, for each
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basic common interval, we create a framed common interval including these genes as
framing and inner elements. Then, any valid gene order for one problem instance can
be transformed into a valid gene order for the other instance by removing occurrences
of the additional genes or inserting them, respectively. Details are given in [21, Ap-
pendix A.3]. ut

Nested Common Intervals

Hoberman and Durand [9] discussed nestedness as a desired property of gene clusters
and proposed a first algorithm to identify respective clusters. Recently, nested common
intervals were formally defined and studied in [5].

Definition 9 (Nested Common Intervals on Sequences). Let GN := {1, . . . , N} be a
set of genes. The structure of a nested common interval is defined recursively. A nested
common interval is either

(i) an unordered pair of genes {a, b} with a 6= b, which is contained in a sequence s
over GN if and only if a and b are adjacent in s, or

(ii) a tupel (c, a) of a nested common interval c and a gene a, which is contained in
a sequence s if and only if, in s, a is adjacent to a substring s′ of s such that
CS(c) = CS(s′) and c is contained in s′,

where the character set of a nested common interval is the set of all contained genes:
CS({a, b}) := {a, b} and CS((c, a)) := CS(c) ∪ {a}.

Similar to the other cluster models discussed above, any nested common interval
may occur multiple times in one genome and one gene may be contained multiple times
in the occurrence of a cluster in one genome. Analogously to framed common intervals,
one gene may be incorporated in the definition of one cluster several times.

Example 3. Consider the model of nested common intervals for N = 6 and sequence
s = (5, 4, 2, 1, 2, 3, 6). Then, beside others, the nested common interval (({2, 3}, 1), 4)
is contained in s as illustrated below, where the occurrences of the subclusters are indi-
cated by lines:

(5, 4, 2, 1, 2, 3, 6) .

Even the strict assumption of nestedness is not strong enough to allow an efficient
verification of consistency.

Theorem 3. The consistency problem for nested common intervals on sequences is NP
complete.

Proof (Sketch). NP hardness is proven similarly to Theorem 1. The common intervals
used in that proof can be replaced by certain nested common intervals such that the
argumentation holds similarly. Details are given in [21, Appendix A.4]. ut

Further Variations and Restrictions

Our NP completeness results also hold for further variations of the above models: de-
fined on circular sequences, restricted in size, basic and nested common intervals con-
taining each gene at most once etc. These results are detailed in [21] and will be dis-
cussed elaborately in the full version of this paper.
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5 Conclusion

In this paper, we have discussed the consistency problem, i.e. the decision whether there
exists a valid gene order comprising a given set of gene clusters. We have discussed this
question for different gene cluster models on sequences with restricted gene multiplic-
ities. In summary, we identified a severe border between gene cluster models for which
we can verify consistency efficiently and those for which we cannot. The complexity
rises drastically from linear for adjacencies to NP hard for more general cluster models,
even if they are strongly restricted.

This raises the question for a sequence-based gene cluster model that, on the one
hand, allows some degree of flexibility and, on the other hand, offers a polynomial-
time algorithm to verify consistency. The integration of such a model into any of the
existing reconstruction methods could increase sensitivity. Actually, first results on both
simulated and real data indicate that within segments of conserved gene content, the
order of the genes is conserved almost exactly [21]. Thus, a model covering only single
missing or additional genes, or the reversal of two neighboring genes could already
enhance reconstruction results strongly.

Another way to find a practical solution for flexible models is not to be deterred by
the NP hardness results. In fact, the reduction procedures on which the proofs are based
produce instances of the consistency problem where the multiplicity for some genes
grows with the instance size. This suggests to reconsider the problems in the context of
fixed parameter tractability. However, our first investigations in this direction were not
promising. Moreover, the maximum copy number of genes observed in real data can be
large in general.

We implemented the gene order graph to model adjacencies on sequences and in-
tegrated this gene cluster model into our unified reconstruction framework, presented
in [19], available from the web site bibiserv.techfak.uni-bielefeld.de/
rococo/. An elaborate description of the method and the results can be found in [21].
We refrain from reporting detailed results here because these are concerned more with
the reconstruction method than with the general concept of consistency discussed in
this paper. Nevertheless, we would like to mention the following overall findings. Sim-
ulations showed that estimating the gene multiplicities using the simple maximum ap-
proach does not significantly decrease the accuracy of the reconstruction compared to
using the “real” simulated copy numbers. Furthermore, we applied our method on ge-
nomic data of Corynebacteria using different gene cluster models: Common intervals
on permutations and adjacencies on sequences. A comparison of the results revealed
a large overlap. Nevertheless, many conserved segments could only be identified by
either of the approaches. This highlights the importance of studying gene cluster recon-
struction with respect to different, especially flexible models for gene clusters and the
relaxed model of sequences for gene order.
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