
On the class of double distance problems

Maŕılia D. V. Braga, Leonie R. Brockmann, Katharina Klerx, and Jens Stoye

Faculty of Technology and CeBiTec, Bielefeld University, Germany

Abstract. This work is about comparing two genomes S and D over the
same set of gene families, such that S is singular (has one gene per fam-
ily), while D is duplicated (has two genes per family). Considering some
underlying model, that can be simply the minimization of breakpoints
or finding the smallest sequence of mutations mimicked by the double-
cut-and-join (DCJ) operation, the double distance of S and D aims to
find the smallest distance between D and any element from the set 2S,
that contains all possible genome configurations obtained by doubling
the chromosomes of S. The breakpoint double distance of S and D can be
greedily solved in linear time. In contrast, the DCJ double distance of S
and D was proven to be NP-hard. The complexity space between these
two extremes can be explored with the help of an intermediate family of
problems, the σk distances, defined for each k ∈ {2, 4, 6, ...,∞}, in a way
such that the σ2 distance equals the breakpoint distance and the σ∞ dis-
tance equals the DCJ distance. With this class of problems it is possible
to investigate the complexity of the double distance under the σk dis-
tance, increasing the value k in an attempt to identify the smallest value
for which the double distance becomes NP-hard, indicating the point in
which the complexity changes. In our more recent work we have proven
that, for the particular case in which genomes can only be composed of
circular chromosomes, both σ4 and σ6 double distances can be solved in
linear time. Here we present a non-trivial extension of these results to
genomes including linear chromosomes.

1 Introduction

A genome is a multiset of chromosomes and each chromosome is a sequence
of genes, where the genes are classified into families. Considering that an adja-
cency is the oriented neighborhood between two genes in one chromosome of a
genome, a simple distance measure between genomes is the breakpoint distance,
that consists in quantifying their distinct adjacencies [9]. Other distance models
rely on large-scale genome rearrangements, such as inversions, translocations, fu-
sions and fissions, or the general double-cut-and-join (DCJ) operation, yielding
distances that correspond to the minimum number of rearrangements required
to transform one genome into another [7, 8, 10].

Our study relies on the breakpoint graph, a structure that represents the
relation between two given genomes [1]. When the two genomes have the same
set of n∗ genes, their breakpoint graph is a collection of cycles of even length and
paths. For even k, let ck and pk be respectively the numbers of cycles and of paths

2 M.D.V. Braga et al.

of length k. The corresponding breakpoint distance is equal to n∗−
(
c2 +

p0

2

)
[9].

Similarly, when the considered rearrangements are those modeled by the double-
cut-and-join (DCJ) operation [10], the rearrangement distance is n∗ −

(
c+ pe

2

)
,

where c is the total number of cycles and pe is the total number of even paths [2].
Both breakpoint and DCJ distances are basic constituents of a problem re-

lated to the event of a whole genome duplication (WGD) [6, 9]. The double
distance of a singular genome S and a duplicated genome D aims to find the
smallest distance between D and any element from the set 2S, that contains
all possible genome configurations obtained by doubling the chromosomes of S.
Interestingly, it can be solved in linear time under the breakpoint distance, but
is NP-hard under the DCJ distance [9]. One way of exploring the complexity
space between these two extremes is to consider a σk distance [5], defined to

be n∗ −
(
c2 + c4 + . . .+ ck + p0+p2+...+pk−2

2

)
. Note that the σ2 distance is the

breakpoint distance and the σ∞ distance is the DCJ distance. We can then
increasingly investigate the complexities of the double distance under the σ4

distance, then under the σ6 distance, and so on, in an attempt to identify the
smallest value for which the double distance becomes NP-hard.

In our recent work, we succeeded in devising efficient algorithms for σ4 and σ6

if the input genomes are exclusively composed of circular chromosomes [3]. Here
we close the gaps of these results by giving a solution for the double distance
under σ4 and σ6 even if the input genomes include linear chromosomes. This
work has an extended version containing detailed proofs and extra figures [4].

2 Background

A chromosome can be either linear or circular and is represented by its sequence
of genes, where each gene is an oriented DNA fragment. We assume that each
gene belongs to a family, which is a set of homologous genes. A gene that be-
longs to a family X is represented by the symbol X itself if it is read in forward
orientation or by the symbol X if it is read in reverse orientation. For example,
the sequences [1 3 2] and (4) represent, respectively, a linear (flanked by square
brackets) and a circular chromosome (flanked by parentheses), both shown in
Fig. 1, the first composed of three genes and the second composed of a single
gene. Note that if a sequence s represents a chromosome K, then K can be
equally represented by the reverse complement of s, denoted by s, obtained by
reversing the order and the orientation of the genes in s. Moreover, if K is cir-
cular, it can be equally represented by any circular rotation of s and s. Recall
that a gene is an occurrence of a family, therefore distinct genes from the same
family are represented by the same symbol.

We can also represent a gene from family X referring to its extremities Xh

(head) and Xt (tail). The adjacencies in a chromosome are the neighboring ex-
tremities of distinct genes. The remaining extremities, that are at the ends of
linear chromosomes, are telomeres. In linear chromosome [132], the adjacencies
are {1h3h, 3t2t} and the telomeres are {1t, 2h}. Note that an adjacency has no
orientation, that is, an adjacency between extremities 1h and 3h can be equally

On the class of double distance problems 3

represented by 1h3h and by 3h1h. In the particular case of a single-gene circular
chromosome, e.g. (4), an adjacency exceptionally occurs between the extremities
of the same gene (here 4h4t).

A genome is then a multiset of chromosomes and we denote by F(G) the
set of gene families that occur in genome G. In addition, we denote by A(G)
the multiset of adjacencies and by T (G) the multiset of telomeres that occur
in G. A genome S is called singular if each gene family occurs exactly once in
S. Similarly, a genome D is called duplicated if each gene family occurs exactly
twice in D. The two occurrences of a family in a duplicated genome are called
paralogs. A doubled genome is a special type of duplicated genome in which
each adjacency or telomere occurs exactly twice. These two copies of the same
adjacency (respectively same telomere) in a doubled genome are called paralogous
adjacencies (respectively paralogous telomeres). Observe that distinct doubled
genomes can have exactly the same adjacencies and telomeres, as we show in
Fig. 1, where we also give an example of a singular genome.

Fig. 1. On the left we show the singular genome S = {[132] (4)} and on the right the
two doubled genomes {[132] [132] (4) (4)} and {[132] [132] (44)}.

2.1 Comparing canonical genomes

Two genomes S1 and S2 are said to be a canonical pair when they are singular
and have the same gene families, that is, F(S1) = F(S2). Denote by F∗ the
set of families occurring in canonical genomes S1 and S2. For example, genomes
S1 = {(132)(4)} and S2 = {(12)(34)} are canonical with F∗ = {1, 2, 3, 4}.

Breakpoint graph. A multigraph representing the adjacencies of S1 and S2 is
the breakpoint graph BG(S1,S2) = (V,E) [1]. The vertex set V comprises, for
each family X in F∗, one vertex for Xh and one vertex for Xt. The edge multiset
E represents the adjacencies: for each adjacency in S1 (respectively S2) there
exists one S1-edge (respectively S2-edge) in E linking its two extremities.

The degree of each vertex can be 0, 1 or 2 and each connected compo-
nent alternates between S1- and S2-edges. As a consequence, the components
of BG(S1,S2) can be cycles of even length or paths. An even path has one end-
point in S1 (S1-telomere) and the other in S2 (S2-telomere), while an odd path
has either both endpoints in S1 or both endpoints in S2. A vertex that is not a
telomere in S1 nor in S2 is said to be non-telomeric. In the breakpoint graph a
non-telomeric vertex has degree 2. We call i-cycle a cycle of length i and j-path

4 M.D.V. Braga et al.

a path of length j. We also denote by ci the number of cycles of length i, by pj
the number of paths of length j, by c the total number of cycles and by pe the
total number of even paths. An example is given in Fig. 2(a).

Breakpoint distance. For canonical genomes S1 and S2 the breakpoint dis-
tance, denoted by dbp, is defined as follows [9]:

dbp(S1,S2) = n∗ −
(
|A(S1) ∩ A(S2)|+

|T (S1) ∩ T (S2)|
2

)
, where n∗ = |F∗|.

If S1 = {(132) [4]} and S2 = {(12) [34]}, then A(S1) ∩ A(S2) = {1t2h},
T (S1) ∩ T (S2) = {4t} and n∗ = 4, giving dbp(S1,S2) = 2.5. Since a common
adjacency corresponds to a 2-cycle and a common telomere corresponds to a
0-path in BG(S1,S2), the breakpoint distance can be rewritten as

dbp(S1,S2) = n∗ −
(
c2 +

p0
2

)
.

DCJ distance. A double cut and join (DCJ) is the operation that breaks two
adjacencies or telomeres1 of a genome and rejoins the open ends in a different
way [10]. A DCJ models several rearrangements, such as inversion, translocation,
fission and fusion. The minimum number of DCJs that transform one genome
into the other is their DCJ distance ddcj, that can be derived from BG(S1,S2) [2]:

ddcj(S1,S2) = n∗−
(
c+

pe
2

)
= n∗−

(
c2 + c4 + . . .+ c∞ +

p0 + p2 + . . .+ p∞
2

)
.

If S1 = {(132) [4]} and S2 = {(12) [34]}, then n∗ = 4, c = 1 and pe = 2 (see
Fig. 2(a)). Consequently, their DCJ distance is ddcj(S1,S2) = 2.

The class of σk distances. Given BG(S1,S2), for k ∈ {2, 4, 6, . . . ,∞} we
denote by σk the cumulative sums σk = c2+ c4+ . . .+ ck +

p0+p2+...+pk−2

2 . Then
the σk distance of S1 and S2 is defined to be [5]:

dσk
(S1,S2) = n∗ − σk.

It is easy to see that the σ2 distance equals the breakpoint distance and that
the σ∞ distance equals the DCJ distance.

2.2 Comparing a singular and a duplicated genome

Let S be a singular and D be a duplicated genome over the same gene families,
that is, F(S) = F(D). The number of genes in D is twice the number of genes in S
and we need to somehow equalize the contents of these genomes, before searching

1 A broken adjacency has two open ends and a broken telomere has a single one.

On the class of double distance problems 5

for common adjacencies and common telomeres of S and D or transforming one
genome into the other with DCJ operations. This can be done by doubling S,
with a rearrangement operation mimicking a whole genome duplication: it sim-
ply consists of doubling each adjacency and each telomere of S. However, when S
has one or more circular chromosomes, it is not possible to find a unique layout
of its chromosomes after the doubling: indeed, each circular chromosome can
be doubled into two identical circular chromosomes, or the two copies are con-
catenated to each other in a single circular chromosome. Therefore, in general
the doubling of a genome S results in a set of doubled genomes denoted by 2S.
Note that |2S| = 2r, where r is the number of circular chromosomes in S. For
example, if S = {[1 3 2] (4)}, then 2S = {B1,B2} with B1 = {[1 3 2] [1 3 2] (4) (4)}
and B2 = {[1 3 2] [1 3 2] (4 4)} (see Fig 1). All genomes in 2S have exactly the
same multisets of adjacencies and of telomeres, therefore we can use a special
notation for these multisets: A(2S) = A(S)∪A(S) and T (2S) = T (S)∪T (S).

Each family in a duplicated genome can be
(
a
b

)
-singularized by adding the

index a to one of its occurrences and the index b to the other. A duplicated
genome can be entirely singularized if each of its families is singularized. Let
Sa

b(D) be the set of all possible genomes obtained by all distinct ways of
(
a
b

)
-

singularizing the duplicated genome D. Similarly, we denote by Sa
b(2S) the set

of all possible genomes obtained by all distinct ways of
(
a
b

)
-singularizing each

doubled genome in the set 2S.

The class of σk double distances. For k = 2, 4, 6, . . ., each σk double distance
of a singular genome S and a duplicated genome D is defined as follows [3, 9]:

d2σk
(S,D) = d2σk

(S, Ď) = min
B∈Sa

b(2S)
{dσk

(B, Ď)}, where Ď is any genome in Sa
b(D).

Observe that d2σk
(S, Ď) = d2σk

(S, Ď′) for any Ď, Ď′ ∈ Sa
b(D).

σ2 (breakpoint) double distance. The breakpoint double distance of S and D,
denoted by d2bp(S,D), is equivalent to the σ2 double distance. The solution here
can be found with a greedy algorithm [9]: each adjacency or telomere of D that
occurs in S can be fulfilled. If an adjacency or telomere that occurs twice in D
also occurs in S, it can be fulfilled twice in any genome from 2S. Then,

d2bp(S,D) = 2n∗ − |A(2S) ∩ A(D)| − |T (2S) ∩ T (D)|
2

, where n∗ = |F(S)|.

σ∞ (DCJ) double distance. For the DCJ double distance d2dcj, that is equiv-
alent to the σ∞ double distance, the solution space is more complex: computing
the DCJ double distance of genomes S and D was proven to be NP-hard [9].

3 Equivalence of σk double distance and σk disambiguation

A nice way of representing the solution space of the σk double distance is by
using a modified version of the breakpoint graph [3, 9].

6 M.D.V. Braga et al.

3.1 Ambiguous breakpoint graph

Given a singular genome S and a duplicated genome D, their ambiguous break-
point graph ABG(S, Ď) = (V,E) is a multigraph representing the adjacencies of
any element in Sa

b(2S) and a genome Ď ∈ Sa
b(D). The vertex set V comprises,

for each family X in F(S), the two pairs of paralogous vertices Xha , X
h
b and Xta, X

t
b.

We can use the notation û to refer to the paralogous counterpart of a vertex u.
For example, if u = Xha , then û = Xhb .

The edge set E represents the adjacencies. For each adjacency in Ď there
exists one Ď-edge in E linking its two extremities. The S-edges represent all
adjacencies occurring in all genomes from Sa

b(2S): for each adjacency γβ of S, we
have the pair of paralogous edges E(γβ) = {γaβa,γbβb} and its complementary

counterpart Ẽ(γβ) = {γaβb,γbβa}. Note that ˜̃E(γβ) = E(γβ). The square of

γβ is then Q(γβ) = E(γβ) ∪ Ẽ(γβ). The S-edges in the ambiguous breakpoint
graph are therefore the squares of all adjacencies in S. Let a∗ be the number of
squares in ABG(S, Ď). Obviously we have a∗ = |A(S)| = n∗ − κ(S), where κ(S)
is the number of linear chromosomes in S. Again, we can use the notation ê to
refer to the paralogous counterpart of an S-edge e. For example, if e = γaβa,
then ê = γbβb. An ambiguous breakpoint graph is shown in Fig. 2(b1).

Fig. 2. (a) Breakpoint graph of genomes S1 = { (1 2) [3 4] } and S2 = { (1 3 2) [4] }.
Edge types are distinguished by colors: S1-edges are drawn in blue and S2-edges are
drawn in black. Similarly, vertex types are distinguished by colors: an S1-telomere is
marked in blue, an S2-telomere is marked in gray, a telomere in both S1 and S2 is
marked in purple and non-telomeric vertices are white. This graph has one 2-cycle,
one 0-path and one 4-path. (b1) Graph ABG(S, Ď) for genomes S = {[1 2 3]} and
Ď = {[1a 2a 3a 1b] [3b 2b]}. Edge types are distinguished by colors: Ď-edges are drawn in
black and S-edges (squares) are drawn in red. (b2) Induced breakpoint graph BG(τ, Ď)
in which all squares are resolved by the solution τ = ({1ha 2ta, 1hb 2tb}, {2ha 3tb, 2hb 3ta}}),
resulting in one 2-cycle, two 0-paths, one 2-path and one 4-path. This is also the
breakpoint graph of Ď and B = {[1a 2a 3b], [1b 2b 3a]} ∈ Sa

b(2S).

The elements of 2S have the same pairs of identical linear chromosomes.
Each pair corresponds to four S-telomeres, that are not part of any square. The
number of S-telomeres is then 4κ(S). If κ(D) is the number of linear chromosomes
in D, the number of Ď-telomeres is 2κ(D).

On the class of double distance problems 7

3.2 The class of σk disambiguations

Resolving a square Q(·) = E(·)∪Ẽ(·) corresponds to choosing either E(·) or Ẽ(·),
while the complementary pair is masked. If we number the squares of ABG(S, Ď)
from 1 to a∗, a solution can be represented by a tuple τ = (L1,L2, . . . ,La∗),

where each Li contains the pair of paralogous edges (either Ei or Ẽi) that are
chosen (kept) in the graph for square Qi. The graph induced by τ is a simple
breakpoint graph, which we denote by BG(τ, Ď). Fig. 2(b2) shows an example.

Given a solution τ , its k-score is the cumulative sum σk with respect to
BG(τ, Ď). The problem of finding a solution τ for ABG(S, Ď) so that its k-score
is maximized is called σk disambiguation, that is equivalent to the minimiza-
tion problem of computing the σk double distance of S and D, therefore the
complexities of solving the σk disambiguation and the σk double distance for
any k ≥ 2 must be the same [9]. As already mentioned, for σ2 the double dis-
tance/disambiguation can be solved in linear time and for σ∞ the double dis-
tance/disambiguation is NP-hard. An optimal solution for the σk disambiguation
of ABG(S, Ď) gives its k-score, denoted by σk(ABG(S, Ď)). If k < k′, any k-cycle
contributes for any k′-score, therefore σk(ABG(S, Ď)) ≤ σk′(ABG(S, Ď)).

Approach for solving the σk disambiguation. Two S-edges in ABG(S, Ď)
are incompatible when they belong to the same square and are not paralogous.
A cycle or a telomere-to-telomere path in ABG(S, Ď) is valid when it does not
contain any pair of incompatible edges, that is, when it alternates between S-
edges and Ď-edges. Any valid cycle or path can be called piece. Two distinct
pieces in ABG(S, Ď) are either intersecting, when they share at least one vertex,
or disjoint. Finally, a player is either a valid cycle whose length is at most k or
a valid even path whose length is at most k − 2. Note that any player is a piece
and that any solution τ of ABG(S, Ď) is composed of disjoint pieces.

Given a solution τ = (L1,L2, . . . ,Li . . . ,La∗), the switching of its i-th ele-

ment is denoted by s̃(τ, i) and gives (L1,L2, . . . , L̃i . . . ,La∗). A choice of paral-
ogous edges resolving a given square Qi can be fixed for any solution, meaning
that Qi can no longer be switched. In this case, Qi is itself said to be fixed.

4 First steps to solve the σk disambiguation

In this section we give straightforward extensions of results developed in our
previous study for circular genomes [3].

4.1 Common adjacencies and telomeres are conserved

If τ is an optimal solution for the σk disambiguation and if a player C ∈ BG(τ, Ď)
is disjoint from any player distinct from C in any other optimal solution, then C
must be part of all optimal solutions and is itself said to be optimal.

Lemma 1 (extended from [3]). For any σk disambiguation, all existing 0-
paths and 2-cycles in ABG(S,D) are optimal.

8 M.D.V. Braga et al.

This lemma is a generalization of the σ2 disambiguation and guarantees that
all common adjacencies and telomeres are conserved in any σk double distance,
including the NP-hard σ∞ case. All 0-paths are isolated vertices, therefore they
are selected independently of the choices for resolving the squares. A 2-cycle,
in its turn, always includes one S-edge from some square (such as square 1 in
Fig. 2(b2)). From now on we assume that squares that have at least one S-edge
in a 2-cycle are fixed so that all existing 2-cycles are induced.

4.2 Symmetric squares can be fixed arbitrarily

Let v and v̂ be a pair of paralogous vertices in Q. The square Q is said to be
symmetric when either (i) there is a Ď-edge connecting v and v̂, or (ii) v and v̂ are
Ď-telomeres, or (iii) v and v̂ are directly connected to S-telomeres by Ď-edges, as
illustrated in Fig. 3. Note that, for any σk disambiguation, a symmetric square Q
can be fixed arbitrarily: the two ways of resolving Q would lead to solutions with
the same score. We then assume that ABG(S, Ď) has no symmetric squares.

Fig. 3. Possible symmetric squares in the ambiguous breakpoint graph.

4.3 A linear time greedy algorithm for the σ4 disambiguation

Although two valid 4-cycles can intersect with each other, since our graph is
free of symmetric squares, two valid 2-paths cannot intersect with each other.
Moreover, a 2-path has no Ď-edge connecting squares, therefore it cannot in-
tersect with a 4-cycle. For the σ4 disambiguation it is then clear that, (i) any
valid 2-path is always optimal and (ii) a 4-cycle that does intersect with another
one is always optimal. We also know that intersecting 4-cycles are always part
of co-optimal solutions [3]. An optimal solution can then be obtained greedily:
after fixing squares containing edges that are part of 2-cycles, traverse the re-
mainder of the graph and, for each valid 2-path or 4-cycle C that is found, fix
the square(s) containing S-edges that are part of C, so that C is induced. When
this part is accomplished the remaining squares can be fixed arbitrarily.

4.4 Pruning ABG(S, Ď) for the σ6 disambiguation

Players of the σ6 disambiguation can intersect with each other and not every
player is induced by at least one optimal solution. For that reason a more elab-
orated procedure is required, whose first step is a linear time preprocessing in

On the class of double distance problems 9

which from ABG(S, Ď) first all edges are removed that are incompatible with
the existing 2-cycles, and then all remaining edges that cannot be part of a
player [3]. This results in a {6}-pruned ambiguous breakpoint graph PG(S, Ď).

The edges that are not pruned and are therefore present in PG(S, Ď) are
said to be preserved. A square that has preserved edges from distinct paralogous
pairs is still ambiguous and is called a {6}-square. Otherwise it is resolved and
can be fixed according to the preserved edges. Additionally, if none of its edges
is preserved, a square is arbitrarily fixed.

The smaller PG(S, Ď) has all relevant parts required for finding an optimal
solution of σ6 disambiguation, therefore the 6-scores of both graphs are the same:
σ6(ABG(S, Ď)) = σ6(PG(S, Ď)). A clear advantage here is that the pruned graph
might be split into smaller connected components, and it is obvious that the
disambiguation problem can be solved independently for each one of them. Each
connected component G of PG(S, Ď) is of one of the two types [3]:

1. Ambiguous: G includes at least one {6}-square;
2. Resolved (trivial): G is simply a player.

Let C and P be the sets of resolved components, so that C has all resolved
cycles and P has all resolved paths. Furthermore, let B be the set of ambiguous
components of PG(S, Ď). If we denote by σ6(G) the 6-score of an ambiguous
component G ∈ B, the 6-score of PG(S, Ď) can be computed with the formula:

σ6(PG(S, Ď)) = |C|+ |P|
2

+
∑
G∈B

σ6(G).

For solving the σ6 disambiguation the only missing part is finding, for each
ambiguous component G ∈ B, an optimal solution τG including only the {6}-
squares of G. From now on, by S-edge, S-telomere, Ď-edge and Ď-telomere, we
are referring only to the elements that are preserved in PG(S, Ď).

5 Solving the general σ6 disambiguation in linear time

Here we present the most relevant contribution of this work: an algorithm to solve
the σ6 disambiguation in linear time, for genomes with linear chromosomes. The
proofs omitted here can be found in the extended version of this work [4].

5.1 Intersection between players

A player in the σ6 disambiguation can be either a {2,4}-path, that is a valid 2-
or 4-path, or a {4,6}-cycle, that is a valid 4- or 6-cycle.

Let a ĎSĎ-path be a subpath of three edges, starting and ending with a Ď-
edge. This is the largest segment that can be shared by two players: although
there is no room to allow distinct {2, 4}-paths and/or valid 4-cycles to share a
ĎSĎ-path in a graph free of symmetric squares, a ĎSĎ-path can be shared by at
most two valid 6-cycles. Furthermore, if distinct ĎSĎ-paths intersect at the same

10 M.D.V. Braga et al.

Ď-edge e and each of them occurs in two distinct 6-cycles, then the Ď-edge e
occurs in four distinct valid 6-cycles. In Fig. 4 we characterize this exceptional
situation2, which consists in the occurrence of a triplet, composed of exactly
three connected ambiguous squares in which at most two vertices, necessarily
in distinct squares, are pruned out. In a saturated triplet, the squares in each
pair are connected to each other by two Ď-edges connecting paralogous vertices
in both squares; if a single Ď-edge is missing, that is, the corresponding vertices
have outer connections, we have an unsaturated triplet. This structure and its
score can be easily identified, therefore we will assume that our graph is free from
triplets. With this condition, Ď-edges can be shared by at most two players:

Proposition 1 (extended from [3]). Any Ď-edge is part of either one or two
(intersecting) players in a graph free of symmetric squares and triplets.

Fig. 4. (a) Resolved component (score = 1): a 6-cycle alternating (black) Ď- and (blue)
S-edges, without intersections. (b) Two 6-cycles share one ĎSĎ-path composed of the
two black Ď-edges with the blue S-edge in between. (c) Unsaturated triplet with score =
1: every ĎSĎ-path including the same Ď-edge (the thick black one) occurs in two
distinct 6-cycles. The thick black Ď-edge occurs in four 6-cycles, all other black edges
occur in two 6-cycles. (d) Saturated triplet with score = 2: every ĎSĎ-path occurs in
two distinct 6-cycles, every black edge occurs in four 6-cycles.

As a consequence of Proposition 1, we know that any S-edge of a {6}-squareQ
is part of exactly one player [3]. Two {6}-squares Q and Q′ are neighbors when
a vertex of Q is connected to a vertex of Q′ by a Ď-edge. For the case of circular
genomes, all players are cycles. In each component G, since both Ď-edges inciding
at the endpoints of an S-edge would induce the same {4,6}-cycle, the choice of
an S-edge e of a {6}-square Q (and its paralogous edge ê) would imply a unique
way of resolving all neighbors of Q, and, by propagating this to the neighbors of
the neighbors and so on, all squares of G would be resolved, resulting in what
we called straight solution τG. The score of G would be given either by τG,
or by its complementary alternative τ̃G, obtained by switching all ambiguous
squares of τG, or by both in case of co-optimality. Unfortunately, for genomes
with linear chromosomes, where paths can intersect in a telomere, the procedure
above no longer suffices. For that reason, we need to proceed with a further

2 In our previous paper [3] we overlooked this particular case, that can fortunately be
treated in a preprocessing. Otherwise the solution presented there is complete.

On the class of double distance problems 11

characterization of each ambiguous component G of PG(S, Ď), allowing us to
split the disambiguation of G into smaller subproblems.

As we will present in the following, the solution for arbitrarily large compo-
nents can be split into two types of problems, which are analogous to solving the
maximal independent set of auxiliary subgraphs that are either simple paths or
double paths. In both cases, the solutions can be obtained in linear time.

5.2 Intersection graph of an ambiguous component

If two {2,4}-paths intersect in their S-telomere, this intersection must include
the incident Ď-edge. Therefore, when we say that an intersection occurs at an
S-telomere, this automatically means that the intersection is the Ď-edge inciding
in an S-telomere. A valid 4-cycle has two Ď-edges and a valid 6-cycle has three
Ď-edges. Besides the one at the S-telomere, a valid 4-path has one Ď-edge while
a valid 2-path has none - therefore the latter cannot intersect with a {4,6}-cycle.
When we say that 4-paths and/or {4,6}-cycles intersect with each other in a
Ď-edge, we refer to an inner Ď-edge and not one inciding in an S-telomere.

The auxiliary intersection graph I(G) of an ambiguous component G has a
vertex with weight 1

2 for each {2,4}-path and a vertex with weight 1 for each
{4,6}-cycle of G. Furthermore, if two players intersect, we have an edge between
the respective vertices. The intersection graphs of all ambiguous components can
be built during the pruning procedure without increasing its linear time com-
plexity. Note that an independent set of maximum weight in I(G) corresponds
to an optimal solution of G. Although in general this problem is NP-hard, in
our case the underlying ambiguous component G imposes a regular structure to
I(G), allowing us to find such an independent set in linear time.

5.3 Path-flows in the intersection graph

A path-flow in I(G) is a maximal connected subgraph whose vertices correspond
to {2,4}-paths. A path-line of length ℓ in a path-flow is a series of ℓ paths, such
that each pair of consecutive paths intersect at a telomere. Assume that the
vertices in a path-line are numbered from left to right with integers 1, 2, . . . , ℓ.
A double-line consists of two parallel path-lines of the same length ℓ, such that
vertices with the same number in both lines intersect in a Ď-edge and are there-
fore connected by an edge. A 2-path has no free Ď-edge, therefore a double-line
is exclusively composed of 4-paths. If a path-line composes a double-line, it is
saturated, otherwise it is a unsaturated. Since each 4-path of a double-line has
a Ď-edge intersection with another and each 4-path can have only one Ď-edge
intersection, no vertex of a double-line can be connected to a cycle in I(G).

Let us assume that a double-line is always represented with one upper path-
line and one lower path-line. A double-line of length ℓ has 2ℓ vertices and exactly
two independent sets of maximal weight, each one with ℓ vertices and weight ℓ

2 :
one includes the paths with odd numbers in the upper line and the paths with
even numbers in the lower line, while the other includes the paths with even
numbers in the upper line and the paths with odd numbers in the lower line.

12 M.D.V. Braga et al.

Since a double-line cannot intersect with cycles, it is clear that at least one of
these independent sets will be part of a global optimal solution for I(G). A
maximal double-line can be of three different types:

1. Isolated : corresponds to the complete graph I(G). Here, but only if the
length ℓ is even, the double line can be cyclic: in this case, in both upper
and lower lines, the last vertex intersects at a telomere with the first vertex.
Being cyclic or not, any of the two optimal local solutions can be fixed.

2. Terminal : a vertex v located at the end of one of the two lines intersects with
one unsaturated path-line. At least one of the two optimal local solutions
would leave v unselected; we can safely fix this option.

3. Link : intersects with unsaturated lines at both ends. The intersections can be:
(a) single-sided : both occur at the ends of the same saturated line, or
(b) alternate: the left intersection occurs at the end of one saturated line

and the right intersection occurs at the end of the other.

Let v′ be the outer vertex connected to a vertex v belonging to the link
at the right and u′ be the outer vertex connected to a vertex u belonging
to the link at the left. Let a balanced link be alternate of odd length, or
single-sided of even length. In contrast, an unbalanced link is alternate of
even length, or single-sided of odd length. If the link is unbalanced, one of
the two local optimal solutions leaves both u and v unselected; we can safely
fix this option. If the link is balanced, we cannot fix the solution before-hand,
but we can reduce the problem, by removing the connections uu′ and vv′

and adding the connection u′v′. Since both u′ and v′ must be the ends of
unsaturated lines, this procedure simply concatenates these two lines into a
single unsaturated path-line. (See Fig. 5.) Finding a maximum independent
set of the remaining unsaturated path-lines is a trivial problem that will be
solved last; depending on whether one of the vertices u′ and v′ is selected in
the end, we can fix the solution of the original balanced link.

5.4 Cycle-bubbles in the intersection graph

A cycle-bubble in I(G) is a maximal connected subgraph whose vertices cor-
respond to {4,6}-cycles. Let H be the subgraph of the underlying pruned am-
biguous breakpoint graph including all edges that compose the cycles of a cycle-
bubble. The optimal solution for H is either the straight solution τH or its alter-
native τ̃H (algorithm from our previous work [3]). If both τH and τ̃H have the
same score, then H is said to be balanced, otherwise it is said to be unbalanced.

Proposition 2. Let an ambiguous component G have cycle-bubbles H1, ..., Hm.
There is an optimal solution for G including, for each i = 1, ...,m: (1) the optimal
solution for Hi, if Hi is unbalanced; or (2) either τHi

or τ̃Hi
, if Hi is balanced.

Proof. If the whole component G corresponds to one bubble H, the statement
is clearly true. Otherwise, we need to examine the intersection with paths. One

On the class of double distance problems 13

Fig. 5. Double-lines that are balanced and unbalanced links. The yellow solution that
in cases (a-b) leaves u and v unselected can be fixed so that an independent set of
the adjacent unsaturated path-line(s) can start at v′ (and u′). In cases (c-d) either the
yellow or the green solution will be fixed later; it will be the one compatible with the
solution of the unsaturated-line ending in u′ concatenated to the one starting in v′.

Fig. 6. Ambiguous and intersection graphs including a single 6-cycle C (solid edges).
Dotted edges are exclusive to paths and dashed gray edges are pruned out. In (a) and
(b), C intersects with three 4-paths P11 = u1..v1, P22 = u2..v2 and P33 = u3..v3. In (a),
the yellow solution including C also has the three 2-paths P12 = u1..v2, P23 = u2..v3
and P31 = u3..v1, being clearly superior. In (b), the yellow solution still has the 2-path
P12, having the same score of the green solution with three 4-paths.

critical case is a 6-cycle C intersecting three 4-paths, but then there is at least
one 2-path to compensate the solution including C (Fig. 6). In general, the best
we can get by replacing cycles by paths are co-optimal solutions [4]. ⊓⊔

As a consequence of Proposition 2, if a cycle-bubble is unbalanced, its optimal
solution can be fixed so that the unsaturated path-lines around it can be treated
separately.

Balanced cycle-bubbles intersecting path-flows. If a cycle-bubble H is
balanced and intersects with path-flows, then it requires a special treatment.
The case in which the intersection involves a single cycle C is also very easy,
because certainly either τH or τ̃H leaves C unselected and we can safely fix
this option. More difficult is when the intersection involves at least two cycles.
However, as we will see, here the only case that can be arbitrarily large is easy
to handle. Let a cycle-bubble be a cycle-line when it consists of a series of valid
6-cycles, such that each pair of consecutive cycles intersect at a Ď-edge.

14 M.D.V. Braga et al.

Proposition 3. Cycle-bubbles involving 9 or more cycles must be a cycle-line.

Proof. A non-linear bubble reaches its “capacity” with 8 cycles, see Fig. 7. ⊓⊔

Fig. 7. By increasing the complexity of a bubble we quickly saturate the space for
adding cycles to it. Starting with (a) a simple cycle-line of length two, we can either
(b1) connect the open vertices of squares 2 and 3, obtaining a cyclic cycle-line of length 4
that cannot be extended, or (b2) extend the line so that it achieves length three. From
(b2) we can obtain (c1) a cyclic cycle-line of length 4 that can be extended first by
adding cycle C5 next to C1 and then either adding C′

5 next to C3 or closing C6, C7

and C8 so that we get (c2). In both cases no further extensions are possible. Note that
(c2) can also be obtained by extending a cycle-line of length three and transforming it
in a star with three branches, that can still be extended by closing C3, C6, C7 and C8.

Besides having its size limited to 8 cycles, the more complex a non-linear
cycles-bubble becomes, the less space it has for paths around it. Therefore, the
problem involving these bounded instances could be solved by brute force or
complete enumeration. Many of the cases are shown in [4].

Our focus now is the remaining situation of a balanced cycle-line with inter-
sections involving at least two cycles. Recall that cycles can only intersect with
unsaturated path-lines. An intersection between a cycle- and a path-line is a plug
connection when it occurs between vertices that are at the ends of both lines.

Proposition 4. Cycle-lines of length at least 4 can only have plug connections.

Proof. Fig. 8 shows that a cycle-line of length at least four only has “room” for
intersections with path-lines next to its leftmost or rightmost cycles. ⊓⊔

On the class of double distance problems 15

Fig. 8. A cycle-line of length 4 or larger only allows plug connections.

Balanced cycle-lines with two cycles can have connections to path-lines that
are not plugs, but these bounded cases can be solved by complete enumeration
or brute force. For arbitrarily large instances, the last missing case is of a bal-
anced cycle-line with plug connections at both sides, called a balanced link. The
procedure here is the same as that for double-lines that are balanced links, where
the local solution can only be fixed after fixing those of the outer connections.

5.5 What remains is a set of independent unsaturated path-lines

If what remains is a single unsaturated path-line of even length, it can even
be cyclic. In any case, an optimal solution of each unsaturated path-line can be
trivially found: the one selecting all paths with odd numbers must be optimal. Fix
this solution and, depending on the connections between the selected vertices of
the unsaturated path-line and vertices from balanced cycle-bubbles or balanced
double-lines, fix the compatible solutions for the latter ones.

6 Final remarks and discussion

This work is an investigation of the complexity of the double distance under
a class of problems called σk distances, which are between the breakpoint (σ2)
and the DCJ (σ∞) distance. Extending our previous results that considered only
circular genomes, here we presented linear time algorithms for computing the
double distance under the σ4, and under the σ6 distance, for inputs including
linear chromosomes. Our solution relies on the ambiguous breakpoint graph.

The solutions we found so far are greedy with all players being optimal in σ2,
greedy with all players being co-optimal in σ4 and non-greedy with non-optimal
players in σ6, all of them running in linear time. More specifically for the σ6

case, after a pre-processing that fixes symmetric squares and triplets, at most
two players share an edge. However we can already observe that, as k grows, the
number of players sharing a same edge also grows. For that reason, we believe
that, if for some k ≥ 8 the complexity of the σk double distance is found to be
NP-hard, the complexity is also NP-hard for any k′ > k. In any case, the natural
next step in our research is to study the σ8 double distance.

Besides the double distance, other combinatorial problems related to genome
evolution and ancestral reconstruction, including median and guided halving,
have the distance problem as a basic unit. And, analogously to the double dis-
tance, these problems can be solved in polynomial time (but differently from the

16 M.D.V. Braga et al.

double distance, not greedy and linear) when they are built upon the breakpoint
distance, while they are NP-hard when they are built upon the DCJ distance [9].
Therefore, a challenging avenue of research is doing the same exploration for both
median and guided halving problems under the class of σk distances.

References

1. Vineet Bafna and Pavel A. Pevzner. Genome rearrangements and sorting by re-
versals. In Proc. of FOCS 1993, pages 148–157, 1993.

2. Anne Bergeron, Julia Mixtacki, and Jens Stoye. A unifying view of genome rear-
rangements. In Proc. of WABI 2006, volume 4175 of LNBI, pages 163–173, 2006.

3. Maŕılia D. V. Braga, Leonie R. Brockmann, Katharina Klerx, and Jens Stoye. A
linear time algorithm for an extended version of the breakpoint double distance.
In Proc. of WABI 2022, volume 242(13) of LIPICs, pages 1–16, 2022.

4. Maŕılia D. V. Braga, Leonie R. Brockmann, Katharina Klerx, and Jens Stoye.
Investigating the complexity of the double distance problems. arXiv 2303.04205,
2023. URL: https://arxiv.org/abs/2303.04205.

5. Cedric Chauve. Personal communication in Dagstuhl Seminar no. 18451 - Ge-
nomics, Pattern Avoidance, and Statistical Mechanics, November 2018.

6. Nadia El-Mabrouk and David Sankoff. The reconstruction of doubled genomes.
SIAM Journal on Computing, 32(3):754–792, 2003.

7. Sridhar Hannenhalli and Pavel A. Pevzner. Transforming men into mice (poly-
nomial algorithm for genomic distance problem). In Proc. of FOCS 1995, pages
581–592, 1995.

8. Sridhar Hannenhalli and Pavel A. Pevzner. Transforming cabbage into turnip:
polynomial algorithm for sorting signed permutations by reversals. Journal of the
ACM, 46(1):1–27, 1999.

9. Eric Tannier, Chunfang Zheng, and David Sankoff. Multichromosomal median and
halving problems under different genomic distances. BMC Bioinformatics, 10:120,
2009.

10. Sophia Yancopoulos, Oliver Attie, and Richard Friedberg. Efficient sorting of ge-
nomic permutations by translocation, inversion and block interchange. Bioinfor-
matics, 21(16):3340–3346, 2005.

