Fast Approximation to the NP-hard Problem of
Multiple Sequence Alignment

Soren W. Perrey

Mathematics Department
Massey University, Private Bag 11-222, Palmerston North, New Zealand
e-mail: S.W.Perrey@massey.ac.nz

Jens Stoye

Research Center for Interdisciplinary Studies on Structure Formation (FSPM)
University of Bielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germany
e-mail: stoye@mathematik.uni-bielefeld.de

Abstract

The study and comparison of several sequences of characters from a finite
alphabet is relevant to various areas of science, in particular molecular biology. It
has been shown that multiple sequence alignment with the sum-of-pairs score is
NP-hard. Recently a fast heurstic method was proposed based on a Divide-and-
Conquer technique. Recursively, all sequences were cut at some suitable positions.
Eventually, the sets of subsequences were aligned optimally. In general, the (time)
complexity of searching for good cutting points is O(I") (n the number and [ the
maximal length of the sequences involved). By a simple (n - [)-time technique,
the base [ was reduced, leading to a reasonable fast alignment algorithm for up to
n =7 and [ = 500.

We refine the base-reducing technique by spending computational time quad-
ratic in n (and still linear in [). This improves the alignment procedure regarding
the number of sequences managable up to n =9 (of same length /). Moreover, we
present two natural extensions of this technique. One is an iterative application of
a (n?l)-time technique and therefore still of that complexity. The other needs time
O(n?1°*1), where s is the number of sequences simultaneously considered during
a minimization procedure.

Key words: dynamic programming; secondary matrix



1 Introduction

A fundamental problem in molecular biology is the construction of biologically plausible
alignments of a given family of DNA or protein sequences. Consequently, the design
and study of alignment procedures is presently a very active area of research, with an
abundance of papers and software contributions (see [28], [6], or [22] for a survey).
Recently, it was shown that multiple sequence alignment with the sum-of-pairs score,
on which we will focus, is NP-complete (cf. [38]). Therefore, to align large-size sets
of sequences in reasonable time, one needs fast heuristic algorithms. Unfortunately,
most of the more reliable heuristic approaches suffer from high computational costs for
large-size problems, while fast heuristics often do not yield plausible results. So, there
is some pressure for developing fast, but sufficiently reliable heuristics.

In this section, we assume s, $a, .., S, to be sequences of (finite) lengths l; = I(s1),ly =
[(s9),...,l, = l(sy,) respectively, whose entries have been taken from a finite alphabet
A, and '—' to denote the gap letter not contained in A.

The multiple alignment problem can be formalized as follows:

Definitions

1. An alignment of sq,...,s, is a matrix

M = (mp;)1<p<n,i<j<nyg

where Ny € N (max{l, | p = 1,...,n} < Ny < >0, 1,) and, for every p =
1,...,nand every j =1,..., Ny

(1) my; € AU{~},
(i) (mpr, mypa, ..o mpny, ) [ {mprlmpe ="="} =5,
(111) {mlj, magj, . .. ,mnj} NnA 7£ @

2. Let w : (AU{=})" — R be a (real-valued) weight function. The w-score of an
alignment M is defined by

=
S

w(M) = > w(my,...,my;).

<.
Il
-

3. The multiple sequence comparison problem is to calculate

wop = min{w(M) | M is an alignment of s1,...,s,}.

2



The multiple sequence alignment problem is to calculate an alignment M with
w(M) = wop. Such an alignment is called optimal.

4. An alignment graph of sy,...,s, is a directed graph G = (V, E) with vertex set
Vi={(v1,...,v) |, €{0,1,...,0,}; p=1,...,n} and edge set E defined by

[(v1, ., 00), (W1, .., w,)] € E <=
vy Sw, <v,+1L,Vp=1,.,n,and 3 v, # 37  wpy

5. An alignment path is a (directed) path P from the unique source
s:=(0,...,0) of G to the unique sink ¢ := (ly,...,1,) of G.

Obviously the number of edges at each alignment path is at least max,{l,} and at most
»—1lp- There is a one-to-one correspondence between alignment paths and multiple
alignments of the sequences involved.

Lemma 1 Let M = {M = (my;)1<p<n,i<j<n, } De the set of all possible alignments
and P = {P = ([(v1j, ..., vn), (W15, ..., wnj)]) ;< n, } e the set of all possible
alignment paths.

Then, M € M corresponds to P € P if and only if

(i) Nayy = Np (=: N) and
(i) Vpe{l,...,n}, Vje{l,...,N}

(1) wp; = vy, = my; ="'
(2) Wpj = Up41,j < My 7£ r—_r

Defining lengths for the edges of the alignment graph by using the weight function w
on the corresponding columns of an alignment M, the total length of an alignment
path coincides with the w-score of the associated alignment. Consequently, the task to
compute the length of a shortest path in G from s to ¢ is equivalent to the multiple
sequence comparison alignment problem.
It is well known that the multiple comparison problem, in principle, can be solved
optimally by the so-called dynamic programming procedure (cf. [24], [26],[29]) with a
computational space and time complexity proportional to [Tj_; (I, + 1), resp. (2" —1) -
gzl(lp + 1). The space complexity can be reduced by one order, at least for the case
of two and three sequences [15],[21],[16], [12], while, in general, the order of the time
complexity could not be reduced. But some regions of the whole alignment graph can be
cut off using pairwise alignments because the optimal multiple alignment path cannot

3



go through these regions [5],[19]. To find an optimal alignment (a shortest path) itself,
a simple backtrack procedure can be applied.
The following scoring function is commonly used (cf. [20],[10],[5]).

Definition 6 Let a,, € R (1 < p < ¢ < n) be sequence-dependent weights and,
d: (AU'-")?> — R a score function, defined on all possible pairs of matrix entries.

The weighted sum-of-pairs score is defined by

D(mlj,mgj,..,mnj) = Z apq-d(mpj,mqj) \V/] c {]_,,N}

1<p<g<n

2 Divide-and-Conquer Algorithm

In this section we present the Divide-and-Conquer approach to multiple sequence align-
ment developed by A.W.M. DRESS et al., by recalling the introduction given in [8] and
[35].

Let d denote a (distance) score function defined on pairwise alignments calculated
from applying the standard dynamic programming scheme. *

Then, for all pairs of sequences s,,s, (1 < p < ¢ < n) the entries of the secondary
matrir containing the additional charges Cy , [iy,i,] imposed by forcing the alignment
path to run through the vertex (ip,,) (0 <, <l,; = p,q) are defined by

Csposq [ip, iq) := d(5p(< 3p), 8¢(< i) + d(sp(> i), 5¢(> dg)) — d(sp, 5¢),

where s,(< 7,) denotes the prefix subsequence of s, with indices running from 0 to i,
and s,(> i,) denotes the suffix subsequence of s, running from i, +1tol, (p=1,...,n)
(cf. [15]). Obviously, each secondary matrix fulfills the following properties:

o Cs,,lip,ig] > 0 for all iy, ig;

o Uy, ,lip,ig) = 0, if and only if (4p, i,) lies on an optimal alignment path of s, and
54; and

e for all vertices i, € {0,...,[,} there exists a vertex i, € {0,...,[,}, such that

Cs, 5,ips ig) = 0.

!Typically, a |A| X |A| scoring matrix containing scores for each possible substitution together with
some gap penalty function g, is used. For simplicity DRESS et al. focused on the simple so-called
homogeneous gap penalty functions g : N — R<? (k € R>?), penalizing a gap of length n by —n - k.
To include more sophisticated gap penalties is discussed in [31].

4



Calculation of the additional charge imposed by forcing the multiple alignment path

of n sequences through a particular vertex (iy,...,,) in the whole alignment graph asso-
ciated with the corresponding alignment problem, would have the same space and time
complexity as Dynamic Programming. Therefore, they used an estimate C'(iy, ..., i) of
this (multi-dimensional) additional charge, which was defined by the (Welghted) sum of
secondary charges over all projections (i,,i,) (p # q), that is, for any n integers iy, . .., i,
with 0 <1, <l(s,) (p=1,...,n),
Clin, ... in) == Y. g+ Oy, lip, i),
1<p<g<n

where the weight factors ay,, are calculated by the optimal (distance) score of the pairwise
alignments

1<III)1<aqX<n{d[5pa Sq]}

d[Si, Sj]

Thereby, more similar pairs of sequences (i.e., pairs with small distance score d) get
higher weight factors in order to align them closer to their optimal pairwise alignment
than less similar pairs.

Hence, putting the slicing point i; := [l;/2] (or close to this value), all (” 1) sec-
ondary matrices

Q5 1=

Osp,sq = (Cspasq [‘7“7 y]) (2 <p<g< 7’1,)

1<a<lp,1<y<ly -

as well as the row

(Ciyos,lin 21)

of each of the n — 1 remaining secondary matrices, were used to find those values for the
02, ..., 0n, that is slicing points for the other sequences, which minimize C'(iy, ..., 1,).
By iterating the procedure, the original multiple alignment problem is replaced by
the two alignment problems posed by the n prefix sequences s;(< iy),..., $,(< i,) and
by the n suffix sequences si(> 7y),...,5,(> i,). At some iteration step the dividing
process is stopped and some score-optimal alignment procedure (e.g. standard dynamic
programming, or faster versions of it, like MSA (cf. [5]) is used to align the remaining
(sub)sequences of short length.
There are several alternatives for a stopping criterion, for example a threshold L for the
shortest length of the (sub)sequences under consideration, which leads to the following
general algorithm:

1<z<l,



Divide-and-Conquer alignment algorithm

D&C — Align (s1,...,8n, L)

If minpe{l,...,n}{lp} <L
then return the optimal alignment of sq, ..., sy;
else i :=[l;/2] and
search for indices i, € {0,..,0,} (p =2,...,n)

which minimize C'(i, ..., i,);
return the Concatenation of D&C — Align (s1(<41),. .., s0(< ip), L)
and D&C — Align (s1(>41),. .., sp(>in), L);

In the following sections we describe some methods for the remaining problem of effi-
ciently searching for slicing points iy, ..., %, to cut the sequences.

3 Searching for Slicing Points

The first search for slicing points is, of course, the most time consuming one. In order
to calculate a tuple (i, ...,%,) which minimizes C(iy, iy, ...,i,) one has to consider all
(”;1> secondary matrices

C 2<p<q¢<n)

= (C, . Tiy i )
Spota ( sposallps o] 0<ip <lp,0<iq<lq - -
as well as all rows

(031,sq [21; Zq]) (2 S q S 7’1,)

of the sequences of full length.
Obviously, the calculation of the secondary matrices has a computational time com-
plexity proportional to 2-3s<, <4< (l,+1)(lg+1), and searching exhaustively all secondary

0<ig <lg

matrices C (2 < p,q < n) for a tuple (i1, iy, ...,i,) which minimizes the additional

Sp>Sq

cost C' needs O (HZZQ(lp + 1)) time, which is exponential in the number n of sequences.
The following speed-up technique as well as the algorithm presented in subsection

4.1 recently was introduced by STOYE et al. [31]:

Because the estimate of the additional charge is a sum of non-negative numbers «, , -

Cs, 5,ips ig) > 0, it is possible to exclude a tuple of slicing points (i1, ...,4,), whenever

a partial sum of C is larger than the minimum found so far. In particular, for fixed 7,

any i, with R

al,q . Csl,sq [il, Zq] Z C

6



can never lead to a smaller sum C.

Therefore, a speed-up of the search is achieved by the following simple idea [31]:

e First an estimate C of the estimate C(i1, 99, ...,i,) of the additional charge is

calculated.
e The constant C leads to lower and upper bounds in the following way:

— For all ¢ = 2,...,n calculate m, and u, such that

g+ Cyy 5,lin,ig) > C for all my < 1, and iy > u,.

This calculation needs time proportional to > )_,[,. The intermediate segment

Csl,sq [217 mq]a Csl,sq [217 mq + 1]7 ey 051,sq [%17 uq]

forms the relevant part of each column (C’shsq [i1, iq])0<. _, - S0, the search for a better
SlgSlq

tuple of slicing sites can be restricted to a search space of size proportional to

II(wy, —m,+1)  rather than  [J (i, + 1).

p=2 p=2

Therefore, we call C the speed-up constant.
Note that even the best possible speed-up constant

Cop := min {C(%,h,---;in)}

(ZQ,...,ln)

does not imply
u, =m, forallp=2... n.

(1)

So, even for Cpp the search space grows exponentially with n. Therefore, the alignment
procedure is impractical for large n with this technique of reducing the search space for

cutting points.



4 Speed-Up Constants

~

The following algorithm efficiently calculates a reasonable speed-up constant C' (see
31]) for fixed #; (21 = V—ﬂ)

2
FirstRow-zero:

1. For all 2 < ¢ < n search for an fq so that

Cs1.sq [731; gq] = 0.

2. Define
CA’ = C(%la e 7271,)
= Z Qp,g * Csp,sq [ip, tg]-
2<p<q<n

Beside the calculation of C', this algorithm has computational time of O, ).

On some simulated data, FirstRow-zero leads to an alignment procedure for up to
seven sequences of length up to 500, while for 8 and more sequences (of that length) the
speed-up constant is insufficient to make the alignment procedure practical (cf. [31],
see also section 5). For the same data set, Cop is insufficient to make the alignment
procedure practical for more than 10 sequences. 2 Using speed-up constants close to
Cop, the Divide-and-Conquer procedure is able to align up to eight or nine sequences
(or significantly longer sequences).

In this section we propose natural generalisations of the FirstRow-zero algorithm.
Some of them lead to provable better, that is, smaller speed-up constants. If the cal-
culation of better speed-up constants is fast enough, it leads to faster versions of the
alignment algorithm D&C — Align.

4.1 Some O(n?)-time methods

In the FirstRow-zero procedure each index Eq (2 < ¢ < n) is chosen depending only on
i1. Because we focus on the sum-of-pairs score, each index 7, in a tuple with minimal

2In case of biologically related sequences the procedure often is practical for more than 10 sequences
as well as for much longer sequences [31].



additional charges C(iy,...,14,) depends on all other indices i, (p # ¢). Therefore, we
consider the sum of all corresponding columns

Z ap:q sp:sq 7’177 Zl]] (q - 27 s Jn)

in order to minimize them:
SC-min:
1. For all 2 < g < n search for an i, so that Cj, 5 [i1, 4] = 0.

2. For all 2 < ¢ < n search for 0 < i, <, such that

Z g Cs,p s Zp, ig] is minimal for i, = i,.

3. Define C' = C(gl,gg, Ce ,gn)

Thereby we ensure that each calculated cutting position i, depends on all indices 7Ajp (p=
2,...,q—1).
A simpler and more natural variant of the SC-min procedure (with i; := 4, fixed) is

nSC-min:

1. For all ¢ = 2 up to n, search for 0 < Eq <, such that

Z g - Cs, 5, ] is minimal for i, = i,.

2. Define C := C(i1,...,1n).

Of course, nSC-min is sensitive to the whole input order, while SC-min depends only on
the choice of s;. We have observed, that both algorithms mostly lead to smaller speed-
up constants than FirstRow-zero (see section 5). The running time of both algorithms

is proportional to (Z) max,{l,}.

Another variant of the SC-min procedure simply is obained by taking into account
the sum of all rows (qu,sp [ig, ip]). for p > ¢ in the minimization step, so that the second
q

step of SC-min is substituted by



2’. For all 2 < ¢ < n search for 0 < %q <, such that

Z g Cs, Zp, |+ Z gp - Cspsplias Zp] is minimal for i, = 1,.
p=q+1

We call this variant SCR-min (short for Sum of corresponding Columns and Rows). Ob-
viously, SCR-min has a computational time complexity proportional to (n—1)? max,{l,}.

Combining the nSC-min and SCR-min procedures leads to a calculation of the speed-
up constant which is always better than that calculated by FirstRow-zero. The SCR-min
algorithm improves the speed-up constant calculable from the tuple (21, . ,En) by one
minimization (¢ = 2) to that calculable from (i1, 3,1, . . ., i,). Using these indices as an
input for the same procedure, but now minimizing over i3, leads to a smaller speed-up
constant

~

0(217527{37%47 N JZTL)

~

1. Put %1 = El = [31]
2. For all 2 < ¢ < n search for an i, so that Cj,  [i1,1,] = 0.

3. For k = 2 up to n search for 0 < i, < [, such that

k-1
> apg - Cs, s lips i) + Z g+ Cop s, ik Ug] is minimal for i, = 7.
p=1 g=k+1

4. Define C := C(iy, ..., i)

Obviously, MinC has the same time complexity as SCR-min. But this algorithm im-
proves the speed-up constant calculable from the tuple (i1,...,% 1,%,---,%,) by the
k—th run of step 3 to

~

Clity eyl U1y ey ln)
Lemma 2 C < C.

Proof Let n € N>? and 2 < k < n. By definition of C(iy,...,%,) we have

C(ity . Thets ks -y in)
k—1 n L o
Z Z g Cs,s, [ip, iq] + Z g Cs,s, [ip, 1]
p=1g=k 1<p<g<k-1

10



~ ~

+ Z O‘pqcspsq[ipaiq]

k<p<q<n
_ k—1
= Z Z Oépq SpSq [ p, Z‘I] + Z CQp.k Cspsk [ bps Zk]
+ Z g Cs,s, [gpa zq] + Z g Cs,ys, [1p, 7q]
1<p<q<k—1 k+1<p<qg<n
n
+ Z Ak g Osksq [ ika Zq]
q=k+1
k—1 n o o
2 Z Z pg Cs, s, py 1] + Z Ctpg Cspsy [ ips g
p=1q=k+1 1<p<q<k—1
+ Z pg Cs,s, [1p, %q]
k+1<p<g<n
k—1
+ InlIl Z ap,k Ospsk[lpa Zk] + Z ak,q sksq[lka q]
0<ip<ly | ;=
= q=k+1
k—1 n o o
= Z Z pg Cs, s, py ig] + Z Ctpg Cspsy [ ips g
p=1q=k+1 1<p<q<k—1
+ Z g Cs,s, [2p, %q]
k+1<p<q<n
k—1
+ Z ap,k Cspsk[lpa Zk; + Z ak,q sksq[lka [ ]
p=1 q=k+1
= C(gl, cee ,gk, %k+17 cee ,2,1)

For k = n the above inequality is equivalent to Lemma 2.

In the following subsections we present two extensions of the above procedure. Analo-
gous to Lemma 2, we can show that they improve the speed-up constant further more.

4.2 An iterative method

A simple extension of MinC is to apply the third step iteratively:

given a number [ of iterations, in each run j (1 < j < I) we calculate the minimiz-
ing indices ix; (k = 2,...,n) by using the indices i,_,, produced in run j — 1, as for
k (k=2,...,n)in MinC. Clearly, as starting points we put iy, := i forallk =2,....n
so that the first run of the iterated procedure is MinC itself.

11



itMinC(I):

o~
=

1. Put 21 :gl = [

1.

2. For all 2 < ¢ < n search for 0 < i, (=:ig) < I, 50 that Ciys, [i1,14] = 0.

wo|

3. Forj=1uptol
for all £ = 2 up to n search for 0 < Ek]. < [ such that

k—1 n
Z - O, i, s 1] + Z Qg - Csp 5,ks Bp; ;| 1s minimal for 4y = 1.
p=1 q=k+1

4. Define C’itl = 0(511,221, ce ,gnl).
Lemma 3 C’m < C forall I €N.

The proof is analogous to the proof of Lemma 2 by showing that each iteration j
improves the speed-up constant calculable from the tuple (i1,,...,in;) to a value
smaller than

Clin,_ys---sin,_,)-

One can easily adopt some stopping criterion to save running time, e.g. an iteration
j + 1 should only be carried out if the previous iteration j has obtained some change
iq]' 7é Z.q];r _ _

Beside this, for calculating the tuple (i,,...,14,,) the algorithm needs computational
time proportional to I(n — 1)?] and is very useful to reduce the speed-up constant.

4.3 A polynomial-time method

At this stage we only have tried to minimize C(iy,is,...,%,) by varying one index at a
time and keeping all the others fixed. In principle, one can carry out the minimization of
sums of corresponding rows and columns over s indices simultaneously (s € {2,...,n}),
which reduces the probability of running into bad local minima. This leads to algorithms
with a computational time complexity polynomial in max, [, (and quadratic in n). So
they also can be helpful in speeding up the Divide-and-Conquer alignment procedure.
For simplicity, we first describe the method in the case s = 2:

siMinC(2):
1. Put %1 :El = [l —l

2

12



~

2. For all 2 < ¢ < n search for an %q so that Cj, , [21, iq] = 0.
3. For k = 1 up to [%5] search for (io,dor41) € {0,..., b} X {0,...,loks1} such
that

2k—1

> ok Clysyy lis t2] + ok 41Cs 50044 it i2k+1]}
=1

+ 2k 2k+1C 505041 12> T2k41]
2254

+ > {Oézk,l052ksl ok, 1] + Q2111 Csyy s [Tkt 1,5 ll]}
1=2(k+1)

is minimal for (’igk, i2k+1) = (ng,gyﬁ_l).

4. If n is even, search for 0 < i, < [,, such that

n
Z a;,Cys, (i1, 1] is minimal for ¢, = .
=1

5. Define Cy;, := C(iy, ..., 0y).
The algorithm needs time O(n?(?).
Lemma 4 C,;, < C.

The proof is straightforward, analogous to the proof of Lemma 2.

For completeness we present the algorithm for arbitrary s (s € {2,...,n}).
siMinC(s):

1. Put iy =4 := [4].

2. For all 2 < ¢ < n search for an %q so that Cj, , [21, Eq] =0.

3. For k =1 up to | %] search for

S

(k+1)s—1
(ikss Thst1s - - - brrys—1) € @ {0,... I}

m=ks

13



such that

ks—1 (k+1)s—1
Z Z 87) mC’slsm [Zl; Zm]
= m=ks
+ Z Cm,m/ Csmsm/ [Zm; Zm’]

ks<m<m/<(k+1)s—1

s 22 (k+1)s—1

+ Z Z 7 lemsl [Zma Zl]

=(k+1)s m=ks
is minimal for (iks; Ce ;i(k—l—l)s—l) = (iks; Ce ;i(k—l—l)s—l)-

4. Ifr=n—1—s-|22+] # 0, search for (i yi1,.-,0n) € @y 1{0,- - lm}

such that
— n
Z Z al,mc’szsn [ilv Zm]
=1 m=n—r+1
is minimal for (i, ki1, --+50n) = (in_kily---»0n)-

5. Define C_’sis = C(Zl, N ,En)

Steps 3 and 4 of the algorithm have a computational time complexity proportional to
n(n — s)I*T!, which makes it feasible only for small s.

5 Results

To illustrate the improvement of our speed-up constants to C (calculated by FirstRow-
zero) with an example, our algorithms have been applied to several sets of sequences,
generated by a stochastical mutation process on random protein sequences of length
about 100. The sequences have a pairwise identity between 15 and 25 percent. The

following table contains the relative length of the relevant parts u”l_pirﬁ“, (see eq. (1)

of section 3) averaged over p = 1,...,n caused by various methods, as well as by the
optimal speed-up constant (calculated by an exponential-time search). All shown results
are averages over 100 different sequence sets.

14



n 3 4 3 6 7 8 9
FirstRow-zero | 0.033 | 0.078 | 0.132 | 0.215 | 0.298 | 0.423 | 0.531
nSC-min 0.026 | 0.059 | 0.106 | 0.183 | 0.260 | 0.357 | 0.465
SCR-min 0.029 | 0.066 | 0.111 | 0.179 | 0.258 | 0.366 | 0.463
MinC 0.025 | 0.057 | 0.098 | 0.163 | 0.239 | 0.334 | 0.424
itMinC(5) 0.025 | 0.055 | 0.095 | 0.156 | 0.231 | 0.319 | 0.409
Cop(sk) 0.024 | 0.052 | 0.091 | 0.149 | 0.226 | 0.312 | 0.402

Table 1: The proportion of one sequence which has to be searched for slicing points
using the different speed-up constants, are shown, and compared with the proportion
resulting by using the optimal speed-up constant.

6 Discussion

If an multiple sequence alignment procedure must be called up very often for a certain
purpose (e.g. in [27],[37]), the Divide-and-Conquer procedure including the speed-up
techniques proposed in this paper is particularly useful.

For simplicity, we have introduced these algorithms by applying them to the se-
quences of full length. Precalculating lower and upper bounds by using the FirstRow-
zero procedure (see subsection 3.1, 3.2), the algorithms can be applied only to the
relevant parts (see eq. (1)) which obviously leads to a further speed up of the resulting
alignment procedure.

The algorithms presented in section 4 depend on the input order of the sequences
under consideration. It should be useful to order them appropriately, e.g. by considering
the pairwise distance score used to define the weight factors «, 4.

The running times of the above outlined algorithms differ significantly. Therefore,
an integration to the Divide-and-Conquer alignment procedure should be done such that
for each search for cutting points the appropriate algorithm is used, depending on the
properties of the set of (sub)sequences under consideration, like the number of sequences,
their length, and their pairwise distance scores. Especially, for more distantly related
sequences (usually showing high pairwise distance scores) it should be better to use
siMinC than itMinC.

15



Acknowledgements

The authors wish to thank Andreas W.M. Dress for introducing us to the whole subject,
and Mike D. Hendy for helpful comments.

References

1]

2]

[11]

[12]

L. Allison, A Fast Algorithm for the Optimal Alignment of Three Strings, J. Theo. Biol.
164, pp.261-269, 1993

S.F. Altschul, D.J. Lipman, Trees, Stars and Multiple Biological Sequence Alignment,
SIAM J. Appl. Math. 49, pp.197-209, 1989

S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic Local Alignment
Search Tool, J. Mol. Biol. 215, pp.403-410, 1990

H.J. Bandelt, J.P. Barthelemy, Medians in Median Graphs, Discrete Applied Mathematics
8, 131-142, 1984

H. Carillo, D. Lipman, The Multiple Sequence Alignment Problem in Biology, SIAM
J. Appl. Math. 48 no.5, pp.1073-1082, 1988

S.C. Chan, A.K.C. Wong, D.K.Y. Chiu, A Survey of Multiple Sequence Comparison
Methods, Bull. Math. Biol. 54 no.4, pp.563-598, 1992

R.F. Doolittle, Molecular Evolution: Computer Analysis of Protein and Nucleic Acid
Sequences, Methods of Enzymology Vol. 183, 1990

A W.M. Dress, G. Fiillen, S.W. Perrey, A Divide and Conquer Approach to Multiple
Alignment, Proceedings of the 3rd International Conference on Intelligent Systems for
Molecular Biology, AAAI Press, Menlo Park, California, pp.107-113, June 1995

Da-Fei Feng, R.F. Doolittle, Progressive Sequence Alignment as a Prerequisite to Correct
Phylogenetic Trees, J. Mol. Evol. 25, pp.351-360, 1987

0. Gotoh, Alignment of Three Biological Sequences with an Efficient Traceback Proce-
dure, J. Theo. Biol. 121, pp.327-337, 1986

M. Gribskov, A.D. McLachlan, D. Eisenberg, Profile Analysis: Detection of Distantly
Related Proteins, Proc. Natl. Acad. Sci. USA 84, pp.4355-4358, 1987

S.K. Gupta, J.D. Kececioglu, and A.A. Schiffer, Improving the Practical Space and
Time Efficiency of the Shortest-Paths Approach to Sum-of-Pairs Multiple Sequence Align-
ment,J. Comp. Biol. , 2(3):459-472, 1995

16



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[24]

[25]

[26]

J.J. Hein, Unified Approach to Alignment and Phylogenies, in Methods in Enzymology
Vol. 183, (ed. R.F. Doolittle), pp.626-645, 1990

M. Hirosawa, M. Hoshida, M. Ishikawa, T. Toya, MASCOT: Multiple Alignment System
for Protein Sequences Based on Three-Way Dynamic Programming, CABIOS 9, no.2,
p.161-167, 1993

D.S. Hirschberg, A Linear Space Algorithm for Computing Maximal Common Subse-
quences, Comm. ACM 18, pp.341-343, 1975

X. Huang, Alignment of Three Sequences in Quadratic Space, Applied Computing Review,
1(2), pp.7-11, 1993

M.S. Johnson, R.F. Doolittle, A Method for Simultaneous Alignment of Three or More
Amino Acid Sequences, J. Mol. Evol. 23, pp.267-278, 1986

J.D. Kececioglu, The Maximum Weight Trace Problem in Multiple Sequence Alignment,
in Proc. of the 4th Symp. on Comb. Pattern Matching, LNCS 684, pp.106-119, 1993

D.J. Lipman, S.F. Altschul, J.D. Kececioglu, A Tool for Multiple Sequence Alignment,
Proc. Natl. Acad. Sci. USA 86, pp.4412-4415, 1989

M. Murata, J.S. Richardson, J.L. Sussman, Simultaneous Comparison of Three Protein
Sequences, Proc. Natl. Acad. Sci. USA 82, pp.3073-3077, 1985

E.W. Myers, W. Miller, Optimal Alignments in Linear Space, CABIOS 4, no.1, pp.11-17,
1988

E.W. Myers, An Overview of Sequence Comparison Algorithms in Molecular Biology,
Tech.Rep. 91-29, Dept. of Comp. Sci., The Univ. of Arizona, Tucson, Arizona 85721,
1991

D. Naor, D.L. Brutlag, On Near-Optimal Alignments of Biological Sequences,
J. Comp. Biol. 1, no.4, pp.349-366, 1994

S.B. Needleman, C.D. Wunsch, A General Method Applicable to the Search for Similari-
ties in the Amino Acid Sequence of Two Proteins, J. Mol. Biol. 48, pp.443-453, 1970

W.R. Pearson, D.J. Lipman, Improved Tools for Biological Sequence Comparison,
Proc. Natl. Acad. Sci. USA 85, pp.2444-2448, 1988

P.H. Sellers, On the Theory ans Computation os Evolutionary Distances, SIAM
J. Appl. Math. 26, no.4, pp.787-793, 1974

17



[27]

28]

[29]

[30]

[31]

[32]

[33]

D. Sankoff, R.J. Cedergren, G. LaPalme, Frequency of insertion-deletion, transversion,
and transition in the evolution of 5s ribosomal RNA, Journal of Molecular Evolution 7,
pp.133-149, 1976

D. Sankoff, J.B. Kruskal (eds.), Time Warps, String Edits and Macromolecules: the
Theory and Practice of Sequence Comparison, Addison- Wesley, London, 1983

T.F. Smith, M.S. Waterman, Comparison of Biosequences, Adv. Appl. Math. 2, pp.482-
489, 1981

T.F. Smith, M.S. Waterman, Identification of Common Molecular subsequences,
J. Mol. Biol. 147, pp.195-197, 1981

J. Stoye, S.W. Perrey, U. Tonges, A.W.M. Dress, Improving the Divide-and-Conquer
Approach to Sum-of-Pairs Multiple Sequence Alignment, manuscript

W.R. Taylor, Motif-biased Protein Sequence Alignment, J. Comp. Biol. 1, no.4, pp.297-
310, 1994

W.R. Taylor, K. Hatrick, Compensating Changes in Protein Multiple Sequence Align-
ments, Prot. .Eng. 7, no.3, pp.341-348, 1994

J.D. Thompson, D.G. Higgins, T.J. Gibson, CLUSTAL W: Improving the Sensitivity of
Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific
Gap Penalties and Weight Matrix Choice, Nucl. Acids Res. 22, n0.22, pp.4673-4680, 1994

U. Tonges, S.W. Perrey, J. Stoye, A.W.M. Dress, A General Method for Fast Multiple
Sequence Alignment, Gene-COMBIS, accepted

M. Vingron, P. Argos, Motif Recognition and Alignment for Many Sequences by Com-
parison of Dot-Matrices, J. Mol. Biol. 218, pp.33-43, 1991

M. Vingron, A.v. Haeseler, Towards Integration of Multiple Alignment and Phylogenetic
Tree Reconstruction, Arbeitspapiere der GMD 852, June 1994

L. Wang, T. Jiang, On the Complexity of Multiple Sequence Alignment, J. Comp. Biol.
1, no.4, pp.337-348, 1994

M.S. Waterman, T.F. Smith, W.A. Beyer, Some Biological Sequence Metrics, Adv. Math.
20, pp.367-387, 1976

18



