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Repeat Analysis on a Genomi SaleA tool for the systemati study of the repetitive stru-ture of omplete genomes must satisfy the following ri-teria:EÆieny The size of the genomes to be studiedranges up to 3-4 billion base pairs. To do a om-plete analysis, algorithmi eÆieny must be prati-ally linear, both in terms of omputer memory andexeution time.Flexibility and Signi�ane While exat repeats of-ten give a �rst hint at the overall repetitive struture,a biologially realisti model must reognize degen-erate repeats, whih allow a ertain rate of error.Flexibility also requires to reognize not just diretrepeats, but also palindromi repeats, and other se-quene features losely related. In the presene oferrors, the signi�ane of a partiular pattern is noteasily judged, and a statistial assessment of signi�-ane is mandatory.Interative Visualization Sine a large amount ofdata is generated, interative visualization is re-quired. Human investigators need to obtain anoverview on a whole genome or hromosome basis,but also must be able to zoom in on the details of apartiular repetitive region.Compositionality In the long run, we expet that re-peat �nding is only a basi step in explaining genomestruture. Further analysis will be built on top of therepeat �nding. Hene, the repeat �nding programmust provide a simple interfae to enable omposi-tion with suh advaned analysis programs.The REPuter program family desribed herein satis-�es these requirements in the following way: REP�nduses an eÆient and ompat implementation of suÆxtrees in order to loate exat repeats in linear spaeand time. It has been estimated in (Kurtz 1999) thatthis time-ritial task an be done in linear time forsequenes up to the size of the human genome. Theseexat repeats are used as seeds from whih signi�antdegenerate repeats are onstruted allowing for mis-mathes, insertions, and deletions. Note that our pro-gram is not heuristi: it guarantees to �nd all degener-ate repeats as spei�ed by the parameters. Output size



Figure 1: A view of the repeat struture of Homo sapiens, hromosome 22; see (Dunham et al. 1999). Currentgaps in the hromosome sequene are being ignored. Degenerate diret repeats down to a length of 308 bases areshown. The most signi�ant one is a repeat of length 2461. The fat shaded line near the left indiates a region rihof moderate-length repeats (1000-2000 bases), whih alls for loser inspetion via a zoom funtion, see Figure 6.an be ontrolled via parameters for minimum lengthand maximum error. Output is sorted by signi�anesores (E-values) alulated aording to the distanemodel used. REP�nd produes voluminous output in a�xed format.REPvis visualizes the output from REP�nd ; see Fig-ures 1, 4, 5, and 6. A olor-ode indiates signi�anesores, and a sroll bar ontrols the amount of datadisplayed. A zooming funtion provides whole genomeviews as well as detailed presentations of seleted re-gions.REPselet allows to selet interesting repeats fromthe output of REP�nd as spei�ed by user-de�ned ri-teria. It delivers a list of repeats of hosen length, de-generay or signi�ane into further analysis routines.REPuter is available at our Bioinformatis webserver under the following address: http://BiBiServ.TehFak.Uni-Bielefeld.DE/reputer/.Related WorkApart from many artiles on �nding exat repeats ina string, there exists a onsiderable number of pa-pers that deal with the detetion of degenerate repeats(whih are alled approximate repeats in the stringol-ogy literature). The methods generally divide into twogroups: exat methods (Fith, Smith, & Breslow 1986;Leung et al. 1991; Landau & Shmidt 1993; Ben-son 1994; Kannan & Myers 1996; Shmidt 1998; Sagot1998) whih (like ours) �rst formally de�ne a modelof a repeat, and then loate all regions in a given se-quene whih satisfy this de�nition, and heuristi meth-

ods (Benson &Waterman 1994; Agarwal & States 1994;Rivals et al. 1997; Benson 1999; Babenko et al. 1999;Vinens et al. 1998) whih annot guarantee to �nd allrepeats under some spei� model. We do not disussthe heuristi methods here.The �rst paper that dealt with model-based reogni-tion of degenerate repeats solved the problem of �ndingthe highest-soring pair of (possibly overlapping) sub-strings in a string (Fith, Smith, & Breslow 1986) inO(n2) time and spae, where n is the length of inputstring. (Kannan & Myers 1996; Benson 1994) restritto pairs of non-overlapping substrings. Both algorithmsrun in O(n2 log2 n) time. The spae usage in (Kannan& Myers 1996) is O(n2 logn), whih was improved in(Benson 1994) to O(n2).A related question is to �nd degenerate tandem re-peats, i.e., repeats where the two opies immediatelyfollow eah other in the string. (Landau & Shmidt1993) study the problem of �nding all tandem re-peats whose Hamming distane is below a thresholdk and present an algorithm that solves this problem inO(nk log(n=k)) time. Another algorithm in that paperallows to �nd all tandem repeats whose edit distaneis below k in O(kn log k log(n=k)) time. The algorithmby (Shmidt 1998) solves the more general problem of�nding all \loally optimal" (non-extendable) repeats(both tandem and non-tandem) under a general align-ment sore in O(n2 logn) time and O(n2) spae. Thealgorithm is based on a general method to �nd all high-est soring paths in weighted grid graphs.A di�erent problem de�nition was used in (Water-



man, Arratia, & Galas 1984; Sagot et al. 1995; Sagot1998). They loate repeats whih our a minimumnumber q of times, where eah ourrene has a maxi-mum Hamming distane e to a repeat \model" (whihmay itself never exatly our in the sequene). Whilethe algorithms in (Waterman, Arratia, & Galas 1984;Sagot et al. 1995) are formulated suh that the repeatmust be ommon to several sequenes, the algorithm by(Sagot 1998) also allows to �nd a repeat that multiplyours in the same string. Sagot's algorithm uses thesuÆx tree for preproessing the sequene and runs intime exponential in the number of errors.(Sagot & Myers 1998) present an algorithm for �nd-ing tandem arrays (multiple ourrenes of substringssimilar to a ommon model in a row). Their approah islimited beause the approximate pattern size (whih islimited to at most 40 bases) and a range for the numberof opies have to be spei�ed in advane.Another model for degenerate repeats is used by (Le-ung et al. 1991), who do not apply one of the standarddistane measures normally used in biologial sequeneomparison. They de�ne a repeat by an exatly math-ing \ore blok" of a ertain length, whih an be ex-tended on both sides by short mismathing regions, so-alled \error bloks", followed by mathing \extensionbloks". A repeat is reported if (in their terminology)the \printing riteria" are ful�lled, whih are a num-ber of parameters to the program: a minimal lengthfor the ore blok, maximal lengths of the error bloks,and a minimal total length of the mathing bloks. Themodel, while well de�ned, is only desribed in an op-erational way, and it is diÆult to ompare the outputof their program to what the other approahes basedon standard distane measures would �nd. That is whythis approah has also been lassi�ed by other authorsas a heuristi method.To avoid onfusion, we would like to point out thatin the biologial literature there is often a third kindof repeat �nding programs, like RepeatMasker (un-published, http://ftp.genome.washington.edu/RM/RepeatMasker.html). Here, a \repeat" is a substringthat is known to our very often in a genome. Suhsubstrings tend to onfuse sequene analysis programs,and hene they are masked to avoid spurious results.Suh repeat masking programs use a ditionary ofknown repeat sequenes and perform an exat or ap-proximate string mathing of the given sequene againstall the ditionary entries. Additionally, some of the pro-grams identify \low omplexity regions", whih morelosely meet our notion of a repeat, but usually are lim-ited to be very short or only �nd speial patterns likethe same harater ourring several times in a row.In all this work either the methods are restrited tosmall input or they do not implement the full model ofdegenerate repeats. REPuter provides the �rst solutionto repeat analysis of omplete genomes.

Basi NotionsLet S be a string of length jSj = n over an alphabet �.S[i℄ denotes the ith harater of S, for i 2 [1; n℄. S�1denotes the reverse of S. For i � j, S[i; j℄ denotes thesubstring of S starting with the ith and ending with thejth harater of S. Substring S[i; j℄ is denoted by thepair of positions (i; j). The length of the substring (i; j)is `(i; j) = j � i + 1. To refer to the haraters to theleft and right of every harater in S without worryingabout the �rst and last harater, we de�ne S[0℄ andS[n + 1℄ to be two distint haraters not ourringanywhere else in S.A pair of positions (i1; j1), i1 � j1 ontains a pair(i2; j2), i2 � j2, if and only if i1 � i2 and j2 � j1. A pair(p1; p2) of substrings (i.e. a pair of pairs of positions)ontains a pair (p3; p4) of substrings if and only if p1ontains p3 and p2 ontains p4.A pair of substrings R = ((i1; j1); (i2; j2)) is an exatrepeat if and only if (i1; j1) 6= (i2; j2) and S[i1; j1℄ =S[i2; j2℄. The length of R is `(R) = j1 � i1 + 1 =j2 � i2 + 1. An exat repeat is maximal if it is notontained in any other exat repeat. Clearly, an exatrepeat R = ((i1; j1); (i2; j2)) is maximal if and only ifS[i1 � 1℄ 6= S[i2 � 1℄ and S[j1 + 1℄ 6= S[j2 + 1℄.If S is a DNA-sequene, then we distinguish betweentwo kinds of biologially interesting repeats. The re-peats de�ned above are alled diret repeats or forwardrepeats. A pair of substrings P = ((i1; j1); (i2; j2)) isa palindromi repeat or reverse omplemented repeat ifand only if S[i1; j1℄ = S[i2; j2℄, where w denotes thereverse omplement of a DNA-sequene w. P is max-imal if the omplement of base S[i1 � 1℄ is di�erentfrom S[j2 + 1℄ and the omplement of base S[j1 + 1℄ isdi�erent from S[i2 � 1℄.The Hamming distane of two equal-length stringsS1 and S2, denoted by dH(S1; S2), is the number ofpositions where S1 and S2 di�er.There are three kinds of edit operations: deletions,insertions, and mismathes of single haraters. Theedit distane or Levenshtein distane of S1 and S2, de-noted by dE(S1; S2), is the minimum number of editoperations needed to transform S1 into S2.Models and AlgorithmsIt is well known (Gus�eld 1997) that maximal exatrepeats an be omputed in linear time using the suf-�x tree of S. (Delher et al. 1999) and (Kurtz 1999)independently showed how to pratially onstrut suf-�x trees for genomi-size sequenes. The spae eÆientimplementation tehniques developed in (Kurtz 1999)were the basis of the �rst REPuter program for �nd-ing exat repeats (Kurtz & Shleiermaher 1999). Thissubtask of our new algorithms is not disussed further.We will present algorithms for �nding degenerate re-peats based on two di�erent distane models: the Ham-ming distane model and the edit distane model. Inthe following, we assume that an error threshold k � 0and a length threshold l > 0 is given.



� � �Figure 2: k = 3 mismathing haraters (denoted bybullets) distributed equally over a repeat of length 11,yielding a minimal seed size of � 114 � = 2.The Mismathes Repeat Problemk-mismath repeats are based on the notion of Ham-ming distane.De�nition 1 A pair of equal-length substrings R =((i1; j1); (i2; j2)) is a k-mismath repeat if and only if(i1; j1) 6= (i2; j2) and dH(S[i1; j1℄; S[i2; j2℄) = k. Thelength of R is `(R) = j1 � i1 + 1 = j2 � i2 + 1. Ak-mismath repeat is maximal if it is not ontained inany other k-mismath repeat.As with exat repeats, a k-mismath repeat R =((i1; j1); (i2; j2)) is maximal if and only if S[i1 � 1℄ 6=S[i2 � 1℄ and S[j1 + 1℄ 6= S[j2 + 1℄.The Mismathes Repeat Problem is to enumerate allmaximal k-mismath repeats of length at least l thatour in S. Our algorithm MMR for solving this prob-lem is based on the following lemma.Lemma 1 Every maximal k-mismath repeat R oflength l ontains a maximal exat repeat of length� j lk+1k, alled a seed.Proof: In order to prove the lemma, let R =((i1; j1); (i2; j2)) be a k-mismath repeat. The k mis-mathes divide S[i1; j1℄ and S[i2; j2℄ into maximal exatrepeats w0; w1; w2; : : : ; wk. The exat repeats w0 andwk ourring at the borders of the strings are maximalbeause R is maximal; the others are obviously maxi-mal. Now maxi2[0;k℄ jwij is minimal if the mismathingharater pairs are equally distributed over R, yieldinga pattern as shown in Figure 2. Obviously, for suhan equal distribution the length of the longest wi is� l l�kk+1m = j lk+1k.AlgorithmMMR Compute all seeds and test for eahseed whether it an be extended to a k-mismath re-peat. More preisely, for eah seed ((i1; j1); (i2; j2)) ta-bles Tleft and Tright of size k+1 are omputed suh thatfor eah q 2 [0; k℄:Tright (q) = maxfp j dH(S[j1 + 1; j1 + p℄;S[j2 + 1; j2 + p℄) = qgTleft(q) = maxfp j dH(S[i1 � p; i1 � 1℄;S[i2 � p; i2 � 1℄ = qg:For eah q 2 [0; k℄, if j1�i1+1+Tleft(q)+Tright (k�q) �l, then output the maximal k-mismath repeat ((i1 �Tleft(q); j1 + Tright (k� q)); (i2 � Tleft (q); j2 + Tright(k�q))).Using Lemma 1, it is easy to prove that AlgorithmMMR orretly solves the Mismathes Repeat Problem.

Table Tright an be omputed in O(k) time by us-ing a suÆx tree that allows to determine the lengthof the longest ommon pre�x of two substrings of Sin onstant time. Sine we onstrut the suÆx treeof S anyway, this imposes virtually no overhead. Ofourse, the same approah an be applied to Tleft . Fordetails on this tehnique see (Harel & Tarjan 1984;Shieber & Vishkin 1988).Algorithm MMR detets a maximal k-mismath re-peat more than one if it ontains more than one seed.This an be avoided by stopping the omputation oftable Tleft as soon as another seed is deteted. Thisensures that for a given seed the algorithm will outputonly those maximal k-mismath repeats in whih thispartiular seed is the leftmost.The Di�erenes Repeat ProblemWe now extend our tehnique to allow for insertionsand deletions.De�nition 2 A pair R = ((i1; j1); (i2; j2)) of sub-strings is a k-di�erenes repeat if and only if (i1; j1) 6=(i2; j2) and dE(S[i1; j1℄; S[i2; j2℄) = k. The length of Ris `(R) = minfj1 � i1 + 1; j2 � i2 + 1g. A k-di�erenesrepeat is maximal if it is not ontained in any otherk-di�erenes repeat.If R = ((i1; j1); (i2; j2)) is a k-di�erenes repeat thenS[i1 � 1℄ 6= S[i2 � 1℄ and S[j1 + 1℄ 6= S[j2 + 1℄ does notimply that R is maximal. This is in stark ontrast toexat and k-mismath repeats. Consider for instanethe sequene ACTTCGCTTCA, where l = 3 andk = 1. Then ((3; 5); (7; 10)) is a 1-di�erene repeat andS[2℄ = C 6= G = S[6℄ as well as S[6℄ = G 6= A = S[11℄.However, ((3; 5); (7; 10)) is not maximal beause it ise.g. ontained in the 1-di�erene repeat ((1; 5); (6; 10)).The Di�erenes Repeat Problem is to enumerate allmaximal k-di�erenes repeats of length at least l.It an be shown that Lemma 1 also holds for k-di�erenes repeats:Lemma 2 Every maximal k-di�erenes repeat R oflength l ontains a maximal exat repeat of length� j lk+1k, alled a seed.Our algorithm for enumerating all k-di�erenes re-peats also ruially depends on Lemma 2.De�nition 3 Let U and V be strings of length m andn, respetively. For q 2 [0; k℄ de�ne:1. lookrightE(U; V; q) is the set of all pairs (x; y) 2[1;m℄ � [1; n℄ whih are maximal with respet todE(U [1; x℄; V [1; y℄) � q.2. lookleftE(U; V; q) = lookrightE(U�1; V �1; q)Here the pair (x; y) is alled maximal with respet todE(U [1; x℄; V [1; y℄) � q if and only if:� dE(U [1; x+ 1℄; V [1; y℄) > q if x < n,� dE(U [1; x℄; V [1; y + 1℄) > q if y < m, and� dE(U [1; x+ 1℄; V [1; y + 1℄) > q if x < n and y < m.
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Figure 3: Extension of a seed in Algorithm MDR. Theelements of Tleft(q) and Tright(k � q) are marked bybullets.Algorithm MDR Compute all seeds and try to ex-tend these to k-di�erenes repeats as shown in Figure3. To be more preise, for every seed ((i1; j1); (i2; j2))ompute tables Tleft and Tright de�ned as follows:Tright (q) = lookrightE(S[j1 + 1; n℄; S[j2 + 1; n℄; q)Tleft(q) = lookleftE(S[1; i1 � 1℄; S[1; i2 � 1℄; q):For eah q 2 [0; k℄, for eah pair (xl; yl) 2 Tleft (q), andeah (xr; yr) 2 Tright(k� q): if j1 � i1 +1+ xl + xr � land j2 � i2 + 1 + yl + yr � l, then output the maximalk-di�erenes repeat ((i1�xl; j1+xr); (i2�yl; j2+yr)).Based on Lemma 2, one an show that AlgorithmMDR orretly solves the Di�erenes Repeat Problem.One ould of ourse use a standard dynami program-ming algorithm (e.g. (Wagner & Fisher 1974)) to ex-tend seeds in O(n2) time. However, there are fastermethods: using the algorithm of (Ukkonen 1985), itis possible to ompute tables Tleft and Tright in O(kn)time by omputing only front(k) of the DP-matrix. Aombination of this algorithm with the longest ommonpre�x tehnique yields an O(k2) time method to om-pute tables Tleft and Tright .By restriting to leftmost seeds, Algorithm MDR anbe improved in a similar way as Algorithm MMR.A di�erent approah to searh for degenerate repeatswould be to initially searh for inexat seeds and thento extend these with less errors. However, this approahsu�ers from the fat that there is no eÆient algorithmfor �nding all inexat seeds, even if the number of errorsis very small, see the setion on related work.Before we disuss the overall eÆieny of the algo-rithms, we have to look at the signi�ane of repeats.

Signi�ane of RepeatsIn order to assess the signi�ane of a repeat found byour method, we ompute its E-value, i.e., the numberof repeats of the same length or longer and with thesame number of errors or fewer, that one would expetto �nd in a random DNA of the same length.As a model of random DNA the Bernoulli model isused, where a base � 2 fA;C;G; Tg has the same �xedprobability p� at eah position of the sequene. Wewill start, however, with an even simpler model, theuniform Bernoulli model, where eah base has the sameprobability of ourrene: p� = p = 1=4 for all �.We �rst show how to ompute E-values for maxi-mal exat repeats. We use the fat that the number ofmaximal exat repeats of length � l is the same as thenumber of (only) left-maximal repeats of length exatlyl. Ignoring boundary e�ets, we get:E[# of maximal exat repeats of length � l℄= E[# of left-maximal exat repeats of length l℄= X1�i1<i2�nPr [S[i1; i1 + l� 1℄ = S[i2; i2 + l� 1℄;Si1�1 6= Si2�1℄= X1�i1<i2�n pl(1� p)= 12n(n� 1)pl(1� p):Considering e�ets at the sequene ends, one obtainsin a similar way the following result:E[# of maximal exat repeats of length � l℄= 12(n� l + 1)(n� l)pl(1� p) + (n� l)pl+1:Non-uniform Bernoulli Model. One an general-ize this result for the non-uniform Bernoulli model byreplaing p by p� = X�2� p2�:This, however, is only an approximation to the ex-at solution beause the di�erent probabilities for self-overlapping repeats are ignored.Hamming Distane. E-values for k-mismath re-peats an be omputed in a similar way. First, assume�xed values for l and k. The probability of two inde-pendent sequenes S1 and S2, both of length l, to havea Hamming distane of exatly k under the uniformBernoulli model isPr [dH(S1; S2) = k℄ = � lk�pl�k(1� p)k:To ompute the expeted number of maximal repeats oflength l or longer and with k or fewer mismathes, onehas to sum over all possible k0 � k and over all lengthsl0 � l. The latter is neessary, in ontrast to the aseof exat repeats, beause for k-mismath repeats it isno longer true that the number of maximal repeats of



length � l equals the number of left-maximal repeatsof length l. Hene, we obtain:E[# of maximal � k-mismath repeats of length � l℄= kXk0=0 n�1Xl0=l X1�i1<i2�nPr [dH(S[i1; i1 + l0 � 1℄;S[i2; i2 + l0 � 1℄) = k0;Si1�1 6= Si2�1; Si1+l0 6= Si2+l0 ℄= 12n(n� 1) kXk0=0 n�1Xl0=l � l0k0�pl0�k0(1� p)k0+2:Beause the sums are largely dominated by the termsfor k0 = k and l0 = l, this an be approximated by12n(n� 1)� lk�pl�k(1� p)k+2:Edit Distane. In the ase of the edit distane theredoes not exist an analyti solution for Pr [dE(S1; S2) =k℄. For this reason we use the proedure of (Kurtz& Myers 1997) whih estimates the probability of theevent Ak(P ) that an arbitrary (not neessarily random)string P mathes the pre�x of a random string withedit distane k. This proedure is an unbiased estima-tor whih gives good results in a matter of a thousandsamples even for patterns of small probability. To ob-tain an estimation Pr [dE(S1; S2) = k℄, we preomputeda table E. Here E(l; k) is the average of the estimationof the probability of the event Ak(P ). The estimationis delivered by running the above proedure with 1000samples for 100 random patterns P , eah of length l.The variane of the 100 estimations obtained for eahl and k is very small and so we argue that E(l; k)gives a good approximation for Pr [dE(S1; S2) = k℄where l = maxfjS1j; jS2jg. Hene we estimate (ignoringboundary e�ets)E[# of maximal k-di�erenes repeats of length l℄= n�1Xi=1 nXj=i+1E(l; k)= 12n(n� 1)E(l; k):Asymptoti EÆieny. The overall time eÆienyof Algorithms MMR and MDR an be assessed as fol-lows. The preproessing phase of omputing the suf-�x tree and loating the seeds takes O(n) time. Fora given seed, the extension phase of Algorithm MMRtakes O(k) time as shown above, yielding an overalltime eÆieny of O(n + zk) where z is the number ofseeds. The extension phase of Algorithm MDR takestime O(k3) per seed: As argued above, Tright and Tleftan be omputed in O(k2) time. For eah q 2 [0; k℄the algorithm tests O(k2) ombinations of the valuesin Tleft(q) and Tright(k � q), yielding an upper boundof O(k3) per seed. Hene the overall time eÆieny ofalgorithm MDR is O(n+ zk3).

The number of seeds z an be estimated by E[z℄ =O(n2 1j�js ) where s = j lk+1k is the length of the seed asalulated above.ImplementationWe implemented AlgorithmMMR and AlgorithmMDRin the REPuter searh engine REP�nd. To detet seeds(i.e. exat repeats) we use the same program as in(Kurtz & Shleiermaher 1999). In MDR seeds areextended by the dynami programming algorithm of(Ukkonen 1985). For both MMR and MDR, we om-pute the length of mathes by pairwise harater om-parisons, whih is very fast in pratie.Besides degenerate diret repeats, REP�nd is apa-ble to detet degenerate palindromi repeats. This isahieved by applying Algorithms MMR and MDR tothe string S#S, where S is the reverse omplement ofS and # is a unique separator symbol.To eÆiently determine the signi�ane of degen-erate repeats we use preomputed tables H and E,where E are the estimations as spei�ed above andH(l; k) = � lk�pl�k(1� p)k+2 for any l and k. Note thatthe preomputed values are independent of n. Multi-plying them by 12n(n � 1) gives the E-value. Thus anE-value is omputed in onstant time.Sine Algorithm MMR and MDR are not heuristi,they �nd all maximal k-mismath or k-di�erenes re-peats exeeding some given length l. However, usuallythe user only wants to see the most interesting repeats.For this reason, in the default mode, REP�nd seletsrepeats aording to the following rules:(1) To be seleted, the right instane of a diret repeathas to start at least k+1 positions to the right of theleft instane of the repeat.(2) For eah seed only the most signi�ant repeat on-taining that seed is seleted. In this way, \lumps"of repeats are represented by only one repeat.(3) Among all repeats seleted aording to (1) and (2),REP�nd reports the b most signi�ant repeats in or-der of signi�ane. The parameter b an be de�nedby the user.The output format of REP�nd is either ASCII show-ing eah repeat on a single line or a portable binaryformat. The latter is muh more spae-eÆient and re-quires no parsing. The program an optionally reportthe two instanes of a repeat in form of an alignment.The program REPselet reads the binary format de-livered by REP�nd. It allows to selet repeats aord-ing to user de�ned seletion riteria. These are to bespei�ed by the user in form of exeutable objet odethat is linked dynamially. Program ode for severalsuh seletion funtions is supplied to aid the user indeveloping his/her own seletion funtions.Performane ResultsTable 1 shows the running time and spae onsumptionof REP�nd when applied to several genomes or hro-



mosomes. The onstrution of the suÆx tree is domi-nating the running time. It requires more than 70% ofthe running time. The omputation of exat repeats isonly slightly faster than the omputation of degeneraterepeats. This surprising behavior an be explained asfollows: To extend a seed, the only data that needs tobe proessed are two pairs of substrings of the input se-quene. This is only a very small amount of data whihis proessed sequentially. As a onsequene, the loal-ity behavior of the extension phase is very good, andtherefore it runs very fast. On the other hand, the lo-ality behavior of the suÆx tree is very poor, see (Kurtz1999). That is, the suÆx tree traversal leads to manyahe misses, and it thus dominates the running timeof the repeat searhing phase.The heuristi strategy determines the length parame-ter l suh that we always �nd degenerate repeats. How-ever, the number of repeats found di�ers very muh,espeially for the larger sequenes. The number of ex-at repeats is always muh smaller than the number ofdegenerate repeats. In most ases the number of mis-math repeats is about the same as the number of di�er-enes repeats. The remarkable exeption is Drosophilamelanogaster with 4200 mismath repeats and 6731 dif-ferenes repeats.The spae requirement for omputing the di�erenesrepeats is on average about 13.7 bytes per input sym-bol inluding the spae for the sequene. This is verysimilar to the spae requirement for omputing exatrepeats, see (Kurtz & Shleiermaher 1999).VisualizationREPvis, the visualization omponent of the REPuterprogram family, provides an easy to use interfae forexamining repeat strutures omputed by REP�nd ; seeFigures 1, 4, 5, and 6. The program is designed to beused by the biologist, thus putting the data in the handsof those who an best interpret it.A typial mode of use is as follows: The visualizationomes up showing a single olored line, depiting eitherthe longest or the most signi�ant repeat. The �rststep is to obtain an impression of the overall numberand distribution of repeats. By shifting a slider, welet further repeats rise on the sreen, in the order ofdereasing length or signi�ane, whih is oded in aten-olor sale (see Figure 4). Sine blak is used asthe olor for the shortest/least signi�ant repeats, wemay go down all the way: If we hit the noise level, themore signi�ant repeats still shine up in olors before ablak bakground of noise.During the overview, we may ath interest in par-tiular repeats or repeat-rih regions. A mouse likbrings up the inspetion window; see Figure 6. Here wean zoom in or out on a region by left or right likingthe mouse. Seleting a position on the strand symbolprints the information orresponding to this sequeneposition in a browser box below. There, a single re-peat an be seleted to view the alignment of the twoinstanes of the repeat or to submit the orresponding

nuleotide sequene for further investigation of biologi-al signi�ane to a FASTA or BLAST database searh.This is ahieved by invoking Netsape Navigator withthe -remote argument, whih allows to onnet to andinitiate the load of the database query data into analready-running Netsape proess (Zawinski 1994).ConlusionThe REPuter approah gives a omplete aount of de-generate diret and palindromi repeats, inluding sig-ni�ane sores, with an eÆieny that allows the anal-ysis of all genomes urrently available. It allows in-speting repeats on a marosopi sale as well as onthe sequene level.Aside from diret and palindromi repeats, REPuteralso detets linguisti palindromes and forward, butomplemented repeats. Although there is no bio-logial mehanism known to produe suh patterns,low omplexity regions are typially exhibited as self-overlapping ourrenes of the four kinds of repeats de-teted by REPuter.At the moment, visual inspetion of repeats found byREPuter will be the major mode of appliation. In thelong run, models will need to be developed that explainthe manifold aspets of repetitive genome struture. Weexpet that REPuter will serve as a basi vehile forsuh researh.Aknowledgments. Eivind Coward, Sven Rah-mann, and Rainer Spang helped on statistial issuesof this work. Dirk Evers showed us how to dynamiallyload shared objet ode into REPselet. All their helpis very muh appreiated.ReferenesAgarwal, P., and States, D. J. 1994. The Repeat Pat-tern Toolkit (RPT): Analyzing the struture and evo-lution of the C. elegans genome. In Pro. of the Se-ond International Conferene on Intelligent Systemsfor Moleular Biology, ISMB 94, 1{9. Menlo Park,CA: AAAI Press.Babenko, V. N.; Kosarev, P. S.; Vishnevsky, O. V.;Levitsky, V. G.; Basin, V. V.; and Frolov, A. S. 1999.Investigating extended regulatory regions of genomiDNA sequenes. Bioinformatis 15(7/8):644{653.Benson, G., and Waterman, M. 1994. A method forfast database searh for all k-nuleotide repeats. Nul.Aids Res. 22:4828{4836.Benson, G. 1994. A spae eÆient algorithm for�nding the best nonoverlapping alignment sore. InCrohemore, M., and Gus�eld, D., eds., Pro. ofthe 5th Annual Symposium on Combinatorial PatternMathing, CPM 94. Asilomar, California, June 1994,volume 807 of LNCS, 1{14. Berlin: Springer Verlag.Benson, G. 1999. Tandem repeats �nder: A pro-gram to analyze DNA sequenes. Nul. Aids Res.27(2):573{580.



Genome n l Tree Exat hdist � 4 edist � 4 Spae(MB) (se) #reps (se) #reps (se) #reps (se) (MB)Rhizobium sp. NGR234 0.51 120 1.10 9 1.71 11 1.71 13 1.71 7.14Myoplasma genitalium 0.55 130 1.19 9 1.84 59 1.89 62 1.90 7.71Ureaplasma urealytium 0.72 150 1.64 43 2.42 63 2.47 67 2.53 9.97Myoplasma pneumoniae 0.78 130 1.86 74 2.79 409 2.84 449 2.90 10.82Borrelia burgdorferi 0.87 140 2.10 9 3.22 28 3.23 28 3.27 12.07Chlamydia trahomatis 0.99 130 2.53 3 3.80 6 3.83 6 3.85 13.82Chlamydia muridarum 1.02 130 2.64 4 3.91 8 3.94 8 3.98 14.16Rikettsia prowazekii 1.06 140 2.65 9 4.02 10 4.08 10 4.08 14.71Treponema pallidum 1.09 130 2.85 33 4.20 48 4.25 51 4.28 15.07Chlamydo. pneum. AR39 1.17 130 3.16 6 4.63 7 4.66 8 4.67 16.27Chlamydia pneumoniae 1.17 130 3.13 8 4.62 11 4.65 13 4.70 16.28Aquifex aeolius 1.48 140 4.15 12 6.06 22 6.08 23 6.13 20.50Campylobater jejuni 1.57 160 4.29 25 6.33 39 6.37 39 6.38 21.71Methanoous jannashii 1.59 150 4.36 23 6.45 48 6.48 62 6.48 22.00Heliobater pylori 1.59 150 4.45 45 6.47 84 6.54 100 6.54 22.04Pyroous horikoshii 1.66 140 4.76 3 6.85 3 7.00 3 7.09 22.97M. thermoautotrophium 1.67 140 4.79 29 6.98 51 7.00 57 7.16 23.14Pyroous abyssi 1.68 140 4.82 0 5.00 4 7.00 4 7.09 23.32Haemophilus inuenzae 1.75 140 4.99 24 7.34 79 7.34 85 7.42 24.19Plasmodium faliparum 1.91 240 4.94 46 7.43 107 7.53 126 7.81 26.51Arhaeoglobus fulgidus 2.08 140 6.11 29 8.93 58 8.98 59 8.99 28.77Deinoous radiodurans 2.92 170 8.85 35 12.79 41 12.87 47 12.89 40.40Synehoystis PCC6803 3.41 160 11.27 347 15.64 655 15.68 686 15.82 47.15Baillus subtilis 4.02 150 13.61 286 18.80 411 18.86 496 18.88 55.60M. tuberulosis 4.21 170 13.79 118 19.32 189 19.40 190 19.50 58.19Esherihia oli 4.42 150 15.18 209 20.66 473 20.89 507 20.98 61.19Saharomyes erevisiae 11.50 180 43.19 3379 58.08 9093 58.49 9571 58.96 158.95Homo sapiens Chr. 22 32.06 670 136.56 58 185.88 482 186.71 548 187.33 443.04A. thaliana Chr. 2 and 4 35.47 590 169.06 151 226.43 665 227.30 797 227.64 490.23Caenorhabditis elegans 92.40 1905 584.76 74 762.44 191 767.31 227 769.86 1277.27Drosophila melanogaster 114.44 700 737.73 1330 1047.90 4200 1052.52 6731 1053.92 1582.80Table 1: The running time, the spae onsumption, and the number of repeats found when applying REP�nd toseveral genomes and large hromosomes. The timings are in seonds. The program was run on a SUN-spar omputerunder Solaris 2.5.1 with a 400 MHz-Proessor and 2 Gigabytes of main memory. The seond olumn shows the lengthof the genome in megabytes. The third olumn shows the length parameter l whih was hosen aording to thefollowing strategy: We ount, for eah possible d, the number b(d) of branhing nodes exatly of depth d in the suÆxtree. We then determine the largest d suh that b(d) � 10:000 and set l = 5�d�log10(d). This heuristi strategy provedto be good sine it balanes signi�ane and speed. Column four of the table shows the onstrution time of the suÆxtree. The last olumn shows the overall spae requirement (in megabytes) for omputing degenerate repeats withat most four di�erenes. The remaining olumns show the number of repeats found and the orresponding runningtime for REP�nd when omputing exat repeats or degenerate repeats with hamming and edit distane at most 4.



Figure 4: A typial appliation of REPvis, showing a view of the 50 most signi�ant diret repeats in E. oli (4.6Mb),ranging from 1147 to 2950 bases in length. There are �ve repeats longer than the longest one found inM. tuberulosis ;see Figure 5. In the main window graphis panel, two horizontal lines depit the input sequene and a opy of it.Diagonal lines stand for repeats by onneting their respetive starting positions. Below the graphis panel, a hoiebox lists all alulated sequenes in a user spei�ed diretory. Three further buttons swith the visualization modeto square graph, irle graph or dot plot. An additional button leads to the omplete list of all repeats and their sizedistribution. Seletor buttons speify whih type of repeat to display. The symbols F , P , C, and R indiate diret(forward), palindromi (reverse omplemented), omplemented and reversed repeats; the number of repeats for eahtype is shown on the button.

Figure 5: A view of the 50 most signi�ant diret repeats in M. tuberulosis (4.4Mb), omparable in size to E. oli.Here the longest repeat has 1697 bases, and no others ome lose to this one. The mesh-like pattern, learer than inE. oli, arises from multifold opies of the same repeat, around 1370 bases in length. Suh patterns typially arisefrom insertion sequenes, whih is quikly on�rmed: A database searh indiates that this is an insertion sequenealso ommon in other myobateria.



Figure 6: Zooming in on a repeat rih region on Homo sapiens, hromosome 22, here at zoom fator 28. (See Figure 1for an overall view of the repeats.) Repeats are displayed with exat positions and E-values. An E-value smaller than1:0 � 10�300 is rounded to 0.00. The sequene information is available for database searh via the FASTA/BLASTbutton.Delher, A.; Kasif, S.; Fleishmann, R.; Peterson, J.;White, O.; and Salzberg, S. 1999. Alignment of WholeGenomes. Nulei Aids Researh 27:2369{2376.Dunham, I.; Shimizu, N.; Roe, B. A.; and Chissoe, S.1999. The DNA sequene of human hromosome 22.Nature 402:489{495.Fith, W.; Smith, T.; and Breslow, J. 1986. Detetinginternally repeated sequenes and inferring the historyof dupliation. In Segrest, J. P., and Albers, J. J., eds.,Plasma Proteins. Part A: Preparation, Struture, andMoleular Biology, volume 128 of Methods in Enzy-mology. San Diego, CA: Aademi Press. hapter 45,773{788.Gus�eld, D. 1997. Algorithms on Strings, Trees, andSequenes. New York: Cambridge University Press.Harel, D., and Tarjan, R. 1984. Fast Algorithms forFinding Nearest Common Anestors. SIAM J. Com-puting 13:338{355.Huang, C.; Lin, Y.; Yang, Y.; Huang, S.; and Chen,C. 1998. The telomeres of streptomyes hromosomesontain onserved palindromi sequenes with poten-tial to form omplex seondary strutures. J. Mol.Biol. 28(5):905{16.Kannan, S. K., and Myers, E. W. 1996. An algorithmfor loating nonoverlapping regions of maximum align-ment sore. SIAM J. Computing 25(3):648{662.Kurtz, S., and Myers, G. 1997. Estimating the Proba-bility of Approximate Mathes. In Pro. of the 8th An-nual Symposium on Combinatorial Pattern Mathing,
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