
The Problem of Chromosome Reincorporation
in DCJ Sorting and Halving

Jakub Kováč1,2, Maŕılia D. V. Braga2, and Jens Stoye2

1 Department of Computer Science, Comenius University, e-mail: kuko@ksp.sk
2 AG Genominformatik, Technische Fakultät, Universität Bielefeld

e-mail: mbraga@cebitec.uni-bielefeld.de, stoye@techfak.uni-bielefeld.de

Abstract. We study two problems in the double cut and join (DCJ)
model: sorting – transforming one multilinear genome into another and
halving – transforming a duplicated genome into a perfectly duplicated
one. The DCJ model includes rearrangement operations such as reversals,
translocations, fusions and fissions. We can also mimic transpositions or
block interchanges by two operations: we extract an appropriate segment
of a chromosome, creating a temporary circular chromosome, and in the
next step we reinsert it in its proper place. Existing linear-time algo-
rithms solving both problems ignore the constraint of reincorporating
the temporary circular chromosomes immediately after their creation.
For the restricted sorting problem only a quadratic algorithm was known,
whereas the restricted halving problem was stated as open by Tannier,
Zheng, and Sankoff. In this paper we address this constraint and show
how to solve the problem of sorting in O(n logn) time and halving in
O(n3/2) time.

1 Introduction

During evolution, genomes undergo large-scale mutations: a segment of DNA can
get reversed, or moved to another position. In genome rearrangement problems
we try to find a shortest sequence of operations transforming one genome into
another. Such a sequence explains the differences between the genomes and its
length can be used to estimate the evolutionary distance.

The double cut and join (DCJ) operation, introduced by Yancopoulos et al. [1],
models most of the large-scale mutation events, such as reversals, translocations,
fusions, and fissions in a unified way. Furthermore, transpositions and block in-
terchanges can be simulated by two operations: an appropriate segment of a
chromosome is extracted, creating a temporary circular chromosome, which is
then reinserted at the proper place in the next step.

The sorting algorithm given by Yancopoulos et al. [1] running in quadratic
time guarantees that each new circular chromosome is immediately reincorpo-
rated, thus mimicking transpositions and block interchanges.

Bergeron et al. [2] restated the model and gave a simple linear-time algorithm
for DCJ sorting ignoring the reincorporation constraint. However, the algorithm

finds a sequence of DCJ operations without any explicit mention of the under-
lying operations (reversals, translocations, block interchanges, etc.) and many
circular chromosomes may coexist in intermediate stages of the sorting process.
Such sorting sequences are not biologically plausible e.g. in eukaryotic organisms
that typically have only linear chromosomes.

In this work we revisit the original study of Yancopoulos et al. [1]. We borrow
techniques from other studies on sorting by reversals and block interchanges [3–
5] and propose a new algorithm that sorts multichromosomal linear genomes
in the DCJ model, reincorporates circular chromosomes and runs in O(n log n)
time.

Furthermore, we present a new result on the halving problem. In the halving
problem we imagine a genome that underwent a whole genome duplication and
then evolved by large-scale rearrangements. Given a present genome in which
all markers are in two copies (paralogs), we try to reconstruct the genome right
after the duplication, where each chromosome has its perfectly duplicated copy.

If no restriction on the linearity of chromosomes is imposed and no guarantee
concerning circular reintegration is required, we can use linear-time algorithms
proposed by Warren and Sankoff [6] and Mixtacki [7]. However, given a multi-
linear genome, these algorithms may predict some circular chromosomes in the
ancestral genome. In the worst case, these algorithms may even produce Ω(n)
circular chromosomes given a single linear chromosome of length n. Again, this
is not biologically plausible, when organisms with linear genomes are considered.

The restricted halving problem has not been studied previously and is stated
as open in [8]. In this paper we propose an algorithm to solve the halving problem
for multichromosomal linear genomes with circular reincorporation in O(n3/2)
time.

The paper is organized as follows: in Section 2 we introduce the DCJ model
and review the previous results, and in Section 3 we describe efficient data struc-
tures representing multilinear genomes. We solve the restricted versions of sorting
and halving problems in Sections 4 and 5, respectively, and conclude in Section 6.

2 Preliminaries

Genome model. In the DCJ model, genomes Π and Γ consist of the same
set of markers (genes, synteny blocks). Every marker g has two ends, called
extremities, which we denote g- and g+.

Each extremity p is either adjacent to some other extremity q (two consecu-
tive markers on a chromosome), or it is a telomere – the end of a linear chromo-
some. In the first case we say the extremities form an adjacency pq, in the second
case we have a telomeric adjacency p◦. Thus a genome is a set of adjacencies
such that every extremity is in exactly one (possibly telomeric) adjacency.

For genome Π we can draw a genome graph GΠ where vertices are extremities
and edges connect either adjacent extremities or two extremities of the same
marker. Every vertex in this graph has degree 1 or 2, so the components of GΠ

a b c

b

a

c

abc

Fig. 1. To interchange blocks a and c (left) in the DCJ model we cut before a and
after b and create a temporary circular chromosome (middle). The next operation cuts
between a and b and after c and reincorporates the blocks in the correct order (right).

are paths and cycles. These components represent chromosomes – linear and
circular, respectively.

DCJ operation. A double cut and join operation acting on adjacencies pq and
rs replaces them by either adjacencies pr, qs, or ps, qr (the adjacencies pq and
rs can be telomeric or even an empty chromosome ◦◦). We say the operation
cuts pq and rs and joins either pr, qs, or ps, qr. By these operations we can
mimic every common rearrangement operation in genomes: To invert a segment,
we cut at its ends and join reversed. By cutting and joining adjacencies on
different linear chromosomes, we get a translocation. By cutting two telomeric
adjacencies p◦ and q◦ and joining pq we can fuse two chromosomes into one or
create a circular chromosome from a linear one (as a byproduct we get an empty
chromosome ◦◦). By two DCJ operations we can mimic transpositions and block
interchanges: We first cut out an appropriate segment and by joining its ends
create a temporary circular chromosome. In the next step we reincorporate it
into the original chromosome (see Fig. 1).

DCJ distance and scenarios. A sequence of k DCJ operations transforming
a given genome Π into Γ is called a DCJ scenario of length k. A scenario of
minimum length is called optimal and its length is the DCJ distance between Π
and Γ, denoted d(Π,Γ). A sequence of k DCJ operations transforming Π into Π′

is optimal (with respect to Γ), if d(Π,Γ) = d(Π′,Γ) + k.
The distance and a sorting scenario can be calculated using an adjacency

graph AG(Π,Γ). This is a bipartite graph where vertices are adjacencies of Π
and Γ; an adjacency in Π is connected with an adjacency in Γ, if they share
an extremity. Since every adjacency is connected with one (telomeric) or two
other adjacencies, this graph consists of paths and cycles only. If Π and Γ share
a common adjacency, this corresponds to a cycle of length 2 or path of length 1
(common telomere) in the adjacency graph. Note that when Π and Γ are equal,
their adjacency graph consists of 2-cycles and 1-paths only.

The following theorem gives the DCJ distance between two genomes:

Theorem 1 (Bergeron et al. [2]). Given two genomes Π and Γ on n markers,
let c be the number of cycles and po the number of odd length paths in the
adjacency graph AG(Π,Γ). Then the distance between Π and Γ is

d(Π,Γ) = n− (c + po/2) .

Halving problem. In the halving problem we imagine a genome that under-
went a whole genome duplication and then evolved into genome Γ. We are given
Γ and our goal is to reconstruct the genome before the whole genome duplication.
More formally: In a duplicated genome, every marker g has two copies – g-

1g
+

1 and
g-

2g
+

2 . If p is an extremity, we will denote by p̄ the other copy – the paralogous
extremity. Similarly, if x = pq is an adjacency (possibly telomeric), then x̄ = p̄q̄
is the paralogous adjacency, and if C is a chromosome (set of adjacencies), then
C is the set of paralogous adjacencies.

We say that genome Θ is perfectly duplicated, if for each adjacency pq in Θ,
adjacency p̄q̄ is also in Θ and p 6= q̄. This is the same as saying that if we ignore
the subscripts (1’s and 2’s), every linear chromosome has an identical copy and
every circular chromosome has either an identical copy, or is itself composed of
two successive identical copies.

The genome halving problem can be stated as follows: Given a duplicated
genome Γ, find a perfectly duplicated genome Θ such that d(Θ,Γ) is minimal.

The halving distance and scenario can be calculated using an analogy of
an adjacency graph – a natural graph NG(Γ) introduced by El-Mabrouk and
Sankoff [9]. Vertices of this graph are adjacencies of Γ, and two adjacencies are
connected by an edge, if they share a paralogous extremity. The natural graph
consists of paths and cycles only, and Θ is perfectly duplicated if and only if
NG(Θ) consists of 2-cycles and 1-paths only.

The following theorem gives the DCJ halving distance:

Theorem 2 (Mixtacki [7]). Let Γ be a duplicated genome with 2n markers.
The minimal distance between Γ and any perfectly duplicated genome Θ is

d(Γ,Θ) = n− (ce + bpo/2c),

where ce is the number of even cycles and po the number of odd paths in the
natural graph NG(Γ,Θ).

Linear chromosomes. From now on we will be interested in genomes with lin-
ear chromosomes only. These multilinear genomes are more comfortably written
as signed permutations: Choose a direction of a linear chromosome, and list the
markers from left to right; write −→g , if extremity g- is before g+ and←−g otherwise.
Thus chromosome (

−→
1 ,
−→
3 ,
←−
2) (which is the same as (

−→
2 ,
←−
3 ,
←−
1)) corresponds to

the set of adjacencies { ◦1-, 1+3-, 3+2+, 2-◦ }. We will write −g for the reversed
marker g, i.e. −←−g = −→g and −−→g =←−g .

Restricted sorting and halving. Given multilinear genomes, we call a sorting
or halving DCJ scenario restricted, if every DCJ operation that creates a circular
chromosome is immediately followed by another operation that reintegrates it
into the original chromosome. Such scenarios can be viewed as sequences of
reversals, translocations, fusions, fissions (with weight 1) and block interchanges,
which have weight 2, i.e. count as two operations. In the restricted sorting and
halving problems, we are searching for restricted scenarios of minimal length.
Note that in both cases the distance remains the same as in their unrestricted
versions.

3 Data Structures for Handling Permutations

Our algorithms use two efficient data structures for handling permutations de-
scribed by Kaplan and Verbin [10] and Han [11].

Tree-based data structure. The following data structure from [10] can be
traced back to Chroback et al. [12]. It supports the following three operations in
logarithmic time: find the ith marker in a linear chromosome, return the position
of marker g and perform a reversal operation.

Linear chromosomes can be represented by a balanced tree supporting oper-
ations split and merge (e.g. red-black tree or splay tree). The order is the same
as the left-to-right order of markers on the chromosome. In each node of the tree
we store one marker, its orientation, number of descendants and a reverse flag.
A reverse flag being “on” signifies that the whole subtree is reversed. The re-
verse flag of node v can be cleared (“pushed down”) by changing v’s orientation,
swapping its children and flipping their reverse flags.

Reversing a segment from i to j can be implemented as follows:

1. Find the ith and jth marker (using the information about sizes of subtrees
and reverse flags).

2. Split the tree into three parts: T1 with markers before i, T3 with markers
after j and T2 with the segment from i to j.

3. Flip the reverse flag in the root of T2, and
4. Merge T1, T2 and T3.

We store a lookup table with a pointer to the corresponding node of a tree for
every marker. In this way we can find the position of any marker in logarithmic
time.

This data structure can be easily extended to multiple linear chromosomes
and to support different operations such as translocations or block interchanges.
Actually, we do not need to have one tree per chromosome: simply concatenate
the chromosomes with a delimiter between them and in each node store the
number of delimiters in its subtree. This way given a marker g we can tell on
which chromosome it is by counting the number of delimiters before g and all
the rearrangement operations can be performed using a few reversal operations.3

Block-based data structure. The second data structure by Kaplan and
Verbin [10] is a two-level version of the previous one. This is the data structure
used in the subquadratic algorithms for sorting by reversals [13] and sorting by
translocations [14].

As with the previous data structure, we concatenate all the chromosomes
using delimiters. We divide the whole sequence into blocks of size between
1
2

√
n log n and 2

√
n log n. Note that there are O(

√
n/ log n) blocks and one

3 For example block interchange can be mimicked by 4 reversals; if we add sufficiently
many delimiters at the end of the sequence (representing empty chromosomes), we
can also mimic fusions and fissions.

block can contain several chromosomes. In each block we store an array of mark-
ers and a tree-based data structure storing their paralogs ordered by positions of
the paralogs in the genome. Furthermore, for each block we keep the number of
markers in it and a reverse flag which signifies that the whole block is reversed.
We have an additional lookup table with blocks and indices of the markers, so
that we can tell the position of a given marker in constant time.

Finding the ith marker can be done trivially in O(
√
n/ log n) time and can

be improved to O(log n) by building a balanced tree over the blocks.
Reversal of a segment can be implemented in O(

√
n log n) time as follows:

1. Find the two endpoints and split the two blocks (if necessary) so that the
endpoints of the reversal correspond to the endpoints of blocks (we can
temporarily break the invariant about the block size; the trees with paralogs
are rebuilt from scratch in O(

√
n log n) time).

2. Reverse the order of the blocks between the endpoints and flip their reverse
flags.

3. For each block (inside and outside the reversal) take its tree with paralogs
T and split it into three parts: T2 with paralogs within the reversal, T1 with
paralogs before and T3 with paralogs after the reversal. If a block is outside
the reversal, flip the reverse flag in the root of T2, otherwise flip the flags
in roots of T1 and T3. Merge T1, T2 and T3. Since there are O(

√
n/ log n)

blocks and all the split and merge operations can be done in O(log n) time,
this step can be implemented in O(

√
n log n) time.

4. Split and merge blocks so that the size of each one is between 1
2

√
n log n and

2
√
n log n.

Again, we can simulate any other DCJ operation by a constant number of re-
versals.

The neat thing about this block-based data structure is that we actually
maintain the markers according to two orders – by their position in the genome
and by the position of their paralogs. This property can be used to implement
the following query used in our halving algorithm in O(

√
n log n) time: Given

a chromosome C and two markers i and j on a possibly different chromosome,
find the right-most marker on C that has a paralog between markers i and j:

1. Temporarily split the blocks at the ends of chromosome C, so that C is
contained in several whole blocks.

2. Find the rightmost block within C containing a marker with paralog between
i and j. Since the paralogs are stored in balanced trees, the membership
questions can be answered in O(log n) time and there are O(

√
n/ log n)

blocks.
3. In this block find the required marker by a sequential search in O(

√
n log n)

time.
4. Merge the temporarily split blocks.

Note that only a slightly more complicated data structure achieving time
complexity O(

√
n) for the same operations was given by Han [11]. We refer the

interested reader to this paper.

4 Restricted DCJ Sorting

Previous work. Bergeron et al. [2] gave a linear-time algorithm for DCJ sort-
ing disregarding the constraint of reincorporating circular chromosomes imme-
diately. The solution can be easily adapted to a quadratic algorithm for the
restricted version: after each step check whether a circular chromosome was cre-
ated and if so, find the appropriate DCJ operation acting on adjacencies in
the circular and the original linear chromosome that reintegrates the circular
chromosome. It is not obvious how to do this fast (say in polylogarithmic time).

Yancopoulos et al. [1] proposed to transform Π into Γ by restricted sorting in
four stages: 0. Add caps to the ends of linear chromosomes. 1. By translocations,
fusions and fissions transform Π into Π′ such that chromosomes in Π′ and Γ
have the same marker contents. 2. Perform oriented reversals to get Π′′ with
all markers in the same direction as in Γ. 3. Finally, use block interchanges to
transform Π′′ into Γ.

Stages 2 and 3 can be implemented in O(n log n) time using the data structure
described in Section 3 [5, 4]. Thus a unichromosomal restricted DCJ sorting can
be solved in O(n log n) time. However, it is not obvious how to implement stage 1
in a fast way.

Capping. The ends of linear chromosomes, telomeres, produce some difficulties
and nasty special cases. Capping is an elegant technique to deal with them: we
adjoin new markers (caps) to the ends so that we do not change the distance
and we do not have to worry about telomeres any more.

We find all the paths in the adjacency graph AG(Π,Γ). Paths of odd length
have one end in Π and one in Γ – simply adjoin a new marker (properly oriented)
to the two telomeres. This increases the number of markers by one, but instead
of an odd path we have a cycle and a 1-path, so the distance does not change.
For paths starting and ending in Π add two new markers to the ends of Π and
a new chromosome consisting of just these two markers (properly oriented) to
Γ. The case with a path starting and ending in Γ is symmetric. The number of
markers increases by 2, but instead of an even path, we have a cycle and two
odd paths, so the distance does not change. Capping of all chromosomes can be
done in linear time.

Our algorithm. The algorithm is based on the following observation:

Observation 1. Let g, h be two markers that are adjacent in Γ, but not in Π.
If g and h are on different chromosomes in Π, there is a translocation that puts
them together. This is an optimal operation in the DCJ model. If g and h are on
the same chromosome and have a different orientation, there is a reversal that
puts them together. This is an optimal operation in the DCJ model. Transposition
and block interchange take two DCJ operations. These operations are optimal if
they create two new non-telomeric common adjacencies and destroy none.

This is simply because, even more generally, k operations that create k new
non-telomeric adjacencies and destroy none create k new cycles in the adjacency
graph, and thus decrease the distance by k.

Theorem 3. A restricted optimal DCJ scenario transforming multilinear genome
Π into Γ can be found in O(n log n) time.

Proof. Cap all chromosomes first. Without loss of generality we may assume
that the markers in chromosomes of Γ are consecutive numbers (

−→
k0, . . . ,

−−−−→
k1 − 1),

(
−→
k1, . . . ,

−−−−→
k2 − 1), . . . ,(

−−→
ks−1, . . . ,

−−−−→
ks − 1) where 0 = k0 < k1 < k2 < · · · < ks = n

(otherwise renumber the markers).
We will be transforming Π into Γ gradually “from left to right”: once we

have transformed the beginning of a chromosome in Π to
−→
ki ,
−−−→
ki + 1, . . . ,

−→
j , we

extend it by moving j + 1 next to
−→
j .

There are several cases we need to consider:

1. If
−−−→
j + 1 is already next to

−→
j , we are done.

2. If j + 1 is on a different chromosome than
−→
j , we can always use a transloca-

tion. In the rest of the proof we assume that j+1 is on the same chromosome,
to the right of

−→
j .

3. If
−→
j and

←−−−
j + 1 have different orientation, we can use a reversal.

Otherwise, following [3], find the marker m with the highest number between−→
j and

−−−→
j + 1 and find m + 1.

4. If m + 1 is on a different chromosome, we can use a translocation to move
it next to m; this operation also moves

−−−→
j + 1 to another chromosome, so we

can use another translocation to move it next to
−→
j .

Otherwise the situation is
−→
j , . . . ,m, . . . ,

−−−→
j + 1, . . . ,m + 1 (since m is the

highest number between
−→
j and

−−−→
j + 1 and the part of the chromosome to the

left of
−→
j is already sorted, m + 1 must be to the right of

−−−→
j + 1).

5. If m and m + 1 have different orientation, we can use a reversal to move
m+1 next to m; this will also change the orientation of

−−−→
j + 1, so in the next

step we can use another reversal to move
←−−−
j + 1 next to

−→
j .

6. Finally, if m and m + 1 have the same orientation, we interchange blocks

−→
j ,
[
. . . ,−→m

]
, . . . ,

[−−−→
j + 1, . . .

]
,
−−−→
m + 1

−→
j ,
−−−→
j + 1, . . . ,−→m,

−−−→
m + 1

if both −→m and
−−−→
m + 1 have positive direction and

−→
j ,
[
. . .
]
,←−m, . . . ,

[−−−→
j + 1, . . . ,

←−−−
m + 1

]

−→
j ,
−−−→
j + 1, . . . ,

←−−−
m + 1,←−m,

if ←−m and
←−−−
m + 1 have both negative direction. By two operations we move−−−→

j + 1 to
−→
j and −→m to

−−−→
m + 1.

Every step can be implemented in O(log n) time using an extended version
of the data structure from Section 3. We need the data structure to support
the following operations: 1. Given a marker, find the chromosome that contains
it. 2. Given interval i, . . . , j find the marker with the highest number on the
chromosome between i and j (store the highest number in the subtree in each
node). 3. Perform a DCJ operation (this can be done by splitting, merging trees
and lazy reversals as described). �

Perfect DCJ scenarios. Bérard et al. [15] studied the problem of finding a
scenario transforming genome Π into Γ that does not break a given set of common
intervals. An interval in genome Π is a set of markers such that the subgraph
of GΠ induced by their extremities is connected. Intervals of Π have zero or two
borders – adjacencies such that one extremity is inside and one outside. Let I
be any set of markers with zero or two borders. A DCJ operation preserves I,
if I still has zero or two borders in the resulting genome. They showed that for
nested sets of common intervals (when the intervals do not overlap) the shortest
scenario can be found in polynomial time and for weakly separable sets the
problem is NP-hard, but fixed parameter tractable.

Since their algorithm uses algorithms for DCJ distance and sorting as a black
box, one can use it in conjunction with our algorithm to get perfect restricted
DCJ scenarios.

5 Restricted DCJ Halving

Previous work. The halving problem in the DCJ model was studied by War-
ren and Sankoff [6] and corrected and simplified by Mixtacki [7]. However, the
restricted version of the halving problem has not been studied and is stated as
open by Tannier, Zheng, and Sankoff [8].

The simple approach that works for sorting – do a DCJ operation, test
whether a circular chromosome was created and reincorporate it – does not
work for halving: In some cases the circular chromosome cannot be reincorpo-
rated. For example take chromosome (11, 12, 21, 22) – after excision of circular
chromosome [11, 12] it is not possible to reincorporate it and the algorithm of
Mixtacki [7] ends with two (perfectly duplicated) circular chromosomes [11, 12]
and [21, 22]. On the other hand, by fission and translocation we can get

(11

∣∣ 12, 21, 22) (11

∣∣), (12, 21

∣∣ 22) (11, 22), (12, 21) .

By giving an algorithm for the restricted halving problem we also show that
the halving distance is the same in the restricted and the unrestricted case.

Capping. Find all paths in the natural graph NG(Γ). If the length of path is
odd, adjoin two paralogous copies of a new marker at both ends. This will create
a new 1-path and close the odd path into an even cycle. Thus we will have an
extra marker and an extra cycle, the distance is unchanged. If the length of the
path is even, we adjoin two different new markers at the ends and create a new
linear chromosome consisting of its paralogous copies. The number of markers
is increased by 2, but also the number of odd paths increases by 2 and number
of even cycles increases by 1, so the distance is unchanged.

Our algorithm. An analogy of Observation 1 from the previous section holds
also for the DCJ halving problem:

Observation 2. Reversals and translocations that create one and block inter-
changes that create two new non-telomeric common adjacencies and destroy none
are optimal.

Theorem 4. A restricted optimal DCJ halving scenario transforming duplicated
genome Π into perfectly duplicated genome Θ can be found in O(n3/2) time. The
distance is the same as the unrestricted halving distance.

Proof. Cap all chromosomes first. This can be done in linear time. Take any
chromosome C1; let i be its first marker (cap). Then there are two cases: the
paralog i is either on a different chromosome C2, or it is at the end of C1 reversed.

In general, we have either two chromosomes C1 and C2 starting with par-
alogous markers, say i, . . . , j and i, . . . , j (with the same orientation), or there
is chromosome C starting and ending with paralogous markers (in the opposite
orientation).

Case I. The transformation will again go “from left to right”: once we have
C1 starting with markers i, . . . , j, k and C2 starting with i, . . . , j, `, we either
move k next to j in C2, or ` next to j in C1.

If ` is not in C1, we can use a translocation. Otherwise, if j, ` and j, ` have
different orientation, we can use a reversal to move ` next to j. The situation is
symmetric and the same holds for k.

The only hard case arises when j, k, ` are on one chromosome, j, k, ` on
another, j, k have the same orientation as j, k and j, ` the same as j, `. Then we
can write the two chromosomes as

C1 = (i, . . . , j, k, x1, . . . , xp) and C2 = (i, . . . , j, y1, . . . , yq, k, z1, . . . , zr) .

We find marker y between j and k such that its paralog y is the rightmost
among the x-markers on chromosome C1. (Note that such a marker exists, since
at least y1 = ` is a marker between j and k with paralog in C1.) Let y = xt and
let z = xt+1 – then z is either one of the z-markers on the second chromosome
C2, or it does not lie on C2 at all. In the latter case we perform two translocations
moving first z to y and then k to j, in the former we perform (depending on
the mutual orientation of y, z and y, z) either two reversals or one of the two
indicated block interchanges:

(i, . . . , j,
[
y1, . . . , y

]
, . . . , yq,

[
k, z1, . . .

]
, z, . . . , zr+1)

or (i, . . . , j,
[
y1, . . .

]
, y, . . . , yq,

[
k, z1, . . . , z

]
, . . . , zr+1) .

This way we put k next to j and y next to z at the same time.
Case II. Chromosome C starts and ends with paralogous markers i, . . . , j:

C = (i, . . . , j, k, ,−`,−j, . . . ,−i) .

The transformation will go “from outside to the middle”: we either move k next
to j or ` next to j.

Again, if one of the markers is on a different chromosome, or has opposite
orientation, we can move it by a translocation or a reversal to its proper place.

Otherwise, find the leftmost marker m between k and −k such that m is not
between k and −k. If such an m exists, let n be the marker preceding m; note
that n is between k and −k. Depending on the orientation of n,m and n,m
and whether m is in C or on a different chromosome, we perform either two
translocations, two reversals, or a block interchange moving k to j and n to m.
The situation is symmetric and we can try the same with `.

Finally, if in either case such an m does not exist, we have chromosome

C = (i, . . . , j, k, x1, . . . , x2p, −k, y1, . . . , yq, `, z1, . . . , z2r, −`,−j, . . . ,−i),

where I = {x1, . . . , x2p} and J = {z1, . . . , z2r}, possibly empty, are closed under
taking paralogs – these intervals either contain both paralogs g and g or neither
one. In this case we first recursively reorder markers in I and J and transform
C into

C ′ = (i, . . . , j, k, k1, . . . , kp,
[
−kp, . . . ,−k1,−k

]
, y1, . . . , yq,

`, `1, . . . , `r,
[
−`r, . . . ,−`1,−`

]
, −j, . . . ,−i),

(the case analysis is the same as Case II) and then perform the indicated block
interchange.

At the end we may end up with several chromosomes of the form C −C,
which should be fissioned in two perfectly duplicated chromosomes.

This method shows that the halving distance is the same as the unrestricted
distance and the algorithm can be easily implemented in quadratic time. For a
more efficient algorithm we need the data structure that supports the following
operations: 1. Given a marker find the chromosome that contains it. 2. Given
an interval i, . . . , j, find the right-most marker on a given chromosome that
has a paralog in the interval i, . . . , j. 3. In a given interval i, . . . , j find the
leftmost/rightmost marker m such that m is not in the interval. 4. Perform all
the DCJ operations. Using the block-based data structure from Section 3 and
the improvement by Han [11] every operation can be performed in O(

√
n) time.

�

6 Conclusion

In this work we revisited the restricted DCJ model for multichromosomal linear
genomes, where a temporary circular chromosome is immediately reincorporated
after its excision. We improved the quadratic algorithm by Yancopoulos et al. [1]
and proposed an algorithm that runs in O(n log n) time.

Furthermore we solved an open problem from [8] by giving an algorithm for
the restricted halving problem. The algorithm shows that the halving distance
for the restricted version is the same as the distance for the unrestricted ver-
sion and given a multilinear duplicated genome an optimal multilinear perfectly
duplicated genome can always be found.

This is not the case for example in the median problem which we did not
study and is still open: Consider three linear genomes (1, 2, 3), (2, 1, 3) and

(2, 3, 1). Their median in the unrestricted case consists of linear chromosome
(2, 3) and circular [1]. The circular genome [1] can be reincorporated into any of
the given chromosomes by one operation giving the median score 3. This score
however cannot be achieved in the restricted model. Generalizing this pattern,
we can get genomes of length 3n with unrestricted median score 3n and restricted
median score 4n.

Acknowledgements. The authors would like to thank Broňa Brejová for many
constructive comments. The research of Jakub Kováč is supported by Marie
Curie Fellowship IRG-224886 to Dr. Tomáš Vinař, VEGA grant 1/0210/10, and
the Partnership Stipend from the Bielefeld University.

References

1. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21 (2005) 3340–
3346

2. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements.
In: Proc. of WABI. (2006) 163–173

3. Christie, D.A.: Sorting permutations by block-interchanges. Inf. Process. Lett. 60
(1996) 165–169

4. Feng, J., Zhu, D.: Faster algorithms for sorting by transpositions and sorting by
block interchanges. ACM Transactions on Algorithms 3 (2007)

5. Swenson, K.M., Rajan, V., Lin, Y., Moret, B.M.E.: Sorting signed permutations
by inversions in O(n logn) time. JCB 17 (2010) 489–501

6. Warren, R., Sankoff, D.: Genome halving with double cut and join. JBCB 7 (2009)
357–371

7. Mixtacki, J.: Genome halving under DCJ revisited. In Hu, X., Wang, J., eds.:
COCOON. Volume 5092 of LNCS., Springer (2008) 276–286

8. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving prob-
lems under different genomic distances. BMC Bioinformatics 10 (2009)

9. El-Mabrouk, N., Sankoff, D.: The reconstruction of doubled genomes. SIAM J.
Comput. 32 (2003) 754–792

10. Kaplan, H., Verbin, E.: Sorting signed permutations by reversals, revisited. J.
Comput. Syst. Sci. 70 (2005) 321–341

11. Han, Y.: Improving the efficiency of sorting by reversals. In Arabnia, H.R., Valafar,
H., eds.: BIOCOMP, CSREA Press (2006) 406–409

12. Chrobak, M., Szymacha, T., Krawczyk, A.: A data structure useful for finding
hamiltonian cycles. Theor. Comput. Sci. 71 (1990) 419–424

13. Tannier, E., Bergeron, A., Sagot, M.F.: Advances on sorting by reversals. Discrete
Applied Mathematics 155 (2007) 881–888

14. Ozery-Flato, M., Shamir, R.: An O(n3/2√logn) algorithm for sorting by reciprocal
translocations. In Lewenstein, M., Valiente, G., eds.: CPM. Volume 4009 of LNCS.,
Springer (2006) 258–269

15. Bérard, S., Chateau, A., Chauve, C., Paul, C., Tannier, E.: Computation of perfect
dcj rearrangement scenarios with linear and circular chromosomes. JCB 16 (2009)
1287–1309 PMID: 19803733.

