
Finding Teams in Graphs and its Application to
Spatial Gene Cluster Discovery

Tizian Schulz1,2, Jens Stoye1, and Daniel Doerr1(�)

1 Faculty of Technology and CeBiTec, Bielefeld University, Bielefeld, Germany
{tizian.schulz,jens.stoye,daniel.doerr}@uni-bielefeld.de

2 International Research Training Group 1906 “Computational Methods for the
Analysis of the Diversity and Dynamics of Genomes”, Bielefeld University, Germany

Abstract. Gene clusters are sets of genes in a genome with associated
functionality. Often, they exhibit close proximity to each other on the
chromosome which can be beneficial for their common regulation. A pop-
ular strategy for finding gene clusters is to exploit the close proximity
by identifying sets of genes that are consistently close to each other on
their respective chromosomal sequences across several related species.

Yet, even more than gene proximity on linear DNA sequences, the spa-
tial conformation of chromosomes may provide a pivotal indicator for
common regulation and/or associated function of sets of genes.

We present the first gene cluster model capable of handling spatial data.
Our model extends a popular computational model for gene cluster pre-
diction, called δ-teams, from sequences to general graphs. In doing so,
δ-teams are single-linkage clusters of a set of shared vertices between
two or more undirected weighted graphs such that the largest link in the
cluster does not exceed a given threshold δ in any input graph.
We apply our model to human and mouse data to find spatial gene clus-
ters, i.e., gene sets with functional associations that exhibit close neigh-
borhood in the spatial conformation of the chromosome across species.

Keywords: Spatial gene cluster · Gene teams · Single-linkage clustering
· Graph teams · Hi-C data

1 Introduction

Distance-based clustering algorithms are paramount to approach various ques-
tions across all data-driven fields including comparative genomics. Here, we study
the problem of discovering single-linkage clusters of a set of corresponding ver-
tices (where correspondence is either provided through a bijective mapping or
equivalence classes) between two or more undirected weighted graphs G1, . . . , Gk
such that the largest link in the cluster (measured in terms of the weighted short-
est path) does not exceed a given threshold δ in either graph Gi, 1 ≤ i ≤ k.
We call such clusters (δ-) teams, thereby adopting notation used by an exten-
sive trail of literature that studies the equivalent problem on permutations and
sequences [2,9,19,21].

A prominent use case of δ-teams in comparative genomics is the detection
of gene clusters, which are sets of genes with associated functionality such as
the encoding of different enzymes used in the same metabolic pathway. In many
organisms instances exist where such genes are also locally close to each other in
the genome, i.e., their positions fall within a narrow region on the same chromo-
some. They may even remain in close proximity over a longer evolutionary pe-
riod, despite the fact that genomes regularly undergo mutations such as genome
rearrangements, gene- or segmental duplications, as well as gene insertions and
deletions. Such mutations may also affect the order and copy number of genes
within a gene cluster. Molecular biologists argue that a conserved neighborhood
is beneficial for co-regulation, as is true in the prominent case of operons in
prokaryotes [10]. Gene clusters are also prevalent in eukaryotes, even in animals,
where the HOX gene cluster is without doubt the best studied representative.
HOX genes are transcription factors that regulate the embryological development
of the metazoan body plan [12].

Yet, the function of many genes is often barely understood or entirely un-
known despite the increasing number of whole genome data that is becoming
available. Hence, a popular approach in comparative genomics is to work this
way backwards, starting with the investigation of conserved gene proximity in
genomes of a reasonably phylogenetically diverse set of species. Here, the under-
lying assumption is made that accumulated genome rearrangements will have
shuffled the genome sequences sufficiently so that natural selection becomes a
plausible cause of conserved gene neighborhoods. By identifying homologous sets
of genes that are consistently close to each other across several species, candidate
gene clusters are identified that are then subject to more thorough functional
analysis.

More recently, new technologies emerged, allowing the study of the spa-
tial structure of genomes. High-throughput chromosome conformation capture
(Hi-C), the most popular among such approaches, allows assessing the confor-
mation of the chromatin structure in a cell sample through measuring the number
of observed contacts between DNA regions [3]. The Hi-C method makes use of
formaldehyde to covalently bond proteins and DNA strings which are located
next to each other in the cell. After crosslinking, the cells are lysed and the DNA
is digested by a restriction enzyme. Digested fragments bonded by the same pro-
tein are ligated. Sequencing the hybrid sequences reveals three-dimensional con-
tacts between their genomic origins. The outcome of the experiment is a table,
called Hi-C map, that records observed contacts. Each row and each column of
the Hi-C map represents an equally sized segment of the genome sequence, and
a count in each cell indicates how often sequences of the corresponding segments
have been observed during the experiment. The size of these segments is known
as resolution. It is a crucial parameter regarding the quality of the data. The
higher the resolution of the chromatin structure is, the smaller is the segment
size, but also the more data is needed to get significant results. An increasing
number of Hi-C maps has recently been made publicly available (human and
mouse [8], fruit fly [16]) and is used to answer numerous biological questions,

starting from gene regulation and replication timing [8,13] to genome scaffolding
and haplotyping [4,15].

Gene cluster discovery has sparked the development of various computational
models for identifying sets of genes that exhibit close proximity. Such models
typically rely on abstract data structures known as gene order sequences, which
describe the succession of genes in chromosomes. In doing so, each element of a
gene order sequence is the identifier of a gene’s associated gene family. A popular
method to find gene clusters is based on the identification of common intervals
in these sequences, which are intervals with an identical set of elements (i.e. gene
family identifiers), independent of the elements’ order and multiplicity [7,14,18].
Since their first mentioning in [18], common intervals became the source for
several generalizations [11,22], among others, δ-teams [9]. δ-Teams are sets of
elements where the distance between any two successors across all sequences is
bounded by a given threshold δ ≥ 0. This flexible model not only facilitates
the detection of gene clusters that are interspersed by unrelated inserted genes,
but also allows the consideration of distance in terms of nucleotide base pairs
between genes.

Even more than gene proximity on linear DNA sequences, the spatial confor-
mation of chromosomes may provide a pivotal indicator for common regulation
and/or associated function of sets of genes. Evidence of spatial gene clusters has
been put forward already by Thévenin et al. [17] who studied spatial proximity
within functional groups of genes in the human genome. In this work, we present
the first spatial gene cluster model. Our model extends the δ-teams model from
sequences to undirected weighted graphs, facilitating the detection of genes that
are consistently spatially close in multiple species. In doing so, our method inte-
grates Hi-C and genome sequence data into weighted undirected graphs, where
vertices represent gene family identifiers of genes and weighted edges correspond
to distances obtained from Hi-C data.

The remainder of this manuscript is organized as follows: In Sect. 2 we for-
mally define δ-teams on graphs and present an algorithm for their discovery. We
then extend our approach to finding δ-teams with families, i.e., the case where
vertices across graphs are related through a common family membership, allow-
ing multiple members of the same family to be part of the same graph. In Sect. 3
we show how δ-teams can be used to find candidate sets of spatial gene clusters
using a combination of genome and Hi-C data of two or more species. We eval-
uate our approach using data from human and mouse. Section 4 concludes this
manuscript and provides an outlook on future work.

An implementation of our method in the Python programming language is
available from http://github.com/danydoerr/GraphTeams.

2 Discovering δ-Teams in Graphs with Shared Vertex
Sets

In this section we discuss the general problem of identifying single linkage clus-
ters in a collection of graphs, where the largest link does not exceed a given dis-

http://github.com/danydoerr/GraphTeams

tance threshold δ. We call such clusters δ-teams to remain in line with previous
literature which studied the equivalent problem on permutations and sequences.

To simplify presentation, we describe only the case of two input graphs G and
H in detail. The general case can be trivially inferred. In fact, our implementation
(see Sect. 3) supports comparison of two or more graphs.

We study undirected graphs G = (V,E) with distance measure dG : V ×V →
R>0. While subsequent definitions adhere to the general case, for all our purposes
we assume edge-weighted graphs and use as distance measure the length of the
shortest path between any two vertices, measured by the sum of the path’s
edge weights if such exists and ∞ otherwise. We use E(G), V (G) to denote the
edge and vertex set of a graph G, respectively. Since we will refer frequently to
sets of vertices in one of several graphs, we will indicate the origin of a vertex
set S ⊆ V (G) of a graph G through subscript notation, i.e. SG, whenever this
information is relevant. We are interested in sets of vertices that are connected
through paths on which the distance between two successive members is bounded
by δ:

Definition 1 (δ-set). Given a graph G with distance measure dG and a thresh-
old value δ ≥ 0, a vertex set S ⊆ V (G) is a δ-set if for each pair of vertices
u, v ∈ S there exists a sequence P = (u, . . . , v) ⊆ S such that the distance
dG(w, z) between any two consecutive vertices w and z of P is less than or equal
to δ.

The subsequent definitions establish relations between δ-sets across two gra-
phs G and H with shared vertex set V∩ = V (G)∩V (H). In doing so, we assume
that there is a common non-empty set of vertices between the two graphs that
is subject to subsequent analysis. Vertices that are unique to either of the two
graphs are disregarded, yet may be relevant due to their involvement in paths
between common vertices.

Definition 2 (δ-cluster). Given two graphs G and H with distance measure
dG and dH , respectively, and a threshold value δ ≥ 0, a vertex set S ⊆ V∩ is a
δ-cluster if it is a δ-set in both G and H under distance measures dG and dH ,
respectively.

Definition 3 (δ-team). Given two graphs G and H, a δ-cluster S of G and H
is a δ-team if it is maximal, i.e., there is no δ-cluster S′ of G and H such that
S $ S′.

Example 1. The two graphs G and H depicted in Fig. 1 (a) have three δ-teams:
1-team {d, f}; 2-team {c, d, f}, and 3-team {a, c, d, f, g}. The set {c, d, f, g} ex-
emplifies a non-maximal 3-cluster of G and H.

2.1 Finding δ-Teams by Decomposing Graphs with
Divide-and-Conquer

Given the above definitions, the following computational problem naturally ari-
ses and is subject to this work:

Fig. 1. Examples of δ-teams and δ-clusters in graphs without families (a) and with
families (b). δ-teams and -clusters are highlighted by areas of shared color. Edge labels
indicate weights. Vertices in Figure (b) are represented by their family identifier.

Problem 1. Given two graphs G and H with distance measure dG and dH , re-
spectively, and a threshold value δ ≥ 0, find all δ-teams of G and H.

The first observation that is key to addressing the problem at hand, is that
two δ-teams cannot overlap. The following lemma, in which Teamsδ(S) denotes
the set of δ-teams of vertex set S, is basis to all permutation-based (gene-) team
algorithms and holds true for the here proposed generalization, too (the disjoint
union of two sets is denoted by ·∪):

Lemma 1. [2,9] Given two graphs G and H with common vertex set V∩ and a
threshold value δ ≥ 0, there exists a partition {V ′, V ′′} of V∩ = V ′ ·∪ V ′′ such
that Teamsδ(V∩) = Teamsδ(V

′) ·∪ Teamsδ(V
′′).

The lemma leads to a simple divide-and-conquer approach which has already
been applied by He and Goldwasser [9] for the restricted case of sequential data.
Here, we apply this lemma to general graphs. Algorithm Decompose divides
the common vertex subset S ⊆ V∩ of graphs G and H into smaller subsets as
long as S is not a δ-set in both graphs.

Algorithm 1 Decompose(S)

Input: graphs G, H; vertex subset S ⊆ V∩, S 6= ∅; threshold value δ ≥ 0
Output: all δ-teams of G and H within S
1: S′ ← SmallMax(S, S) // find a smaller maximal δ-set S′ ⊆ S of G or H
2: if |S| = |S′| then
3: return {S}
4: else
5: return Decompose(S′) ∪Decompose(S \ S′)
6: end if

Because Algorithm 1 proceeds from larger to smaller sets, a vertex set S,
identified by the algorithm, that is a δ-set in both G and H is always maximal

and therefore a δ-team. Procedure SmallMax (see line 1) finds a maximal δ-set
S′ smaller than S, or, if the smallest maximal δ-set (that is still a subset of S) in
both G and H is S itself, returns S. This will be further elaborated in following
section.

2.2 Identifying Maximal δ-Sets

Maximal δ-sets are identified by function SmallMax as described in pseudo-
code by Algorithm 2.

Algorithm 2 SmallMax(SG, SH)

Input: graphs G, H; vertex subsets SG ⊆ V (G) and SH ⊆ V (H); threshold value
δ ≥ 0

Output: a maximal δ-set S′
G ⊆ SG or S′

H ⊆ SH

1: choose random vertices u ∈ SG and v ∈ SH

2: initialize sets S′
G = {u}, S′

H = {v}
3: initialize Boolean variables pG, pH with True
4: while (pG or S′

G = SG) and (pH or S′
H = SH) and (pG or pH) do

5: for each graph X = G,H do
6: if ∃ s ∈ SX \ S′

X s.t. ∃ s′ ∈ S′
X with dX(s, s′) ≤ δ then

7: add vertex s to set S′
X

8: else
9: pX ← False

10: end if
11: end for
12: end while
13: if (¬pG and S′

G 6= SG) then return S′
G else return S′

H

Note that procedure SmallMax is drafted for a general setting that permits
the discovery of different vertex sets in graphs G and H, respectively. In doing
so, SmallMax can also be used in the case of finding δ-teams with families that
is subject of Sect. 2.4. For now, the input sets SG and SH are identical.

SmallMax identifies a smaller maximal δ-set in either vertex set SG or SH .
In each iteration (lines 4-12), the algorithm searches in each graph X = G,H a
vertex s of set SX which has not been previously visited and that has distance
at most δ from any already visited node. To this end, a list S′X is maintained
that keeps track of already visited vertices of set SX . Boolean variables pX
indicate whether unvisited, yet reachable vertices in set SX \S′X could be found
in graph X. The iteration is controlled by three different cases (line 4): If no
unvisited node can be found, SmallMax has identified either a smaller δ-set of
SX or, if the traversal is exhausted, SX itself. In the former case, the procedure
stops and returns the visited subset S′X of SX . In the latter case, the algorithm
continues the search for a smaller δ-set in the corresponding other vertex set SY ,
Y = {G,H}\X, and will return such if found. Otherwise, the smallest maximal

δ-set in both SG and SH are the sets themselves. This also leads to a disruption
of the while-loop (lines 4-12) and, by convention, the return of set S′H (= SH).

Because SmallMax does not go further than distance δ from any already
visited node of S′X , it is clear that the returned vertex set is a δ-set. It is also
maximal, because the algorithm does not stop prior to having found all vertices
of SX that can be reached from the starting node (which is also a member of
SX and S′X).

The time complexity of algorithm Decompose depends on the number of
its own recursive function calls. The decomposition of set S into sets S′ and
S \ S′ that is performed in line 5 of Decompose takes O(|S|) time, but is
overshadowed by the time complexity of SmallMax. For SmallMax, the most
costly operation is the search for the next node s of SX \ S′X . This can be
found through successive traversal of each graph using breadth-first search (BFS)
outgoing from any arbitrary vertex of sets SG and SH , respectively. The BFS
determines the running time of SmallMax and requires O(|V (G)| + |E(G)| +
|V (H)|+ |E(H)|) time. In the worst case, Decompose needs |V∩| iterations to
decompose the initial, shared vertex set V∩.

This leads to an overall running time of O(|V∩| · (|V (G)|+ |E(G)|+ |V (H)|+
|E(H)|)) for Algorithm 1.

2.3 The Special Case of Shortest-Path Graphs

In the special case where each pair of vertices u, v of vertex set V∩ has a directly
connecting edge whenever their distance is smaller or equal to δ, SmallMax
takes O(|V∩|) time in each iteration. This observation leads to an alternative ap-
proach for the general case that may in practice be faster for certain instances or
applications: From the input graphs G, H two new graphs G′ and H ′ are derived
by computing shortest paths between all pairs of vertices in V (G) and V (H), re-
spectively. In the new graph G′ two vertices u, v ∈ V (G) = V (G′) are connected
with an edge of weight 1 if their distance is smaller δ and, similarly, for graph
H ′. Then, the enumeration of δ-teams of G and H is equivalent to computing
1-teams in G′ and H ′. Our implementation includes an option for the compu-
tation of δ-teams using this alternative approach. Shortest paths are obtained
with Floyd-Warshall’s algorithm which has a running time of O(|V |3) [5].

2.4 δ-Teams with Families

Family labels allow correspondences between vertices of the input graphs G and
H that go beyond 1-to-1 assignments, which is the scenario best suitable for
our application as further explained in Sect. 3. Given a graph G = (V,E), let
F : V → F be a surjective mapping between vertices and families.

We extend the concepts of δ-cluster and δ-team to families as follows:

Definition 4 (δ-cluster with families). Given two graphs G and H with
distance measures dG and dH , respectively, a family mapping F and a threshold
value δ ≥ 0, a pair of vertex sets (SG, SH) with SG ⊆ V (G) and SH ⊆ V (H),

is a δ-cluster if (i) F(SG) = F(SH) and (ii) SG and SH are δ-sets in G and H
under distance measures dG and dH , respectively.

Definition 5 (δ-team with families). Given two graphs G and H, a δ-cluster
(SG, SH) of G and H is a δ-team if it is maximal, i.e., there is no other δ-cluster
(S′G, S

′
H) of G and H such that SG ⊆ S′G and SH ⊆ S′H .

Example 2. The two graphs G′ and H ′ depicted in Fig. 1 (b) have four δ-teams
that are in the following represented by their family set: 1-team {d, f}; 2-teams
{c, d, f} and {c, e}, and 3-team {a, c, d, f, g}. The set {c, d, f, g} exemplifies a
non-maximal 3-cluster of G′ and H ′.

With the generalization to families, Lemma 1 is no longer applicable. How-
ever, Wang et al. [19] provide an adaptation which shows that the original divide-
and-conquer approach can be trivially extended:

Lemma 2. [19] Given two graphs G and H, a family mapping F and a threshold
value δ ≥ 0, let SG ⊆ V (G), SH ⊆ V (H), s.t. F(SG) = F(SH) and B be
a maximal δ-set of SG or SH . W.l.o.g. let B ⊆ SG, then Teamsδ(SG, SH) =
Teamsδ(B,S

′
H) ∪ Teamsδ(SG \ B,S′′H), where S′H = {v ∈ SH | F(v) ∈ F(B)}

and S′′H = {v ∈ SH | F(v) ∈ F(SG \B)}.

The adaptations to algorithm Decompose are a straightforward implemen-
tation of Lemma 5 and are shown in Algorithm 3 (DecomposeFamilies).

Algorithm 3 DecomposeFamilies(SG, SH)

Input: Graphs G and H, mapping F , vertex sets SG ⊆ V (G) and SH ⊆ V (H) such
that F(SG) = F(SH) 6= ∅, distance measures dG, dH , and δ ≥ 0

Output: all δ-teams of G and H that are subset or equal to (SG, SH)
// find a maximal δ-set S′

X ⊆ SX , where X is a placeholder for graph G or H
1: S′

X ← SmallMax(SG, SH)
2: if SX = S′

X then
3: return {(SG, SH)}
4: else
5: Y ← {G,H} \X
6: S′

Y ← {v ∈ SY | F(v) ∈ F(S′
X)}

7: S′′
Y ← {v ∈ SY | F(v) ∈ F(SX \ S′

X)}
8: return DecomposeFamilies(S′

X , S
′
Y) ∪DecomposeFamilies(SX \ S′

X , S
′′
Y)

9: end if

To efficiently retrieve vertices associated with families of F(S′X) and F(SX \
S′X) (see lines 6 and 7 of Algorithm 3), we follow Wang et al. [19] and maintain
a table of linked lists that maps family identifiers with its members in each
respective graph. F(S′X) can be built in O(|S′X |) time while F(SX \ S′X) needs
O(|SX |) time. Afterwards, it is possible to build S′Y and S′′Y in O(|SY |) time.
The runtime of SmallMax remains the same for Algorithm 3. Yet, because the

input sets SG and SH can no longer be decomposed into disjoint sets, Algorithm 3
requires overall O((|V (G)|+ |E(G)|) · (|V (H)|+ |E(H)|)) time and O(|V (G)|+
|E(G)|+ |V (H)|+ |E(H)|) space.

3 Application to Spatial Gene Cluster Discovery

We will now show how the discovery of δ-teams with families allows to find
spatial gene clusters in genomic data of two or more species. We implemented
Algorithm 3 in the Python programming language and provide an entirely au-
tomated Snakemake workflow for the identification of spatial gene clusters. Our
workflow takes as input the fully assembled sequences of a collection of genomes
as well as their corresponding Hi-C maps. It normalizes the Hi-C maps, estab-
lishes relationships between Hi-C segments and genes, and constructs weighted
graphs that are then input to Algorithm 3. Further, our workflow allows the
computation of a ranking scheme for gene cluster candidates based on shared
functional associations of their members when provided with additional GO-
annotations. Our approach is, to the best of our knowledge, the first of its kind
that is capable of identifying spatial gene clusters. Our Snakemake workflow can
be obtained from http://github.com/danydoerr/GraphTeams.

3.1 Constructing Graphs from Genome Sequences and Hi-C Data

For each genome, we construct an undirected weighted graph in which vertices
correspond to genes that are labeled with the identifier of their associated gene
family and in which weighted edges correspond to distances obtained from the
contact counts of the genomes’ respective Hi-C maps. Then, δ-teams (with fam-
ilies according to the genes’ families) in the constructed graphs will correspond
to spatial gene cluster candidates.

We first map the Hi-C data onto their chromosomal sequences. In doing so, we
associate genes with segments of the Hi-C map. Consequently, contact counts
between genes correspond to the contact counts of their associated segments.
The value of a contact count does not represent a distance but a closeness score,
hence a transformation is needed. We define the distance between two genes gi,
gj associated with Hi-C map M as

dM (gi, gj) = max
k,l

(Mkl) + 1−Mij . (1)

Hi-C maps are symmetric matrices, therefore dM (gi, gj) = dM (gj , gi). When-
ever two gene pairs fall into the same Hi-C segment, their distance is estimated
by incorporating their proximity on the DNA sequence. To this end, each base
pair between the midpoints of two genes is scored with a relative contact count
of C/r, where C is the average contact count between two adjacent segments in
the Hi-C map, i.e., the mean of Mi,i+1 of Hi-C map M , and r is the resolution
of the Hi-C map, i.e., the size of its segments. This estimator works well for

http://github.com/danydoerr/GraphTeams

our purposes because Hi-C data shows strong correlations with distances on the
DNA sequence.

It is common that Hi-C maps contain large numbers of empty cells as a
result of erroneous measurements and deliberate blanking of the contact counts
around the centromere. We do not apply any correction to such cells except to
those that correspond to adjacent segments, i.e., the Mi,i+1 cells. Here, we use
the same estimator as described above for genes falling into the same cell of the
Hi-C map.

Because we will compare distances obtained from different Hi-C maps, we
must ensure that they all use the same scale. We do this by multiplying all
distances of each Hi-C map M with a factor c/(maxk,l(Mkl) + 1) where c is the
average maximum contact count across all Hi-C maps.

3.2 Quantifying Functional Associations of Gene Clusters using
Gene Ontology Annotations

We quantify functional associations between genes of a gene cluster candidate by
testing against the null hypothesis that a gene in a gene cluster is functionally
not more associated to one of its co-members than to any other genes in the
genome. To this end, we make use of Gene Ontology (GO) [1] annotations and
relate between gene functions by means of the gene ontology hierarchy that
corresponds to the domain “Biological Processes”. In doing so, we measure GO-
based functional dissimilarity (GFD) [6] between pairs of GO-annotated genes.
Given a directed acyclic graph G = (V,E) corresponding to a GO-hierarchy,
rG(g) = {v ∈ V (G) | g associated with v} denotes the set of GO terms, i.e.,
vertices of the GO hierarchy G, with which gene g is associated. Further, pG(u, v)
denotes the length of the shortest path between two vertices u, v ∈ V measured
in the number of separating nodes. The GFD between two GO-annotated genes
g and g′ is then defined as

gfdG(g, g′) = min
(u,v)∈rG(g)×rG(g′)

(
pG(u, v)

depthG(u) + depthG(v)

)
, (2)

where depthG(w) is the length of the path from the root vertex of G to vertex
w. This measure gives then rise to the gene cluster penalty defined for a gene
set C ⊆ G of a genome G as follows:

φG(C,G) =
∑
g∈C

(
min
g′∈C\g

gfd(g, g′)− min
g′′∈G\g

gfd(g, g′′)

)
. (3)

In our analysis, we rank gene clusters according to p-values empirically computed
from sample pools of size of 107 which are drawn for each gene cluster size,
respectively.

3.3 Finding Candidates of Spatial Gene Clusters in Human and
Mouse

We used the approach described in Section 3.1 to find spatial gene cluster can-
didates in human and mouse. To this end, we queried the Ensemble Genome
Browser (release 88) [23] to obtain information about orthologous genes of the
human reference sequence GRCh38.p10 and the mouse reference sequence
GRCm38.p5. The obtained data consists of 19,843 human genes that are orthol-
ogous to 20,647 mouse genes. The intra-chromosomal Hi-C maps of the human
and mouse genomes that we use in this study were first published in Dixon et
al. [8] and have a resolution of 40 kb.

The graphs for the human and mouse datasets were constructed as previously
described. Subsequently, we used them to find δ-teams for different values of δ.
All computations were performed on a Dell RX815 machine with 64 2.3 GHz
AMD Opteron processors and 512 GB of shared memory. The running times for
computing all δ-teams for each value of δ are shown in the bottom right plot of
Fig. 2 and range from 62 minutes for δ = 200 to 111 minutes for δ = 600. The
plot indicates a sharp increase of running time for δ > 400 that correlates with
the increase of the size of identified δ-teams in our dataset.

Apart from the performance of our algorithm, we also wanted to investigate
how suitable spatial data is to improve the search for gene clusters. Next to the
graphs that were generated as described in Sect. 3.1 and which we will further
call spatial graphs, we constructed a second type of graphs, called sequential
graphs. In the latter, distances between genes are limited to those that are adja-
cent in their respective genome sequences. Connecting these adjacent genes, we
used the same distances as in the former graph so that distances between both
types of graphs are comparable. Since our algorithm is a direct generalization
of previous methods acting on linear DNA sequences, we can generate results of
these methods using sequential graphs. We call δ-teams that are found in spatial
graphs 3D gene clusters, whereas those in sequential graphs are called 1D gene
clusters.

Figure 2 shows the results for both graphs. In the plot on the top left, we
can see that the number of gene clusters grows for both types of graphs with
increasing values of δ while the number of 3D gene clusters is slightly higher
than that of 1D gene clusters. This changes after δ = 350 when more 3D gene
clusters are merged than new instances are found, leading to a rapid decrease in
their number along with an increase in their size (see plot on the top right). The
peak associated with this phenomenon is delayed in the sequential graphs, owing
to the fact that genes are there more stretched out. This is also the reason why
we find that some 1D gene clusters are much denser in the spatial graphs. More
surprisingly, we also find gene clusters that can only be found in spatial graphs
for a given threshold value δ. We call the average amount of genes in a cluster
that can be found in the spatial graphs, but not in the sequential ones spatial
gain (see plot at the bottom left). We see an increase in spatial gain around
δ = 250 until a saturation seems to be reached at δ = 450.

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

0

500

1000

1500

2000
co

un
t

number of discovered clusters

3D gene clusters
1D gene clusters

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

101

av
g.

 si
ze

average size of discovered clusters

3D gene clusters
1D gene clusters

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

10 1

100

101

102

av
g.

 n
um

be
r o

f g
ai

ne
d

ge
ne

s spatial gain of 3D clusters

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

0

25

50

75

100

tim
e

in
 m

in
s

computation time of 3D clusters

Fig. 2. Results of Algorithm 3 for different values of δ. Graphs are constructed from
Hi-C datasets of human and mouse. The plots show for each threshold value δ, the
number of discovered clusters (upper left) and their average sizes (upper right) in the
spatial and sequential graphs, respectively, the average number of gained genes in the
3D gene clusters versus the 1D gene clusters (lower left), and the computation time for
the 3D gene clusters (lower right).

We further investigated gene clusters discovered with δ = 350, which strike
a fair balance between number and size as can be readily observed from our
previous analysis. The datasets of both, 3D and 1D gene clusters, were used
to evaluate functional associations between gene cluster members. To this end,
GO-annotations of the human genome were obtained from [1] to compute gene
cluster penalties and to rank gene clusters according to their empirical p-value
as described in Section 3.2. In the obtained gene ontology dataset, 15,737 out of
19,843 human genes were associated with one or more GO-terms. Because the
analysis is restricted to those genes with annotated GO-terms, only 1,559 out of
1,961 3D gene clusters and 1,669 out of 2,118 1D gene clusters could be further
investigated. 18.54% of the 3D gene clusters and 18.33% of the 1D gene clusters
exhibited a significant empirical p-value for p < 0.05. Overall, significant 3D
gene clusters tend to include more (annotated) genes (total: 930) than their 1D
counterparts (total: 886). Table 1 lists the top 20 3D gene clusters that are either
not found in the set of significant 1D gene clusters, or only partially found, or

broken into two or more sub-clusters. We can see that many of them are already
known from the literature. E.g., we find four clusters of olfactory receptor (OR)
genes on different chromosomes, the taste receptor type 2 (TAS2R) gene cluster
and the HOXC gene cluster. The latter is one of three clusters among the top
20 but can be found in the 1D results only as a composition of sub-clusters.
Therefore, these genes seem to be even closer together in 3D than on the DNA
strand. The same is true for other clusters, such as that of the testis-specific
protein Y-encoded (TSPY) and superfamily Ig belonging lectins (SIGLEC) which
were not even partially detected in the 1D graphs.

Table 1. Top 20 3D gene clusters with smallest p-value. Clusters that can be found as
split sub-clusters in the 1D results are marked by an asterisk. Those completely absent
in the 1D results are marked by a plus.

Name Genes Penalty p-Value

HOXC∗ HOTAIR 2, HOTAIR 3, HOXC10, HOXC11, HOXC12, HOXC13, HOXC4,
HOXC5, HOXC6, HOXC8, HOXC9

0.006 1 · 10−7

OR OR5AP2, OR5AR1, OR5M1, OR5M10, OR5M11, OR5M3, OR5M8, OR5M9,
OR5R1, OR8K1, OR8U1, OR9G1, OR9G

0 1 · 10−7

IGHV∗ IGHV3-11, IGHV3-13, IGHV3-20, IGHV3-21, IGHV3-23, IGHV3-30,
IGHV3-33, IGHV3-35, IGHV3-64D, IGHV3-7

0 1 · 10−7

KRTAP∗ KRTAP13-1, KRTAP13-2, KRTAP13-3, KRTAP13-4, KRTAP15-1,
KRTAP24-1, KRTAP26-1, KRTAP27-1

0 1 · 10−7

TAS2R TAS2R14, TAS2R19, TAS2R20, TAS2R31, TAS2R46, TAS2R50 0 3.70 · 10−6

OR OR2A12, OR2A14, OR2A25, OR2A5 0 9.09 · 10−5

ZSCAN4 NKAPL, ZKSCAN3, ZKSCAN4, ZSCAN26 0.006 0.00015

TRAV TRAV12-1, TRAV12-2, TRAV12-3, TRAV13-1, TRAV13-2, TRAV17,
TRAV18, TRAV19, TRAV22, TRAV23DV6, TRAV5, TRAV8-1, TRAV8-3,
TRAV9-2

0 0.00037

OR OR5AC1, OR5H1, OR5H14 0 0.00037

IGHV+ IGHV1-18, IGHV1-24, IGHV1-3 0 0.00037

BTN3+ BTN3A1, BTN3A2, BTN3A3 0 0.00037

(unnamed) GTF2A1L, STON1, STON1-GTF2A1L 0 0.00037

CYP3A CYP3A4, CYP3A43, CYP3A5, CYP3A7, CYP3A7-CYP3A51P 0.028 0.00037

(unnamed) ADGRE1, C3, CD70, GPR108, TNFSF14, TRIP10, VAV1 0.057 0.00047

ZNF CCDC106, FIZ1, U2AF2, ZNF524, ZNF580, ZNF784, ZNF865 0.097 0.00110

OR OR8B12, OR8B4, OR8B8 0.012 0.00376

KIR KIR2DL1, KIR2DL3, KIR2DL4, KIR2DS4, KIR3DL1, KIR3DL2, KIR3DL3 0.179 0.00243

MMP MMP12, MMP13, MMP3 0.035 0.00486

TSPY+ TSPYL1, TSPYL4 0 0.00504

SIGLEC+ SIGLEC12, SIGLEC8 0 0.00504

4 Discussion and Outlook

The enumeration of common intervals in sequences has been subject to various
extensions including δ-teams. Here, we described a generalization of δ-teams from

sequences to graphs. We presented a novel algorithm for the enumeration of δ-
teams that, when trivially extended to k graphs Gi = (Vi, Ei), for i = 1, . . . , k,
will run in O(

∑
i |Vi|+ |V∩| ·

∑
i(|Vi|+ |Ei|)) time and O(

∑
i(|Vi|+ |Ei|)) space,

where V∩ = V1 ∩ · · · ∩ Vk. Our algorithm beats the naive approach that requires
O(
∑
i |Vi|3) time and O(

∑
i |Vi|2) space by computing all-pairs-shortest-paths

and then using a standard single linkage clustering algorithm to enumerate δ-
teams. Further, we provide an algorithm for the computation of δ-teams that,
when trivially extended to k graphs with families, will run in O(k ·

∏
i(|Vi|+|Ei|))

time and O(k ·
∑
i(|Vi|+ |Ei|)) space.

In comparison, the best algorithm for the enumeration of δ-teams in k per-
mutations of size n runs in O(k ·n · logN) time, where N denotes the number of
reported δ-teams [20]. The best algorithm that solves the corresponding family-
based problem for k sequences of lengths n1, . . . , nk runs in O(k·C ·log(n1 · · ·nk))
time, where C is a factor accounting for the number of possible 1:1 assignments
between family members across the k graphs [19]. The differences in running
time between the permutation-, sequence- and our graph-based algorithms re-
flect the fact that the latter solve much harder problems. Nevertheless, further
studies may lead to improved algorithms. It seems possible that the problem of
finding δ-teams in graphs without families could be solved faster with the help
of a guide tree that allows to find a maximal δ-set by traversing each graph
in fewer steps than required by an exhaustive graph traversal. Alternatively, a
randomized variant of our algorithm could assert a better expected running time.

The presented algorithmic work could also be extended into another direc-
tion, by allowing the direct computation of the single-linkage hierarchy. This
makes the gene cluster analysis no longer dependent on a fixed δ, but will pro-
vide all possible δ-clusters through a single computation. This idea has also
been applied for δ-teams in sequences, where the hierarchy is called gene team
tree [21,24].

By identifying δ-teams with families, we provide a flexible model that is well
suitable to capture the complexity of biological datasets such as those at hand.
Our presented algorithm and our implementation are fast enough to conveniently
process large graphs as demonstrated in the evaluation of this study. The iden-
tification of all δ-clusters in the studied Hi-C dataset of human and mouse took
between 62 and 111 minutes on state-of-the-art hardware.

Finally, we evaluated functional associations between members of 3D and
1D gene cluster candidates, respectively. Our experimental evaluation provides
further evidence for the existence of spatial gene clusters, that is, sets of func-
tionally associated genes whose members are closer to each other in the 3D space
than on the chromosomal sequence.

Acknowledgements

We are very grateful to Krister Swenson for kindly providing the Hi-C data used
in this study and for his many valuable suggestions. We wish to thank Pedro
Feijão for many fruitful discussions in the beginning of this project. This work
was partially supported by DFG GRK 1906/1.

References

1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-
Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M.,
Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium. Nat. Genet. 25(1), 25–29 (2000)

2. Beal, M., Bergeron, A., Corteel, S., Raffinot, M.: An algorithmic view of gene
teams. Theor Comput Sci 320(2-3), 395–418 (2004)

3. Belton, J.M., McCord, R.P., Gibcus, J.H., Naumova, N., Zhan, Y., Dekker, J.: Hi–
c: a comprehensive technique to capture the conformation of genomes. Methods
58(3), 268–276 (2012)

4. Burton, J.N., Adey, A., Patwardhan, R.P., Qiu, R., Kitzman, J.O., Shendure, J.:
Chromosome-scale scaffolding of de novo genome assemblies based on chromatin
interactions. Nat biotechnol 31(12), 1119–1125 (2013)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge, Massachusetts (1990)

6. Dı́az-Dı́az, N., Aguilar-Ruiz, J.S.: Go-based functional dissimilarity of gene sets.
BMC Bioinformatics 12(1), 360 (2011)

7. Didier, G., Schmidt, T., Stoye, J., Tsur, D.: Character sets of strings. J Discrete
Algorithms (Amst) 5(2), 330–340 (Dec 2006)

8. Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., Ren,
B.: Topological domains in mammalian genomes identified by analysis of chromatin
interactions. Nature 485(7398), 376–380 (2012)

9. He, X., Goldwasser, M.H.: Identifying conserved gene clusters in the presence of
homology families. J. Comput. Biol. 12(6), 638–656 (Jun 2005)

10. Jacob, F., Perrin, D., Sanchez, C., Monod, J.: Operon: a group of genes with the
expression coordinated by an operator. C. R. Hebd. Seances Acad. Sci. 250, 1727–
1729 (Feb 1960)

11. Jahn, K.: Efficient computation of approximate gene clusters based on reference
occurrences. J. Comput. Biol. 18(9), 1255–1274 (Aug 2011)

12. Larroux, C., Fahey, B., Degnan, S.M., Adamski, M., Rokhsar, D.S., Degnan, B.M.:
The NK Homeobox Gene Cluster Predates the Origin of Hox Genes. Curr Biol
17(8), 706–710 (Apr 2007)

13. Ryba, T., Hiratani, I., Lu, J., Itoh, M., Kulik, M., Zhang, J., Schulz, T.C., Robins,
A.J., Dalton, S., Gilbert, D.M.: Evolutionarily conserved replication timing profiles
predict long-range chromatin interactions and distinguish closely related cell types.
Genome res 20(6), 761–770 (2010)

14. Schmidt, T., Stoye, J.: Gecko and GhostFam: rigorous and efficient gene cluster
detection in prokaryotic genomes. Methods Mol. Biol. 396(Chapter 12), 165–182
(2007)

15. Selvaraj, S., Dixon, J.R., Bansal, V., Ren, B.: Whole-genome haplotype recon-
struction using proximity-ligation and shotgun sequencing. Nat biotechnol 31(12),
1111–1118 (2013)

16. Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M.,
Parrinello, H., Tanay, A., Cavalli, G.: Three-dimensional folding and functional
organization principles of the drosophila genome. Cell 148(3), 458 – 472 (2012)

17. Thevenin, A., Ein-Dor, L., Ozery-Flato, M., Shamir, R.: Functional gene groups are
concentrated within chromosomes, among chromosomes and in the nuclear space
of the human genome. Nucleic Acids Res. 42(15), 9854–9861 (Sep 2014)

18. Uno, T., Yagiura, M.: Fast Algorithms to Enumerate All Common Intervals of Two
Permutations. Algorithmica 26(2), 290–309 (Feb 2000)

19. Wang, B.F., Kuo, C.C., Liu, S.J., Lin, C.H.: A New Efficient Algorithm for the
Gene-Team Problem on General Sequences. TCBB 9(2), 330–344 (2012)

20. Wang, B.F., Lin, C.H.: Improved algorithms for finding gene teams and construct-
ing gene team trees. TCBB 8(5), 1258–1272 (2010)

21. Wang, B.F., Lin, C.H., Yang, I.T.: Constructing a Gene Team Tree in Almost O(n
lg n) Time. TCBB 11(1), 142–153 (2014)

22. Winter, S., Jahn, K., Wehner, S., Kuchenbecker, L., Marz, M., Stoye, J., Böcker,
S.: Finding approximate gene clusters with Gecko 3. Nucleic Acids Res. 44(20),
9600–9610 (Nov 2016)

23. Yates, A., Akanni, W., Amode, M.R., Barrell, D., Billis, K., Carvalho-Silva, D.,
Cummins, C., Clapham, P., Fitzgerald, S., Gil, L., Girn, C.G., Gordon, L., Hourlier,
T., Hunt, S.E., Janacek, S.H., Johnson, N., Juettemann, T., Keenan, S., Lavidas, I.,
Martin, F.J., Maurel, T., McLaren, W., Murphy, D.N., Nag, R., Nuhn, M., Parker,
A., Patricio, M., Pignatelli, M., Rahtz, M., Riat, H.S., Sheppard, D., Taylor, K.,
Thormann, A., Vullo, A., Wilder, S.P., Zadissa, A., Birney, E., Harrow, J., Muffato,
M., Perry, E., Ruffier, M., Spudich, G., Trevanion, S.J., Cunningham, F., Aken,
B.L., Zerbino, D.R., Flicek, P.: Ensembl 2016. Nucleic Acids Res. 44(D1), D710
(2016)

24. Zhang, M., Leong, H.W.: Gene Team Tree - A Hierarchical Representation of Gene
Teams for All Gap Lengths. J. Comput. Biol. 16(10), 1383–1398 (2009)

	Finding Teams in Graphs and its Application to Spatial Gene Cluster Discovery

