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Chapter 1

Abstract

Motivation:
We present a new probabilistic model of evolution of RNA-, DNA-, or protein-like
sequences and a toolRose that implements this model. Guided by an evolutionary
tree, a family of related sequences is created from a common ancestor sequence
by insertion, deletion and substitution of characters. During this artificialevolu-
tionary process, the “true” history is logged and the “correct” multiple sequence
alignment is created simultaneously. The model also allows for varying rates of
mutation within the sequences making it possible to establish so-called sequence
motifs.
Results:
The data created byRose is suitable for the evaluation of methods in multiple se-
quence alignment computation and the prediction of phylogenetic relationships.
It can also be useful when teaching courses in or developing models of sequence
evolution and in the study of evolutionary processes.
Availability:
The softwareRose is available on the Bielefeld Bioinformatics WebServer under
the following URL:
http://bibiserv.TechFak.Uni-Bielefeld.DE/rose/
The sourcecode is available upon request.
Contact:
E-mail: folker@TechFak.Uni-Bielefeld.DE
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Chapter 2

Introduction

It is useful for many reasons to have a family of sequences with well-known evolu-
tionary history. This kind of data is used in the study of evolutionary processes, in
the evaluation of multiple sequence alignments methods, and in the reconstruction
of phylogenetic trees. Other applications in computational molecular biology may
also benefit from its availability. Unfortunately, nature does not provide “bench-
mark” problems well suited for all these applications since there is no way tolearn
the exact phylogeny of the sequences involved. Therefore it is common practice to
artificially create sequence data trying to be as close to the real world as possible.

The simulation of evolutionary processes on the molecular sequence level has
a long tradition. Starting with the model of Jukes and Cantor [10], several general-
izations and alterations have been presented, e.g. [11, 4, 9, 14]. These models were
designed for the study of molecular evolution on the sequence level, focusing on
a well-founded statistical basis rather than on producing sequence families most
similar to those usually considered in molecular biology. The early models even
ignored the well-known fact of insertions and deletions (indels) during evolution.
Some models [18, 19] consider indels but still have some other restrictions.

To create most realistic sequence families, we have added indels and “se-
quence motifs” (patterns in a family of related sequences [20]) to the so-called
HKY-model [9] which only allows the description of arbitrary-rate substitutions
in DNA sequences. We also extended the underlying alphabet to cover amino acid
sequences. An evolutionary process is simulated by iterated mutation of a “com-
mon ancestor sequence” following the edges of a given “mutation guide tree”.
This way, the topology of the tree induces the relationship of the sequences. The
mutations are performed by insertion, deletion, and substitution of single charac-
ters or whole subsequences. Figure 2.1 sketches the creation process of a family
of four sequences. In addition to knowing the exact evolutionarydistance of the
sequences, our approach provides us with their wholeevolutionary history and the
true alignment. Therefore, in contrast to biological applications, it is easily pos-
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Figure 2.1: Example of a creation process of four sequences from a common
ancestorcgtat. The underlined part denotes a sequence motif with smaller sub-
stitution probability.

sible to verify predictions about alignments and phylogenetic relationships drawn
from the sequences simply by comparing the predicted phylogeny to the tree that
was used in the creation process.

In fact we can go one step further and evaluate the adequacy of mathematical
models such as maximum parsimony or sum-of-pairs multiple alignment. Given
a program that calculates the best solution according to the model on a data set
generated by rose, we may contrast these results to the "true" phylogeny or align-
ment.

The data created by our toolRose (random-model of sequence evolution)
has been extensively tested with theDivide-and-Conquer Alignment [17, 16] and
GeneFisher [5, 13] software packages.
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Chapter 3

Systems and Methods

For reasons of speed, efficiency and portabilityRose was developed under UNIX
using the ANSI C programming language. The software has been tested on var-
ious UNIX platforms e.g. DEC, HP, LINUX-PC, SGI, Sun. The actual program
development was done on a Sun Sparcstation using gcc and Sun SPro C compilers,
as well as bison and lex to build the input parser. The publicly available version
runs on a Sun Enterprise 3000 server.
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Chapter 4

Algorithm

4.1 The Model

Our procedure requires the following input:

anAlphabetA
of sizel, e.g. the DNA-alphabetfA; C; G; Tg or the 20 character amino acid alpha-
bet,

aRoot Sequences or anAverage Sequence Lengthn
(if no root sequence is specified, a random sequence of lengthn � 1 is generated),

Character Frequenciesf = (f1; : : : ; fl)
satisfying

Pli=1 fi = 1 used for insertions and the creation of the root sequence (if
not specified),

aMutation Guide Tree T or aSequence Distancedav
the tree may be supplied with edge lengths (otherwise all edges are assumed to
have uniform length 1), if no tree is entered, a binary mutation guide tree of user
defined average pairwise sequence distancedav (see 4.3.1) is created,

aMutation Matrix M
of sizel� l representing pairwise mutation frequencies used for substitutions,

Insertion andDeletion Probability Functions
representing the probability of an indel eventpins or pdel, combined with indel
length functionslins andldel, respectively, and

aMutation Probability Vector v
of lengthn allowing to specify regions of different mutation rate, e.g. to specify
sequence motifs.
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Given these parameters,Rose generates

aFamily of Sequencess1; : : : ; sm
containing sequences with average lengthn and average pairwise evolutionary
distancedav,
aMultiple Sequence AlignmentA
of the sequencess1; : : : ; sm that is correct with respect to the creation process i.e.
it reflects the “true” evolutionary history ofs1; : : : ; sm, and finally

aRelatedness TreeT 0
showing the phylogenetic relationship of the created sequences.T 0 is the small-
est subtree ofT which contains all the nodes corresponding to the generated se-
quences (and possibly some additional inner nodes which can be seen as extinct
ancestors).

An outline of the algorithm is given here:Rose(A; s; n; f; T; dav)
begin

if undefined(s)s := create root sequence(A; n; f);
fi
if undefined(T )T := create guide tree(dav);
fiT:seq := s; ==copy root sequence to root of treetraverse(T ); ==recursively mutate sequences along treeprint sequences(T ); ==generate outputprint alignment(T );print tree(T );

end

where sub-functiontraverse is implemented as follows:traverse(T )
foreach subtreeT 0 of T doT 0:seq := evolve(T:seq)traverse(T 0)
od

In the following subsections, we take a closer look at the different steps of
Rose.
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4.2 The Root Sequence

The implementation of functioncreate root sequence is straightforward: If no
pre-given root sequence is specified, each of then positions in the root sequence
is independently filled by a random process that returns letterAi (1 � i � l) with
probabilityfi.

Rose works with arbitrary alphabets and any matching list of frequencies. For
amino acid sequences we implemented as default values thenormalized frequen-
cies of the amino acids given in [3], and for nucleotides we use the frequencies
given in [1].

4.3 The Mutation Guide Tree

The general behavior of create guide tree is similar to that ofcreate root sequence: If no treeT is specified,Rose computes a uniform binary
tree withk = 1023 nodes whose edge labels are adjusted such that the average se-
quence distance (i.e. the expected length of a shortest path between two randomly
chosen nodes in the tree) meets the user-defined valuedav (see below). After the
tree is created, either only from the leaves or from the leaves and inner nodes
(chosen by the user), the required number of sequences is selected uniformly. So,
in the latter case it can happen that, at the same time, an inner node sequence and
a sequence from the corresponding subtree is chosen.

Obviously it is possible to save space and computation time by pruning the
unnecessary edges in the tree before performing the evolutionary process if not all
of the sequences are contained in the final sequence family.

4.3.1 Adjusting the Edge Lengths

Assume a binary uniform tree of depthk with K = 2k+1 � 1 nodes and constant
lengthb of every edge (see Figure 4.1). For the moment, letb = 1. Then, the av-
erage sequence distancedav is the sum of all pairwise distances in the tree divided
byK(K � 1), the number of pairs of distinct nodes. Consider therefore a node in
level � of the uniform binary tree,0 � � � k. In the example of Figure 4.1, we
have chosen� = 2. The corresponding node is indicated by a circle.

In each leveli, 0 � i � k �� of the subtree “below” the observed node, there
are2i nodes with distancei. The sum of distances to all these nodes isD� := k��Xi=0(2i � i)= 2k��+1(k � �� 1) + 2:
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Figure 4.1: Uniform binary tree of depthk = 4 with K = 25� 1 = 31 nodes. For
a node in depth� = 2 (marked by the circle), those nodes contributing toD� andU�, respectively, are shown.

Additionally, there are� nodes “above” the observed node, each being the starting
point of a subtree. Summing the distances to all these nodes givesU� := �Xi=10@i+ k�(��i)Xj=1 2j�1 � (i+ j)1A= 2k��+1(�� k + 3)+2k+1(�+ k � 3) + �:
Thus, the total sum of distances from a node in level� to all other nodes isN� := D� + U�= 2k��+2 + 2k+1(� + k � 3) + �+ 2:
Averaging this value over all pairs of distinct nodes, we obtaindav := Pk�=0(2� �N�)K(K � 1)= 2 � 2k+1 4 + k(1 + 2k+1)� 2k+2(2k+1 � 1)(2k+1 � 2)
which approximates 2 k � 2k+1 � 2k+22k+1 = 2 (k � 2)
for sufficiently largek.

Similarly, if all edges have lengthb, we getdav � 2b (k � 2):
9



Hence, to obtain sequences of a pre-given relatedness, we simply have to alter the
edge lengthb: b � dav2 (k � 2) :
For example, to obtain sequences of an average distancedav � 250 PAM, the
edge length of our default tree with1023 = 29+1 � 1 nodes has to be set tob � 2502 (9�2) � 18.

Note that in the above calculation we assumed that the sequences are selected
from both the internal nodes and the leaves of the mutation guide tree. In case
sequences are selected only from the leaves, a similar calculation leads to the
formula b � dav2 (k � 1) :
4.4 Creation of Child Sequences

We now take a closer look at the implementation of functionevolve, the core of
Rose. The following steps are used to create a new “descendant” sequencesnew
from a given ancestor sequencesold:evolve(sold)

1. The mutation functionmutate for the given alphabet is applied to every
positioni in sold: snew[i] = mutate(sold[i]; b)
whereb is the length of the branch leading to the new node. The mutation
matrix is selected with respect tob as described below.

2. One or more subsequences are deleted fromsnew taking into account the
deletion probabilitypdel and the deletion length functionldel:perform deletions(pdel; ldel)

3. One or more sequences are inserted at arbitrary positions insnew:perform insertions(pins; lins)
Functionmutate makes use of the mutation probability matrixM . An entryM [i; j] is interpreted as the probability for thejth letter of the alphabetA being

substituted by theith letter. Hence, the sum of each column ofM should bePli=1M [i; j] = 1 for all j = 1; : : : ; l. The diagonal valuesM [i; i] determine the
degree of stability: For example, a value ofM [i; i] = :99 for all i = 1; : : : ; l
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will result in an average mutability of one percent accepted mutations per unitof
branch length.

In case the mutation matrixM is the probability matrix of oneaccepted amino
acid substitution per hundred sites (1 PAM) given in [3] – which is our default for
proteins – we denote this new unit of measure for the distance of a child sequence
from its ancestor including insertions and deletions by1 PAM� where the param-
eters for insertions and deletions have to be specified additionally.

Evolutionary rates of more than 1 PAM� are obtained by applying the creation
procedure repeatedly. As Schöniger and v. Haeseler [14] have shown, the use
of a custom matrix (such as PAM 10) helps to save time when the number of
substitutions exceeds an upper bound. At each step along an edge of the guide tree,
depending on the mutation rate the decision is made either to use precomputed
PAM� matrices repeatedly or to compute a new custom matrix.

4.5 Sequence Motifs

Up to this point, we have assumed a constant rate of mutation over the whole
length of the sequences. This is not very realistic: The mutation rate of genomic
sequences found in nature is not constant for all positions in the genome. Muta-
tions in regions with strong functional and/or structural importance are less often
observed than elsewhere.

Therefore we have generalized the functionevolve: We allow the use of differ-
ent rates of mutation for different regions of the sequence by a vectorv of lengthn with valuesvi � 0 which linearly increase/decrease the degree of variability at
positioni of the root sequence. A valuevi = 1 yields exactly the variability given
by the edge length. Valuesvi < 1 suppress mutations (vi = 0: no mutation) and
higher valuesvi > 1 allow to specify regions of particular high mutation rate, for
example so-calledhot spots. The vectorv is inherited by child sequences. Indels
are forbidden in regions withvi < 1, thus establishing conserved sequence motifs.
Inserted regions have a variability of 1.

4.6 Creation of Indels

It is obvious that the exact mechanism of insertion and deletion is crucial for the
simulation of evolution. Unfortunately there is neither a well established model
(like HKY for nucleotide substitution) nor consensus as to the number of indels
that corresponds to a certain evolutionary distance. We therefore chose to ac-
comodate a wide range of possibilities with a function that we callinverted gap
function. The following pseudocode shows the selection and creation of inser-
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tions; deletions are handled analogous:perform insertions(pins; lins)
begin

do T:dist times
if random number between zero and one() < pinspos := choose random position(length(sold));len := compute insertion length(lins);

if vi >= 1;8i 2 fpos; : : : ; pos + lengdo insertion(pos; len);
fi

fi
od

end
The starting position for the insertion inchoose random position is selected

uniformly among the positions1; : : : ; length(sold). To allow a high degree of
variability,Rose accepts any quantized length functionlins = l(1)ins; : : : ; l(qins)ins withPqinsi=1 l(i)ins = 1. Then, lengthlen 2 f1; : : : ; qinsg is selected with probabilityl(len)ins .

Note that the average sequence length remainsn if pins = pdel andlins = ldel.
Functiondo insertion finally is similar to the creation of the root sequence;

the characters inserted maintain the initial character distribution.

12



Chapter 5

Implementation

5.1 Input/Output formats

The user input is done via an HTML forms interface, the user can also choose
to feed a file with all the input information intoRose using a simple tag value
format. The format and the parameters are further described in our online manual
http://bibiserv.TechFak.Uni-Bielefeld.DE/rose/manual.html.

5.2 Resource Requirements

On a Sun Ultra I 167 MHz CPU,Rose used the following resources:

protein DNA
#seqs sec MB #seqs sec MB

10 1.8 1.1 10 3.3 1.4
100 9.8 1.9 100 18.6 3.8
500 24.9 4.2 500 49.5 9.6

Here, the created protein sequences have an average length of 250 letters and
an average relatedness of 250 PAM�; the DNA sequences have an average length
of 1000 letters and an average relatedness of 50.

5.3 Examples

The following examples show some of the features and demonstrate the versatility
of Rose.
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FSAEAALVSPGKGDDEQVPNKDKCVYHGHKDGKRMNVKTPPTGPLVVGVHQ
YEGANEVGATCEESSYCYVKEQAIQVKESQECTDFARHEVKSFRGVPGKLTEVIPVPL
YGAAHPVGDPIKLGSLFLNHYESKGHTAAMCLLGMKTELIEPIEVQA
SGVTEPVPNPVPATGIKLDKYTREENCLGMCLMGMGPPMVTIGEVGI

FSAEAALVSP--------GKGDDEQVPNKDKCVYHGHKDGKRMNVKTPPTGPLVVGVHQ
YEGANEVGATCEESSYCYVKEQAIQVKESQECTDFARHEVKSFRGVPGKLTEV-IPVPL
YGAAHPVGDP--------IKLGSLFLNH---YESKGHTAAMCLLGMKTELIEP-IEVQA
SGVTEPVPNP--------VPATGIKLDK---YTREENCLGMCLMGMGPPMVTI-GEVGI

FSAEAALVSP--------GKGDDEQVPNKDKCVYHGHKDGKRMNVKTPPTGPLVVGVHQ
YEGANEVGATCEESSYCYVKEQAIQVKESQECTDFARHEVKSFRGVPGKLTE-VIPVPL
YGAAHPVGDP--------IKLGSLFL---NHYESKGHTAAMCLLGMKTELIE-PIEVQA
SGVTEPVPNP--------VPATGIKL---DKYTREENCLGMCLMGMGPPMVT-IGEVGI

(c)

(b)

(a)

Figure 5.1: (a) Sample family of random sequences obtained withRose for n
= 50 andm = 4; (b) “true” alignment of these sequences; (c) a score-optimal
alignment according to PAM 250 substitution matrix and gap functiong(l) = 8
+ 12l computed with the program MSA. While the overall optimal alignment is
correct, the exact location of the gaps does not coincide in all cases.

5.3.1 A Protein Sequence Family

In Figure 5.1 (a), a sample family withm = 4 sequences of average lengthn = 50
is shown. This family is created with the default settings ofRose: A uniform
binary mutation guide tree of depthk = 9 and uniform edge lengthb = 18 PAM�.
The probability for insertions and deletions is set topins = pdel = 0:3%, and
the insertion and deletion length functions are exponentially decreasing with a
maximal length value of10.

The alignment given in Figure 5.1 (b) is the “true” alignment corresponding to
the creation process of the sequences. Figure 5.1 (c) shows an optimal alignment
according to the PAM 250 substitution matrix [3] (in distance form with values
between0 and24) and gap functiong(l) = 8 + 12 l computed with the program
MSA [12, 8]. While the overall optimal alignment is correct, the exact location
of the gaps does not coincide in all cases. This suboptimality of true alignments
regarding the standard alignment score functions is also shown by the (distance)
scores for both alignments: The “true” alignment has an alignment score of 5184,
while the optimal alignment a has a “better” score 5166.

5.3.2 A Simple DNA Sequence Family with Motif

The use of motifs in sequence families created byRose is demonstrated in Figure
5.2. The upper part shows the “true” alignment of a family of 5 DNA sequences
which contains a conserved TATAAT motif obtained withRose using a mutation
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AGTCCGTTGC--TATAAT---GG---GAGGAAAACC
AATCTGT---AGTATAAT---GGTGTGAGGAAAGCC

AGTCTG-TACTATAATGTTGGGAGGAAAAGC

AATCTG-TAGTATAATGGTGTGAGGAAAGCC

ATTCTGT---CCTATAAT---CG---GAGAAAAGCC
AGTCTGT---ACTATAATGTTGG---GAGGAAAAGC

(a)

(b)

AGTG------ACTATAAT---CG---GAGGACAG--

AGT----GACTATAAT---CGGAGGACAG--
ATTCTG-TCCTATAAT---CGGAGAAAAGCC

AGTCCGTTGCTATAAT---GGGAGGAAAACC

Figure 5.2: DNA example with TATAAT motif: (a) the “true” and (b) an optimal
alignment.

seq. 3

seq. 2

seq. 4

seq. 5
seq. 1

2520

40

17

15

40

15

10

Figure 5.3: Relatedness tree for the sequences shown in Figure 5.4.

vector disallowing mutations within the motif while outside the mutability re-
mains normal. Figure 5.2 (b) shows a score-optimal alignment of these sequences
computed with MSA (unit substitution cost with gap functiong(l) = 2 + l). It is
considerably shorter than the “true” alignment. The parsimony objective underly-
ing the sum-of-pairs scoring of MSA fails here.

5.3.3 A Protein Sequence Family with Varying Mutation Rate

Finally we present a protein example where we fixed the root sequence and the
mutation guide tree. We also varied the mutability along the sequence.

As root sequence we took the human hemoglobin alpha sequence. The mu-
tation guide tree is shown in Figure 5.3. The true alignment of our “artificial
globins” is shown in Figure 5.4. The histogram above the alignment shows the
mutation probability along the sequence allowing a higher mutation rate between
the� helices than within.
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PAGLASLAKFLVCIATALNA------KYD
PAVLASLAKFLVSIATALNA------KYD
PAVQARLDKFVGKVSAVLTGAAVSALFYN
PATQARLDKFLGSVETPLTGEALSALFWN

GKKVADALTDRVANSKKMCTGLTALSDLHTQKLRSDPVNPNVQTHCLLVTLPAHLPGAFT
GKKGADKLKNRHAEGDADCSGLSVLSDLHTDKL--EEVAPNAQTHCLLVTLTAHMPGAFT
GKKGADALTNRVADADNKCSGLSVLSDLHTEKL--EPVNPNAHTHCLLVTLTAHLPGAFT
GKKDAEALSKAANHLSGIPHVLGALSDLHAHMASVDPVDFKLMSRCLLVTLGEHL-GTFA
GQKEAEALPKVANHVSGLQQVLSALSDLHAHKLPVDPIDFKLMSRCLLVTLGEHL-GQFA

A--LSPADKEKAKAGWDSVGAHAGEYGAETLQRLFLAYPTTKTYFEEFDLSHGSAKVKGH
A--LSPADKENAKASWGRLGAHTGEYGAETLERLFLSYPTTKTYFEQFDLSHGPAKVKGH
V--LNAAEKAHVRPAWGKVGGNNGDYSAGYLQRMFLSLPTTKDYFPHYDLTRVTAHVKGH
V--LSAAEKATVRAAWGKVGGHNGDHGAGALQRLFLSLPTTKDYFPHYELSRVTAHVKGH
VQTLSAAKKTTVRAAWGKVGGHSGEYGDQALQRMFLGLPTTKDYFPQYELGRGTAQVKGH

PAVLASLEKFLASVSTAGNG------KYK

Figure 5.4: Family of “globins” created by using human hemoglobin alpha as
root sequence. The mutability vector is shown in form of a histogram above the
alignment.

16



Chapter 6

Discussion and Conclusion

The data sets created byRose are artificial sequence families that contain both
indels andmotifs. The evaluation of multiple sequence alignment tools and phy-
logenetic reconstruction tools is possible with these benchmarks.

Previous models were mainly designed to better understand evolutionary pro-
cesses rather than create nature-like sequence families. While such studies need
a rigorous probabilistic foundation, they are quite far from a realistic simulation
of the biological truth. Even the most sophisticated model [19] including indels
of complete blocks cannot describe overlapping insertions and deletions as two
evolutionary events since fragments cannot vary over time. Our “fragments”(i.e.
inserted or deleted regions) can vary over time and hence overlap. Our modelis
based on empirically verified parameters. It is nota priori clear by which pa-
rameters the most natural results can be obtained and there does not seem to exist
a single set of evolutionary parameters describing the whole variety one finds in
nature. Therefore withRose the user is free to set whatever parameters seem rea-
sonable for the actual purpose.

While we have removed a number of limits that existed so far, there are still
some limitations: while we do not assume that the characters of the sequences
evolve independently and with the same rate in the whole family, we have not
yet included a feature that simulates different rates of evolutionary pressure in
different branches of the tree, enabling different lineages to evolve independently
within our tree. This has been observed by a number of biologists [6, 7, 15, 2].
While we are planning to include this feature in a future release ofRose and extend
the scope of our model even further, it is important to note that all results have to
regard the adequacy of the chosen evolutionary parameters, and that simulations
can only aid the evaluation of algorithms. What matters in the end is the success
on real biological sequences.
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