
Fast Approximation to the NP-hard Problem ofMultiple Sequence AlignmentS�oren W. PerreyMathematics DepartmentMassey University, Private Bag 11-222, Palmerston North, New Zealande-mail: S.W.Perrey@massey.ac.nzJens StoyeResearch Center for Interdisciplinary Studies on Structure Formation (FSPM)University of Bielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germanye-mail: stoye@mathematik.uni-bielefeld.deAbstractThe study and comparison of several sequences of characters from a �nitealphabet is relevant to various areas of science, in particular molecular biology. Ithas been shown that multiple sequence alignment with the sum-of-pairs score isNP-hard. Recently a fast heurstic method was proposed based on a Divide-and-Conquer technique. Recursively, all sequences were cut at some suitable positions.Eventually, the sets of subsequences were aligned optimally. In general, the (time)complexity of searching for good cutting points is O(ln) (n the number and l themaximal length of the sequences involved). By a simple (n � l)-time technique,the base l was reduced, leading to a reasonable fast alignment algorithm for up ton = 7 and l � 500.We re�ne the base-reducing technique by spending computational time quad-ratic in n (and still linear in l). This improves the alignment procedure regardingthe number of sequences managable up to n = 9 (of same length l). Moreover, wepresent two natural extensions of this technique. One is an iterative application ofa (n2l)-time technique and therefore still of that complexity. The other needs timeO(n2ls+1), where s is the number of sequences simultaneously considered duringa minimization procedure.Key words: dynamic programming; secondary matrix1



1 IntroductionA fundamental problem in molecular biology is the construction of biologically plausiblealignments of a given family of DNA or protein sequences. Consequently, the designand study of alignment procedures is presently a very active area of research, with anabundance of papers and software contributions (see [28], [6], or [22] for a survey).Recently, it was shown that multiple sequence alignment with the sum-of-pairs score,on which we will focus, is NP-complete (cf. [38]). Therefore, to align large-size setsof sequences in reasonable time, one needs fast heuristic algorithms. Unfortunately,most of the more reliable heuristic approaches su�er from high computational costs forlarge-size problems, while fast heuristics often do not yield plausible results. So, thereis some pressure for developing fast, but su�ciently reliable heuristics.In this section, we assume s1; s2; ::; sn to be sequences of (�nite) lengths l1 = l(s1); l2 =l(s2); : : : ; ln = l(sn) respectively, whose entries have been taken from a �nite alphabetA; and 0�0 to denote the gap letter not contained in A.The multiple alignment problem can be formalized as follows:De�nitions1. An alignment of s1; : : : ; sn is a matrixM = (mpj)1�p�n;1�j�NMwhere NM 2 N (maxflp j p = 1; : : : ; ng � NM � Pnp=1 lp) and, for every p =1; : : : ; n and every j = 1; : : : ; NM(i) mpj 2 A [ f�g;(ii) (mp1; mp2; : : : ; mpNM ) = fmpkjmpk = 0�0 g = sp ;(iii) fm1j; m2j; : : : ; mnjg \ A 6= ;:2. Let w : (A [ f�g )n �! R be a (real-valued) weight function. The w-score of analignment M is de�ned byw(M) := NMXj=1w(m1j; : : : ; mnj):3. The multiple sequence comparison problem is to calculatewOP := minfw(M) jM is an alignment of s1; : : : ; sng:2



The multiple sequence alignment problem is to calculate an alignment M withw(M) = wOP : Such an alignment is called optimal.4. An alignment graph of s1; : : : ; sn is a directed graph G = (V;E) with vertex setV := f (v1; : : : ; vn) j vp 2 f0; 1; : : : ; lpg ; p = 1; : : : ; n g and edge set E de�ned by[(v1; ::; vn); (w1; ::; wn)] 2 E ()vp � wp � vp + 1; 8 p = 1; ::; n , and Pnp=1 vp 6= Pnp=1wp:5. An alignment path is a (directed) path P from the unique sources := (0; : : : ; 0) of G to the unique sink t := (l1; : : : ; ln) of G.Obviously the number of edges at each alignment path is at least maxpflpg and at mostPnp=1 lp. There is a one-to-one correspondence between alignment paths and multiplealignments of the sequences involved.Lemma 1 Let M = fM = (mpj)1�p�n;1�j�NMg be the set of all possible alignmentsand P = fP = ([(v1j; : : : ; vnj); (w1j; : : : ; wnj)])1�j�NP g be the set of all possiblealignment paths.Then, M 2 M corresponds to P 2 P if and only if(i) NM = NP (=: N) and(ii) 8 p 2 f1; : : : ; ng; 8 j 2 f1; : : : ; Ng(1) wpj = vpj () mpj = 0�0(2) wpj = vp+1;j () mpj 6= 0�0:De�ning lengths for the edges of the alignment graph by using the weight function won the corresponding columns of an alignment M , the total length of an alignmentpath coincides with the w-score of the associated alignment. Consequently, the task tocompute the length of a shortest path in G from s to t is equivalent to the multiplesequence comparison alignment problem.It is well known that the multiple comparison problem, in principle, can be solvedoptimally by the so-called dynamic programming procedure (cf. [24], [26],[29]) with acomputational space and time complexity proportional to Qnp=1(lp + 1), resp. (2n � 1) �Qnp=1(lp + 1). The space complexity can be reduced by one order, at least for the caseof two and three sequences [15],[21],[16], [12], while, in general, the order of the timecomplexity could not be reduced. But some regions of the whole alignment graph can becut o� using pairwise alignments because the optimal multiple alignment path cannot3



go through these regions [5],[19]. To �nd an optimal alignment (a shortest path) itself,a simple backtrack procedure can be applied.The following scoring function is commonly used (cf. [20],[10],[5]).De�nition 6 Let �pq 2 R (1 � p < q � n) be sequence-dependent weights and,d : (A[ 0�0)2 ! R a score function, de�ned on all possible pairs of matrix entries.The weighted sum-of-pairs score is de�ned byD(m1j; m2j; ::; mnj) = X1�p<q�n�pq � d(mpj; mqj) 8 j 2 f1; : : : ; Ng:2 Divide-and-Conquer AlgorithmIn this section we present the Divide-and-Conquer approach to multiple sequence align-ment developed by A.W.M. Dress et al., by recalling the introduction given in [8] and[35].Let d denote a (distance) score function de�ned on pairwise alignments calculatedfrom applying the standard dynamic programming scheme. 1Then, for all pairs of sequences sp; sq (1 � p < q � n) the entries of the secondarymatrix containing the additional charges Csp;sq [ip; iq] imposed by forcing the alignmentpath to run through the vertex (ip; iq) (0 � i� � l�; � = p; q) are de�ned byCsp;sq [ip; iq] := d(sp(� ip); sq(� iq)) + d(sp(> ip); sq(> iq))� d(sp; sq);where sp(� ip) denotes the pre�x subsequence of sp with indices running from 0 to ipand sp(> ip) denotes the su�x subsequence of sp running from ip+1 to lp (p = 1; : : : ; n)(cf. [15]). Obviously, each secondary matrix ful�lls the following properties:� Csp;sq [ip; iq] � 0 for all ip; iq;� Csp;sq [ip; iq] = 0; if and only if (ip; iq) lies on an optimal alignment path of sp andsq; and� for all vertices ip 2 f0; : : : ; lpg there exists a vertex iq 2 f0; : : : ; lqg, such thatCsp;sq [ip; iq] = 0:1Typically, a jAj � jAj scoring matrix containing scores for each possible substitution together withsome gap penalty function g, is used. For simplicity Dress et al. focused on the simple so-calledhomogeneous gap penalty functions gk : N ! R<0 (k 2 R>0), penalizing a gap of length n by �n � k.To include more sophisticated gap penalties is discussed in [31].4



Calculation of the additional charge imposed by forcing the multiple alignment pathof n sequences through a particular vertex (i1; : : : ; in) in the whole alignment graph asso-ciated with the corresponding alignment problem, would have the same space and timecomplexity as Dynamic Programming. Therefore, they used an estimate C(i1; : : : ; in) ofthis (multi-dimensional) additional charge, which was de�ned by the (weighted) sum ofsecondary charges over all projections (ip; iq) (p 6= q), that is, for any n integers i1; : : : ; inwith 0 � ip � l(sp) (p = 1; : : : ; n);C(i1; : : : ; in) := X1�p<q�n �pq � Csp;sq [ip; iq];where the weight factors �pq are calculated by the optimal (distance) score of the pairwisealignments �ij := max1�p<q�nfd[sp; sq]gd[si; sj] :Thereby, more similar pairs of sequences (i.e., pairs with small distance score d) gethigher weight factors in order to align them closer to their optimal pairwise alignmentthan less similar pairs.Hence, putting the slicing point i1 := dl1=2e (or close to this value), all �n�12 � sec-ondary matrices Csp;sq = �Csp;sq [x; y]�1�x�lp;1�y�lq (2 � p < q � n)as well as the row �Cs1;sq [i1; x]�1�x�lqof each of the n�1 remaining secondary matrices, were used to �nd those values for thei2; : : : ; in, that is slicing points for the other sequences, which minimize C(i1; : : : ; in).By iterating the procedure, the original multiple alignment problem is replaced bythe two alignment problems posed by the n pre�x sequences s1(� i1); : : : ; sn(� in) andby the n su�x sequences s1(> i1); : : : ; sn(> in). At some iteration step the dividingprocess is stopped and some score-optimal alignment procedure (e.g. standard dynamicprogramming, or faster versions of it, like MSA (cf. [5]) is used to align the remaining(sub)sequences of short length.There are several alternatives for a stopping criterion, for example a threshold L for theshortest length of the (sub)sequences under consideration, which leads to the followinggeneral algorithm: 5



Divide-and-Conquer alignment algorithmD&C � Align ( s1; : : : ; sn; L )If minp2f1;:::;ngflpg � Lthen return the optimal alignment of s1; : : : ; sn;else i1 := dl1=2e andsearch for indices ip 2 f0; ::; lpg (p = 2; : : : ; n)which minimize C(i1; : : : ; in);return the Concatenation of D&C � Align ( s1(� i1); : : : ; sn(� in); L )and D&C � Align ( s1(> i1); : : : ; sn(> in); L );In the following sections we describe some methods for the remaining problem of e�-ciently searching for slicing points i2; : : : ; in to cut the sequences.3 Searching for Slicing PointsThe �rst search for slicing points is, of course, the most time consuming one. In orderto calculate a tuple (i2; : : : ; in) which minimizes C (̂i1; i2; : : : ; in) one has to consider all�n�12 � secondary matricesCsp;sq = �Csp;sq [ip; iq]�0�ip�lp;0�iq�lq (2 � p < q � n)as well as all rows �Cs1;sq [̂i1; iq]�0�iq�lq (2 � q � n)of the sequences of full length.Obviously, the calculation of the secondary matrices has a computational time com-plexity proportional to 2�P2�p<q�n(lp+1)(lq+1), and searching exhaustively all secondarymatrices Csp;sq (2 � p; q � n) for a tuple (̂i1; i2; :::; in) which minimizes the additionalcost C needs O �Qnp=2(lp + 1)� time, which is exponential in the number n of sequences.The following speed-up technique as well as the algorithm presented in subsection4.1 recently was introduced by Stoye et al. [31]:Because the estimate of the additional charge is a sum of non-negative numbers �p;q �Csp;sq [ip; iq] � 0; it is possible to exclude a tuple of slicing points (i1; :::; in); whenevera partial sum of C is larger than the minimum found so far. In particular, for �xed î1;any iq with �1;q � Cs1;sq [̂i1; iq] � C6



can never lead to a smaller sum C.Therefore, a speed-up of the search is achieved by the following simple idea [31]:� First an estimate Ĉ of the estimate C (̂i1; i2; : : : ; in) of the additional charge iscalculated.� The constant Ĉ leads to lower and upper bounds in the following way:{ For all q = 2; : : : ; n calculate mq and uq such that�1;q � Cs1;sq [̂i1; iq] > Ĉ for all mq < lq and iq > uq:This calculation needs time proportional to Pnp=2 lp. The intermediate segmentCs1;sq [̂i1; mq]; Cs1;sq [̂i1; mq + 1]; : : : ; Cs1;sq [̂i1; uq]forms the relevant part of each column �Cs1;sq [̂i1; iq]�0�iq�lq . So, the search for a bettertuple of slicing sites can be restricted to a search space of size proportional tonYp=2(up �mp + 1) rather than nYp=2(lp + 1): (1)Therefore, we call Ĉ the speed-up constant.Note that even the best possible speed-up constantCOP := min(i2;:::;in) nC (̂i1; i2; : : : ; in)odoes not imply up = mp for all p = 2; : : : ; n:So, even for COP the search space grows exponentially with n. Therefore, the alignmentprocedure is impractical for large n with this technique of reducing the search space forcutting points.
7



4 Speed-Up ConstantsThe following algorithm e�ciently calculates a reasonable speed-up constant Ĉ (see[31]) for �xed î1 �̂i1 := d l12 e�.FirstRow-zero:1. For all 2 � q � n search for an îq so thatCs1;sq [̂i1; îq] = 0:2. De�ne Ĉ := C (̂i1; : : : ; în)= X2�p<q�n�p;q � Csp;sq [̂ip; îq]:Beside the calculation of Ĉ, this algorithm has computational time of O(Pp lp).On some simulated data, FirstRow-zero leads to an alignment procedure for up toseven sequences of length up to 500, while for 8 and more sequences (of that length) thespeed-up constant is insu�cient to make the alignment procedure practical (cf. [31],see also section 5). For the same data set, COP is insu�cient to make the alignmentprocedure practical for more than 10 sequences. 2 Using speed-up constants close toCOP , the Divide-and-Conquer procedure is able to align up to eight or nine sequences(or signi�cantly longer sequences).In this section we propose natural generalisations of the FirstRow-zero algorithm.Some of them lead to provable better, that is, smaller speed-up constants. If the cal-culation of better speed-up constants is fast enough, it leads to faster versions of thealignment algorithm D&C � Align.4.1 Some O(n2)-time methodsIn the FirstRow-zero procedure each index îq (2 � q � n) is chosen depending only onî1. Because we focus on the sum-of-pairs score, each index iq in a tuple with minimal2In case of biologically related sequences the procedure often is practical for more than 10 sequencesas well as for much longer sequences [31].
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additional charges C(i1; : : : ; in) depends on all other indices ip (p 6= q). Therefore, weconsider the sum of all corresponding columnsq�1Xp=1�p;q � Csp;sq [̂ip; iq] (q = 2; : : : ; n)in order to minimize them:SC-min:1. For all 2 � q � n search for an îq so that Cs1;sq [̂i1; îq] = 0:2. For all 2 � q � n search for 0 � �iq � lq such thatq�1Xp=1�p;q � Csp;sq [̂ip; iq] is minimal for iq = �iq:3. De�ne �C := C (̂i1;�i2; : : : ;�in).Thereby we ensure that each calculated cutting position �iq depends on all indices îp (p =2; : : : ; q � 1):A simpler and more natural variant of the SC-min procedure (with ~i1 := î1 �xed) isnSC-min:1. For all q = 2 up to n, search for 0 � ~iq � lq such thatq�1Xp=1�p;q � Csp;sq [~ip; iq] is minimal for iq = ~iq:2. De�ne ~C := C(~i1; : : : ;~in):Of course, nSC-min is sensitive to the whole input order, while SC-min depends only onthe choice of s1. We have observed, that both algorithms mostly lead to smaller speed-up constants than FirstRow-zero (see section 5). The running time of both algorithmsis proportional to �n2�maxpflpg.Another variant of the SC-min procedure simply is obained by taking into accountthe sum of all rows �Csq;sp[iq; îp]�iq for p > q in the minimization step, so that the secondstep of SC-min is substituted by 9



2'. For all 2 � q � n search for 0 � �iq � lq such thatq�1Xp=1�p;q � Csp;sq [̂ip; iq] + nXp=q+1�q;p � Csq ;sp[iq; îp] is minimal for iq = �iq:We call this variant SCR-min (short for Sum of corresponding Columns and Rows). Ob-viously, SCR-min has a computational time complexity proportional to (n�1)2maxpflpg.Combining the nSC-min and SCR-min procedures leads to a calculation of the speed-up constant which is always better than that calculated by FirstRow-zero. The SCR-minalgorithm improves the speed-up constant calculable from the tuple (̂i1; : : : ; în) by oneminimization (q = 2) to that calculable from (̂i1;�i2; î3; : : : ; în): Using these indices as aninput for the same procedure, but now minimizing over î3, leads to a smaller speed-upconstant C (̂i1;�i2;�i3; î4; : : : ; în):MinC:1. Put î1 = �i1 := d l12 e.2. For all 2 � q � n search for an îq so that Cs1;sq [̂i1; îq] = 0:3. For k = 2 up to n search for 0 � �ik � lk such thatk�1Xp=1�p;k � Csp;sk [�ip; ik] + nXq=k+1�k;q � Csk;sq [ik; îq] is minimal for ik = �ik:4. De�ne �C := C(�i1; : : : ;�in).Obviously, MinC has the same time complexity as SCR-min. But this algorithm im-proves the speed-up constant calculable from the tuple (�i1; : : : ;�ik�1; îk; : : : ; în) by thek�th run of step 3 to C(�i1; : : : ;�ik; îk+1; : : : ; în):Lemma 2 �C � Ĉ:Proof Let n 2 N>2 and 2 � k � n. By de�nition of C(i1; : : : ; in) we haveC(�i1; : : : ;�ik�1; îk; : : : ; în)= k�1Xp=1 nXq=k�pq Cspsq [�ip; îq] + X1�p<q�k�1�pq Cspsq [�ip;�iq]10



+ Xk�p<q�n�pq Cspsq [ îp; îq]= k�1Xp=1 nXq=k+1�pq Cspsq [�ip; îq] + k�1Xp=1�p;k Cspsk [�ip; îk]+ X1�p<q�k�1�pq Cspsq [�ip;�iq] + Xk+1�p<q�n�pq Cspsq [ îp; îq]+ nXq=k+1�k;q Csksq [ îk; îq]� k�1Xp=1 nXq=k+1�pq Cspsq [�ip; îq] + X1�p<q�k�1�pq Cspsq [�ip;�iq]+ Xk+1�p<q�n�pq Cspsq [ îp; îq]+ min0�ik�lk8<:k�1Xp=1�p;k Cspsk [�ip; ik] + nXq=k+1�k;q Csksq [ ik; îq]9=;= k�1Xp=1 nXq=k+1�pq Cspsq [�ip; îq] + X1�p<q�k�1�pq Cspsq [�ip;�iq]+ Xk+1�p<q�n�pq Cspsq [ îp; îq]+ k�1Xp=1�p;k Cspsk [�ip;�ik] + nXq=k+1�k;q Csksq [�ik; îq]= C(�i1; : : : ;�ik; îk+1; : : : ; în)For k = n the above inequality is equivalent to Lemma 2.In the following subsections we present two extensions of the above procedure. Analo-gous to Lemma 2, we can show that they improve the speed-up constant further more.4.2 An iterative methodA simple extension of MinC is to apply the third step iteratively:given a number I of iterations, in each run j (1 � j � I) we calculate the minimiz-ing indices �ikj (k = 2; : : : ; n) by using the indices �ikj�1 , produced in run j � 1, as forîk (k = 2; : : : ; n) inMinC. Clearly, as starting points we put�ik0 := îk for all k = 2; : : : ; n,so that the �rst run of the iterated procedure is MinC itself.11



itMinC(I):1. Put î1 = �i1 := d l12 e.2. For all 2 � q � n search for 0 � îq (=: �iq0) � lq so that Cs1;sq [̂i1; îq] = 0:3. For j = 1 up to Ifor all k = 2 up to n search for 0 � �ikj � lk such thatk�1Xp=1�p;k � Csp;sk [�ipj ; ik] + nXq=k+1�k;q � Csk;sq [ik;�ipj�1] is minimal for ik = �ikj :4. De�ne �CitI := C(�i1I ;�i2I ; : : : ;�inI ).Lemma 3 �CitI � �C for all I 2 N.The proof is analogous to the proof of Lemma 2 by showing that each iteration jimproves the speed-up constant calculable from the tuple (�i1j ; : : : ;�inj) to a valuesmaller than C(�i1j�1 ; : : : ;�inj�1):One can easily adopt some stopping criterion to save running time, e.g. an iterationj + 1 should only be carried out if the previous iteration j has obtained some change�iqj 6= �iqj�1 .Beside this, for calculating the tuple (�i1I ; : : : ;�inI ) the algorithm needs computationaltime proportional to I(n� 1)2l and is very useful to reduce the speed-up constant.4.3 A polynomial-time methodAt this stage we only have tried to minimize C(i1; i2; : : : ; in) by varying one index at atime and keeping all the others �xed. In principle, one can carry out the minimization ofsums of corresponding rows and columns over s indices simultaneously (s 2 f2; : : : ; ng),which reduces the probability of running into bad local minima. This leads to algorithmswith a computational time complexity polynomial in maxp lp (and quadratic in n). Sothey also can be helpful in speeding up the Divide-and-Conquer alignment procedure.For simplicity, we �rst describe the method in the case s = 2:siMinC(2):1. Put î1 = �i1 := d l12 e. 12



2. For all 2 � q � n search for an îq so that Cs1;sq [̂i1; îq] = 0:3. For k = 1 up to bn�12 c search for (i2k; i2k+1) 2 f0; : : : ; l2kg � f0; : : : ; l2k+1g suchthat 2k�1Xl=1 n�l;2kCsls2k [�il; i2k] + �l;2k+1Csls2k+1[�il; i2k+1]o+ �2k;2k+1Cs2ks2k+1 [i2k; i2k+1]+ 2�bn�12 cXl=2(k+1) n�2k;lCs2ksl[i2k; îl] + �2k+1;lCs2k+1sl[i2k+1; îl]ois minimal for (i2k; i2k+1) = (�i2k;�i2k+1).4. If n is even, search for 0 � �in � ln such thatnXl=1 �l;nCslsn [�il; in] is minimal for in = �in:5. De�ne �Csi2 := C(�i1; : : : ;�in).The algorithm needs time O(n2l3).Lemma 4 �Csi2 � �C.The proof is straightforward, analogous to the proof of Lemma 2.For completeness we present the algorithm for arbitrary s (s 2 f2; : : : ; ng).siMinC(s):1. Put î1 = �i1 := d l12 e.2. For all 2 � q � n search for an îq so that Cs1;sq [̂i1; îq] = 0:3. For k = 1 up to bn�1s c search for(iks; iks+1; : : : ; i(k+1)s�1) 2 (k+1)s�1Om=ks f0; : : : ; lmg13



such that ks�1Xl=1 (k+1)s�1Xm=ks �l;mCslsm [�il; im]+ Xks�m<m0�(k+1)s�1�m;m0Csmsm0 [im; im0 ]+ s�bn�1s cXl=(k+1)s (k+1)s�1Xm=ks �m;lCsmsl[im; îl]is minimal for (iks; : : : ; i(k+1)s�1) = (�iks; : : : ;�i(k+1)s�1).4. If r := n � 1 � s � bn�1s c 6= 0, search for (in�r+1; : : : ; in) 2 Nnm=n�r+1f0; : : : ; lmgsuch that n�rXl=1 nXm=n�r+1�l;mCslsn[�il; im]is minimal for (in�k+1; : : : ; in) = (�in�k+1; : : : ;�in).5. De�ne �Csis := C(�i1; : : : ;�in).Steps 3 and 4 of the algorithm have a computational time complexity proportional ton(n� s)ls+1, which makes it feasible only for small s.5 ResultsTo illustrate the improvement of our speed-up constants to Ĉ (calculated by FirstRow-zero) with an example, our algorithms have been applied to several sets of sequences,generated by a stochastical mutation process on random protein sequences of lengthabout 100. The sequences have a pairwise identity between 15 and 25 percent. Thefollowing table contains the relative length of the relevant parts up�mp+1lp+1 ; (see eq. (1)of section 3) averaged over p = 1; : : : ; n caused by various methods, as well as by theoptimal speed-up constant (calculated by an exponential-time search). All shown resultsare averages over 100 di�erent sequence sets.
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n 3 4 5 6 7 8 9FirstRow-zero 0.033 0.078 0.132 0.215 0.298 0.423 0.531nSC-min 0.026 0.059 0.106 0.183 0.260 0.357 0.465SCR-min 0.029 0.066 0.111 0.179 0.258 0.366 0.463MinC 0.025 0.057 0.098 0.163 0.239 0.334 0.424itMinC(5) 0.025 0.055 0.095 0.156 0.231 0.319 0.409COP (sk) 0.024 0.052 0.091 0.149 0.226 0.312 0.402Table 1: The proportion of one sequence which has to be searched for slicing pointsusing the di�erent speed-up constants, are shown, and compared with the proportionresulting by using the optimal speed-up constant.6 DiscussionIf an multiple sequence alignment procedure must be called up very often for a certainpurpose (e.g. in [27],[37]), the Divide-and-Conquer procedure including the speed-uptechniques proposed in this paper is particularly useful.For simplicity, we have introduced these algorithms by applying them to the se-quences of full length. Precalculating lower and upper bounds by using the FirstRow-zero procedure (see subsection 3.1, 3.2), the algorithms can be applied only to therelevant parts (see eq. (1)) which obviously leads to a further speed up of the resultingalignment procedure.The algorithms presented in section 4 depend on the input order of the sequencesunder consideration. It should be useful to order them appropriately, e.g. by consideringthe pairwise distance score used to de�ne the weight factors �p;q.The running times of the above outlined algorithms di�er signi�cantly. Therefore,an integration to the Divide-and-Conquer alignment procedure should be done such thatfor each search for cutting points the appropriate algorithm is used, depending on theproperties of the set of (sub)sequences under consideration, like the number of sequences,their length, and their pairwise distance scores. Especially, for more distantly relatedsequences (usually showing high pairwise distance scores) it should be better to usesiMinC than itMinC.
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