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h�Abstra
tThe repetitive stru
ture of genomi
 DNA holds manyse
rets to be dis
overed. A systemati
 study of repeti-tive DNA on a genomi
 or inter-genomi
 s
ale requiresextensive algorithmi
 support. The REPuter family ofprograms des
ribed herein was designed to serve as afundamental tool in su
h studies. EÆ
ient and 
om-plete dete
tion of various types of repeats is providedtogether with an evaluation of signi�
an
e, intera
tivevisualization, and simple interfa
ing to other analysisprograms.Keywords: Genome, Degenerate Repeats, EÆ-
ient Algorithms, Software Tool, VisualizationIntrodu
tionOne of the most striking features of DNA is the ex-tent to whi
h it 
onsists of repeated substrings. Thisis parti
ularly true of eukaryotes. For example, mostof the human Y 
hromosome 
onsists of repeated sub-strings, and it is estimated that families of reiteratedsequen
es a

ount for about one third of the humangenome (M
Conkey 1993). The presen
e of palindromi
repeats hints to the formation of hairpin stru
tures thatmay provide some stru
tural or repli
ational me
ha-nism (Huang et al. 1998). Furthermore some repeatshave been shown to a�e
t ba
terial virulen
e by a
t-ing as the mole
ular basis of a me
hanism used to su
-
essfully 
olonize and infe
t di�erent human individuals(van Belkum et al. 1997). These properties make re-peats an interesting resear
h topi
, and indeed, thereis a vast literature on repetitive stru
tures and theirhypothesized fun
tional and evolutionary role.�Fa
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Repeat Analysis on a Genomi
 S
aleA tool for the systemati
 study of the repetitive stru
-ture of 
omplete genomes must satisfy the following 
ri-teria:EÆ
ien
y The size of the genomes to be studiedranges up to 3-4 billion base pairs. To do a 
om-plete analysis, algorithmi
 eÆ
ien
y must be pra
ti-
ally linear, both in terms of 
omputer memory andexe
ution time.Flexibility and Signi�
an
e While exa
t repeats of-ten give a �rst hint at the overall repetitive stru
ture,a biologi
ally realisti
 model must re
ognize degen-erate repeats, whi
h allow a 
ertain rate of error.Flexibility also requires to re
ognize not just dire
trepeats, but also palindromi
 repeats, and other se-quen
e features 
losely related. In the presen
e oferrors, the signi�
an
e of a parti
ular pattern is noteasily judged, and a statisti
al assessment of signi�-
an
e is mandatory.Intera
tive Visualization Sin
e a large amount ofdata is generated, intera
tive visualization is re-quired. Human investigators need to obtain anoverview on a whole genome or 
hromosome basis,but also must be able to zoom in on the details of aparti
ular repetitive region.Compositionality In the long run, we expe
t that re-peat �nding is only a basi
 step in explaining genomestru
ture. Further analysis will be built on top of therepeat �nding. Hen
e, the repeat �nding programmust provide a simple interfa
e to enable 
omposi-tion with su
h advan
ed analysis programs.The REPuter program family des
ribed herein satis-�es these requirements in the following way: REP�nduses an eÆ
ient and 
ompa
t implementation of suÆxtrees in order to lo
ate exa
t repeats in linear spa
eand time. It has been estimated in (Kurtz 1999) thatthis time-
riti
al task 
an be done in linear time forsequen
es up to the size of the human genome. Theseexa
t repeats are used as seeds from whi
h signi�
antdegenerate repeats are 
onstru
ted allowing for mis-mat
hes, insertions, and deletions. Note that our pro-gram is not heuristi
: it guarantees to �nd all degener-ate repeats as spe
i�ed by the parameters. Output size



Figure 1: A view of the repeat stru
ture of Homo sapiens, 
hromosome 22; see (Dunham et al. 1999). Currentgaps in the 
hromosome sequen
e are being ignored. Degenerate dire
t repeats down to a length of 308 bases areshown. The most signi�
ant one is a repeat of length 2461. The fat shaded line near the left indi
ates a region ri
hof moderate-length repeats (1000-2000 bases), whi
h 
alls for 
loser inspe
tion via a zoom fun
tion, see Figure 6.
an be 
ontrolled via parameters for minimum lengthand maximum error. Output is sorted by signi�
an
es
ores (E-values) 
al
ulated a

ording to the distan
emodel used. REP�nd produ
es voluminous output in a�xed format.REPvis visualizes the output from REP�nd ; see Fig-ures 1, 4, 5, and 6. A 
olor-
ode indi
ates signi�
an
es
ores, and a s
roll bar 
ontrols the amount of datadisplayed. A zooming fun
tion provides whole genomeviews as well as detailed presentations of sele
ted re-gions.REPsele
t allows to sele
t interesting repeats fromthe output of REP�nd as spe
i�ed by user-de�ned 
ri-teria. It delivers a list of repeats of 
hosen length, de-genera
y or signi�
an
e into further analysis routines.REPuter is available at our Bioinformati
s webserver under the following address: http://BiBiServ.Te
hFak.Uni-Bielefeld.DE/reputer/.Related WorkApart from many arti
les on �nding exa
t repeats ina string, there exists a 
onsiderable number of pa-pers that deal with the dete
tion of degenerate repeats(whi
h are 
alled approximate repeats in the stringol-ogy literature). The methods generally divide into twogroups: exa
t methods (Fit
h, Smith, & Breslow 1986;Leung et al. 1991; Landau & S
hmidt 1993; Ben-son 1994; Kannan & Myers 1996; S
hmidt 1998; Sagot1998) whi
h (like ours) �rst formally de�ne a modelof a repeat, and then lo
ate all regions in a given se-quen
e whi
h satisfy this de�nition, and heuristi
 meth-

ods (Benson &Waterman 1994; Agarwal & States 1994;Rivals et al. 1997; Benson 1999; Babenko et al. 1999;Vin
ens et al. 1998) whi
h 
annot guarantee to �nd allrepeats under some spe
i�
 model. We do not dis
ussthe heuristi
 methods here.The �rst paper that dealt with model-based re
ogni-tion of degenerate repeats solved the problem of �ndingthe highest-s
oring pair of (possibly overlapping) sub-strings in a string (Fit
h, Smith, & Breslow 1986) inO(n2) time and spa
e, where n is the length of inputstring. (Kannan & Myers 1996; Benson 1994) restri
tto pairs of non-overlapping substrings. Both algorithmsrun in O(n2 log2 n) time. The spa
e usage in (Kannan& Myers 1996) is O(n2 logn), whi
h was improved in(Benson 1994) to O(n2).A related question is to �nd degenerate tandem re-peats, i.e., repeats where the two 
opies immediatelyfollow ea
h other in the string. (Landau & S
hmidt1993) study the problem of �nding all tandem re-peats whose Hamming distan
e is below a thresholdk and present an algorithm that solves this problem inO(nk log(n=k)) time. Another algorithm in that paperallows to �nd all tandem repeats whose edit distan
eis below k in O(kn log k log(n=k)) time. The algorithmby (S
hmidt 1998) solves the more general problem of�nding all \lo
ally optimal" (non-extendable) repeats(both tandem and non-tandem) under a general align-ment s
ore in O(n2 logn) time and O(n2) spa
e. Thealgorithm is based on a general method to �nd all high-est s
oring paths in weighted grid graphs.A di�erent problem de�nition was used in (Water-



man, Arratia, & Galas 1984; Sagot et al. 1995; Sagot1998). They lo
ate repeats whi
h o

ur a minimumnumber q of times, where ea
h o

urren
e has a maxi-mum Hamming distan
e e to a repeat \model" (whi
hmay itself never exa
tly o

ur in the sequen
e). Whilethe algorithms in (Waterman, Arratia, & Galas 1984;Sagot et al. 1995) are formulated su
h that the repeatmust be 
ommon to several sequen
es, the algorithm by(Sagot 1998) also allows to �nd a repeat that multiplyo

urs in the same string. Sagot's algorithm uses thesuÆx tree for prepro
essing the sequen
e and runs intime exponential in the number of errors.(Sagot & Myers 1998) present an algorithm for �nd-ing tandem arrays (multiple o

urren
es of substringssimilar to a 
ommon model in a row). Their approa
h islimited be
ause the approximate pattern size (whi
h islimited to at most 40 bases) and a range for the numberof 
opies have to be spe
i�ed in advan
e.Another model for degenerate repeats is used by (Le-ung et al. 1991), who do not apply one of the standarddistan
e measures normally used in biologi
al sequen
e
omparison. They de�ne a repeat by an exa
tly mat
h-ing \
ore blo
k" of a 
ertain length, whi
h 
an be ex-tended on both sides by short mismat
hing regions, so-
alled \error blo
ks", followed by mat
hing \extensionblo
ks". A repeat is reported if (in their terminology)the \printing 
riteria" are ful�lled, whi
h are a num-ber of parameters to the program: a minimal lengthfor the 
ore blo
k, maximal lengths of the error blo
ks,and a minimal total length of the mat
hing blo
ks. Themodel, while well de�ned, is only des
ribed in an op-erational way, and it is diÆ
ult to 
ompare the outputof their program to what the other approa
hes basedon standard distan
e measures would �nd. That is whythis approa
h has also been 
lassi�ed by other authorsas a heuristi
 method.To avoid 
onfusion, we would like to point out thatin the biologi
al literature there is often a third kindof repeat �nding programs, like RepeatMasker (un-published, http://ftp.genome.washington.edu/RM/RepeatMasker.html). Here, a \repeat" is a substringthat is known to o

ur very often in a genome. Su
hsubstrings tend to 
onfuse sequen
e analysis programs,and hen
e they are masked to avoid spurious results.Su
h repeat masking programs use a di
tionary ofknown repeat sequen
es and perform an exa
t or ap-proximate string mat
hing of the given sequen
e againstall the di
tionary entries. Additionally, some of the pro-grams identify \low 
omplexity regions", whi
h more
losely meet our notion of a repeat, but usually are lim-ited to be very short or only �nd spe
ial patterns likethe same 
hara
ter o

urring several times in a row.In all this work either the methods are restri
ted tosmall input or they do not implement the full model ofdegenerate repeats. REPuter provides the �rst solutionto repeat analysis of 
omplete genomes.

Basi
 NotionsLet S be a string of length jSj = n over an alphabet �.S[i℄ denotes the ith 
hara
ter of S, for i 2 [1; n℄. S�1denotes the reverse of S. For i � j, S[i; j℄ denotes thesubstring of S starting with the ith and ending with thejth 
hara
ter of S. Substring S[i; j℄ is denoted by thepair of positions (i; j). The length of the substring (i; j)is `(i; j) = j � i + 1. To refer to the 
hara
ters to theleft and right of every 
hara
ter in S without worryingabout the �rst and last 
hara
ter, we de�ne S[0℄ andS[n + 1℄ to be two distin
t 
hara
ters not o

urringanywhere else in S.A pair of positions (i1; j1), i1 � j1 
ontains a pair(i2; j2), i2 � j2, if and only if i1 � i2 and j2 � j1. A pair(p1; p2) of substrings (i.e. a pair of pairs of positions)
ontains a pair (p3; p4) of substrings if and only if p1
ontains p3 and p2 
ontains p4.A pair of substrings R = ((i1; j1); (i2; j2)) is an exa
trepeat if and only if (i1; j1) 6= (i2; j2) and S[i1; j1℄ =S[i2; j2℄. The length of R is `(R) = j1 � i1 + 1 =j2 � i2 + 1. An exa
t repeat is maximal if it is not
ontained in any other exa
t repeat. Clearly, an exa
trepeat R = ((i1; j1); (i2; j2)) is maximal if and only ifS[i1 � 1℄ 6= S[i2 � 1℄ and S[j1 + 1℄ 6= S[j2 + 1℄.If S is a DNA-sequen
e, then we distinguish betweentwo kinds of biologi
ally interesting repeats. The re-peats de�ned above are 
alled dire
t repeats or forwardrepeats. A pair of substrings P = ((i1; j1); (i2; j2)) isa palindromi
 repeat or reverse 
omplemented repeat ifand only if S[i1; j1℄ = S[i2; j2℄, where w denotes thereverse 
omplement of a DNA-sequen
e w. P is max-imal if the 
omplement of base S[i1 � 1℄ is di�erentfrom S[j2 + 1℄ and the 
omplement of base S[j1 + 1℄ isdi�erent from S[i2 � 1℄.The Hamming distan
e of two equal-length stringsS1 and S2, denoted by dH(S1; S2), is the number ofpositions where S1 and S2 di�er.There are three kinds of edit operations: deletions,insertions, and mismat
hes of single 
hara
ters. Theedit distan
e or Levenshtein distan
e of S1 and S2, de-noted by dE(S1; S2), is the minimum number of editoperations needed to transform S1 into S2.Models and AlgorithmsIt is well known (Gus�eld 1997) that maximal exa
trepeats 
an be 
omputed in linear time using the suf-�x tree of S. (Del
her et al. 1999) and (Kurtz 1999)independently showed how to pra
ti
ally 
onstru
t suf-�x trees for genomi
-size sequen
es. The spa
e eÆ
ientimplementation te
hniques developed in (Kurtz 1999)were the basis of the �rst REPuter program for �nd-ing exa
t repeats (Kurtz & S
hleierma
her 1999). Thissubtask of our new algorithms is not dis
ussed further.We will present algorithms for �nding degenerate re-peats based on two di�erent distan
e models: the Ham-ming distan
e model and the edit distan
e model. Inthe following, we assume that an error threshold k � 0and a length threshold l > 0 is given.



� � �Figure 2: k = 3 mismat
hing 
hara
ters (denoted bybullets) distributed equally over a repeat of length 11,yielding a minimal seed size of � 114 � = 2.The Mismat
hes Repeat Problemk-mismat
h repeats are based on the notion of Ham-ming distan
e.De�nition 1 A pair of equal-length substrings R =((i1; j1); (i2; j2)) is a k-mismat
h repeat if and only if(i1; j1) 6= (i2; j2) and dH(S[i1; j1℄; S[i2; j2℄) = k. Thelength of R is `(R) = j1 � i1 + 1 = j2 � i2 + 1. Ak-mismat
h repeat is maximal if it is not 
ontained inany other k-mismat
h repeat.As with exa
t repeats, a k-mismat
h repeat R =((i1; j1); (i2; j2)) is maximal if and only if S[i1 � 1℄ 6=S[i2 � 1℄ and S[j1 + 1℄ 6= S[j2 + 1℄.The Mismat
hes Repeat Problem is to enumerate allmaximal k-mismat
h repeats of length at least l thato

ur in S. Our algorithm MMR for solving this prob-lem is based on the following lemma.Lemma 1 Every maximal k-mismat
h repeat R oflength l 
ontains a maximal exa
t repeat of length� j lk+1k, 
alled a seed.Proof: In order to prove the lemma, let R =((i1; j1); (i2; j2)) be a k-mismat
h repeat. The k mis-mat
hes divide S[i1; j1℄ and S[i2; j2℄ into maximal exa
trepeats w0; w1; w2; : : : ; wk. The exa
t repeats w0 andwk o

urring at the borders of the strings are maximalbe
ause R is maximal; the others are obviously maxi-mal. Now maxi2[0;k℄ jwij is minimal if the mismat
hing
hara
ter pairs are equally distributed over R, yieldinga pattern as shown in Figure 2. Obviously, for su
han equal distribution the length of the longest wi is� l l�kk+1m = j lk+1k.AlgorithmMMR Compute all seeds and test for ea
hseed whether it 
an be extended to a k-mismat
h re-peat. More pre
isely, for ea
h seed ((i1; j1); (i2; j2)) ta-bles Tleft and Tright of size k+1 are 
omputed su
h thatfor ea
h q 2 [0; k℄:Tright (q) = maxfp j dH(S[j1 + 1; j1 + p℄;S[j2 + 1; j2 + p℄) = qgTleft(q) = maxfp j dH(S[i1 � p; i1 � 1℄;S[i2 � p; i2 � 1℄ = qg:For ea
h q 2 [0; k℄, if j1�i1+1+Tleft(q)+Tright (k�q) �l, then output the maximal k-mismat
h repeat ((i1 �Tleft(q); j1 + Tright (k� q)); (i2 � Tleft (q); j2 + Tright(k�q))).Using Lemma 1, it is easy to prove that AlgorithmMMR 
orre
tly solves the Mismat
hes Repeat Problem.

Table Tright 
an be 
omputed in O(k) time by us-ing a suÆx tree that allows to determine the lengthof the longest 
ommon pre�x of two substrings of Sin 
onstant time. Sin
e we 
onstru
t the suÆx treeof S anyway, this imposes virtually no overhead. Of
ourse, the same approa
h 
an be applied to Tleft . Fordetails on this te
hnique see (Harel & Tarjan 1984;S
hieber & Vishkin 1988).Algorithm MMR dete
ts a maximal k-mismat
h re-peat more than on
e if it 
ontains more than one seed.This 
an be avoided by stopping the 
omputation oftable Tleft as soon as another seed is dete
ted. Thisensures that for a given seed the algorithm will outputonly those maximal k-mismat
h repeats in whi
h thisparti
ular seed is the leftmost.The Di�eren
es Repeat ProblemWe now extend our te
hnique to allow for insertionsand deletions.De�nition 2 A pair R = ((i1; j1); (i2; j2)) of sub-strings is a k-di�eren
es repeat if and only if (i1; j1) 6=(i2; j2) and dE(S[i1; j1℄; S[i2; j2℄) = k. The length of Ris `(R) = minfj1 � i1 + 1; j2 � i2 + 1g. A k-di�eren
esrepeat is maximal if it is not 
ontained in any otherk-di�eren
es repeat.If R = ((i1; j1); (i2; j2)) is a k-di�eren
es repeat thenS[i1 � 1℄ 6= S[i2 � 1℄ and S[j1 + 1℄ 6= S[j2 + 1℄ does notimply that R is maximal. This is in stark 
ontrast toexa
t and k-mismat
h repeats. Consider for instan
ethe sequen
e ACTTCGCTTCA, where l = 3 andk = 1. Then ((3; 5); (7; 10)) is a 1-di�eren
e repeat andS[2℄ = C 6= G = S[6℄ as well as S[6℄ = G 6= A = S[11℄.However, ((3; 5); (7; 10)) is not maximal be
ause it ise.g. 
ontained in the 1-di�eren
e repeat ((1; 5); (6; 10)).The Di�eren
es Repeat Problem is to enumerate allmaximal k-di�eren
es repeats of length at least l.It 
an be shown that Lemma 1 also holds for k-di�eren
es repeats:Lemma 2 Every maximal k-di�eren
es repeat R oflength l 
ontains a maximal exa
t repeat of length� j lk+1k, 
alled a seed.Our algorithm for enumerating all k-di�eren
es re-peats also 
ru
ially depends on Lemma 2.De�nition 3 Let U and V be strings of length m andn, respe
tively. For q 2 [0; k℄ de�ne:1. lookrightE(U; V; q) is the set of all pairs (x; y) 2[1;m℄ � [1; n℄ whi
h are maximal with respe
t todE(U [1; x℄; V [1; y℄) � q.2. lookleftE(U; V; q) = lookrightE(U�1; V �1; q)Here the pair (x; y) is 
alled maximal with respe
t todE(U [1; x℄; V [1; y℄) � q if and only if:� dE(U [1; x+ 1℄; V [1; y℄) > q if x < n,� dE(U [1; x℄; V [1; y + 1℄) > q if y < m, and� dE(U [1; x+ 1℄; V [1; y + 1℄) > q if x < n and y < m.



i2 � yl j1
i2 i1 � xlj2 j2 + yr j1 + xr

front(q)
front(k � q)

i1

Figure 3: Extension of a seed in Algorithm MDR. Theelements of Tleft(q) and Tright(k � q) are marked bybullets.Algorithm MDR Compute all seeds and try to ex-tend these to k-di�eren
es repeats as shown in Figure3. To be more pre
ise, for every seed ((i1; j1); (i2; j2))
ompute tables Tleft and Tright de�ned as follows:Tright (q) = lookrightE(S[j1 + 1; n℄; S[j2 + 1; n℄; q)Tleft(q) = lookleftE(S[1; i1 � 1℄; S[1; i2 � 1℄; q):For ea
h q 2 [0; k℄, for ea
h pair (xl; yl) 2 Tleft (q), andea
h (xr; yr) 2 Tright(k� q): if j1 � i1 +1+ xl + xr � land j2 � i2 + 1 + yl + yr � l, then output the maximalk-di�eren
es repeat ((i1�xl; j1+xr); (i2�yl; j2+yr)).Based on Lemma 2, one 
an show that AlgorithmMDR 
orre
tly solves the Di�eren
es Repeat Problem.One 
ould of 
ourse use a standard dynami
 program-ming algorithm (e.g. (Wagner & Fis
her 1974)) to ex-tend seeds in O(n2) time. However, there are fastermethods: using the algorithm of (Ukkonen 1985), itis possible to 
ompute tables Tleft and Tright in O(kn)time by 
omputing only front(k) of the DP-matrix. A
ombination of this algorithm with the longest 
ommonpre�x te
hnique yields an O(k2) time method to 
om-pute tables Tleft and Tright .By restri
ting to leftmost seeds, Algorithm MDR 
anbe improved in a similar way as Algorithm MMR.A di�erent approa
h to sear
h for degenerate repeatswould be to initially sear
h for inexa
t seeds and thento extend these with less errors. However, this approa
hsu�ers from the fa
t that there is no eÆ
ient algorithmfor �nding all inexa
t seeds, even if the number of errorsis very small, see the se
tion on related work.Before we dis
uss the overall eÆ
ien
y of the algo-rithms, we have to look at the signi�
an
e of repeats.

Signi�
an
e of RepeatsIn order to assess the signi�
an
e of a repeat found byour method, we 
ompute its E-value, i.e., the numberof repeats of the same length or longer and with thesame number of errors or fewer, that one would expe
tto �nd in a random DNA of the same length.As a model of random DNA the Bernoulli model isused, where a base � 2 fA;C;G; Tg has the same �xedprobability p� at ea
h position of the sequen
e. Wewill start, however, with an even simpler model, theuniform Bernoulli model, where ea
h base has the sameprobability of o

urren
e: p� = p = 1=4 for all �.We �rst show how to 
ompute E-values for maxi-mal exa
t repeats. We use the fa
t that the number ofmaximal exa
t repeats of length � l is the same as thenumber of (only) left-maximal repeats of length exa
tlyl. Ignoring boundary e�e
ts, we get:E[# of maximal exa
t repeats of length � l℄= E[# of left-maximal exa
t repeats of length l℄= X1�i1<i2�nPr [S[i1; i1 + l� 1℄ = S[i2; i2 + l� 1℄;Si1�1 6= Si2�1℄= X1�i1<i2�n pl(1� p)= 12n(n� 1)pl(1� p):Considering e�e
ts at the sequen
e ends, one obtainsin a similar way the following result:E[# of maximal exa
t repeats of length � l℄= 12(n� l + 1)(n� l)pl(1� p) + (n� l)pl+1:Non-uniform Bernoulli Model. One 
an general-ize this result for the non-uniform Bernoulli model byrepla
ing p by p� = X�2� p2�:This, however, is only an approximation to the ex-a
t solution be
ause the di�erent probabilities for self-overlapping repeats are ignored.Hamming Distan
e. E-values for k-mismat
h re-peats 
an be 
omputed in a similar way. First, assume�xed values for l and k. The probability of two inde-pendent sequen
es S1 and S2, both of length l, to havea Hamming distan
e of exa
tly k under the uniformBernoulli model isPr [dH(S1; S2) = k℄ = � lk�pl�k(1� p)k:To 
ompute the expe
ted number of maximal repeats oflength l or longer and with k or fewer mismat
hes, onehas to sum over all possible k0 � k and over all lengthsl0 � l. The latter is ne
essary, in 
ontrast to the 
aseof exa
t repeats, be
ause for k-mismat
h repeats it isno longer true that the number of maximal repeats of



length � l equals the number of left-maximal repeatsof length l. Hen
e, we obtain:E[# of maximal � k-mismat
h repeats of length � l℄= kXk0=0 n�1Xl0=l X1�i1<i2�nPr [dH(S[i1; i1 + l0 � 1℄;S[i2; i2 + l0 � 1℄) = k0;Si1�1 6= Si2�1; Si1+l0 6= Si2+l0 ℄= 12n(n� 1) kXk0=0 n�1Xl0=l � l0k0�pl0�k0(1� p)k0+2:Be
ause the sums are largely dominated by the termsfor k0 = k and l0 = l, this 
an be approximated by12n(n� 1)� lk�pl�k(1� p)k+2:Edit Distan
e. In the 
ase of the edit distan
e theredoes not exist an analyti
 solution for Pr [dE(S1; S2) =k℄. For this reason we use the pro
edure of (Kurtz& Myers 1997) whi
h estimates the probability of theevent Ak(P ) that an arbitrary (not ne
essarily random)string P mat
hes the pre�x of a random string withedit distan
e k. This pro
edure is an unbiased estima-tor whi
h gives good results in a matter of a thousandsamples even for patterns of small probability. To ob-tain an estimation Pr [dE(S1; S2) = k℄, we pre
omputeda table E. Here E(l; k) is the average of the estimationof the probability of the event Ak(P ). The estimationis delivered by running the above pro
edure with 1000samples for 100 random patterns P , ea
h of length l.The varian
e of the 100 estimations obtained for ea
hl and k is very small and so we argue that E(l; k)gives a good approximation for Pr [dE(S1; S2) = k℄where l = maxfjS1j; jS2jg. Hen
e we estimate (ignoringboundary e�e
ts)E[# of maximal k-di�eren
es repeats of length l℄= n�1Xi=1 nXj=i+1E(l; k)= 12n(n� 1)E(l; k):Asymptoti
 EÆ
ien
y. The overall time eÆ
ien
yof Algorithms MMR and MDR 
an be assessed as fol-lows. The prepro
essing phase of 
omputing the suf-�x tree and lo
ating the seeds takes O(n) time. Fora given seed, the extension phase of Algorithm MMRtakes O(k) time as shown above, yielding an overalltime eÆ
ien
y of O(n + zk) where z is the number ofseeds. The extension phase of Algorithm MDR takestime O(k3) per seed: As argued above, Tright and Tleft
an be 
omputed in O(k2) time. For ea
h q 2 [0; k℄the algorithm tests O(k2) 
ombinations of the valuesin Tleft(q) and Tright(k � q), yielding an upper boundof O(k3) per seed. Hen
e the overall time eÆ
ien
y ofalgorithm MDR is O(n+ zk3).

The number of seeds z 
an be estimated by E[z℄ =O(n2 1j�js ) where s = j lk+1k is the length of the seed as
al
ulated above.ImplementationWe implemented AlgorithmMMR and AlgorithmMDRin the REPuter sear
h engine REP�nd. To dete
t seeds(i.e. exa
t repeats) we use the same program as in(Kurtz & S
hleierma
her 1999). In MDR seeds areextended by the dynami
 programming algorithm of(Ukkonen 1985). For both MMR and MDR, we 
om-pute the length of mat
hes by pairwise 
hara
ter 
om-parisons, whi
h is very fast in pra
ti
e.Besides degenerate dire
t repeats, REP�nd is 
apa-ble to dete
t degenerate palindromi
 repeats. This isa
hieved by applying Algorithms MMR and MDR tothe string S#S, where S is the reverse 
omplement ofS and # is a unique separator symbol.To eÆ
iently determine the signi�
an
e of degen-erate repeats we use pre
omputed tables H and E,where E are the estimations as spe
i�ed above andH(l; k) = � lk�pl�k(1� p)k+2 for any l and k. Note thatthe pre
omputed values are independent of n. Multi-plying them by 12n(n � 1) gives the E-value. Thus anE-value is 
omputed in 
onstant time.Sin
e Algorithm MMR and MDR are not heuristi
,they �nd all maximal k-mismat
h or k-di�eren
es re-peats ex
eeding some given length l. However, usuallythe user only wants to see the most interesting repeats.For this reason, in the default mode, REP�nd sele
tsrepeats a

ording to the following rules:(1) To be sele
ted, the right instan
e of a dire
t repeathas to start at least k+1 positions to the right of theleft instan
e of the repeat.(2) For ea
h seed only the most signi�
ant repeat 
on-taining that seed is sele
ted. In this way, \
lumps"of repeats are represented by only one repeat.(3) Among all repeats sele
ted a

ording to (1) and (2),REP�nd reports the b most signi�
ant repeats in or-der of signi�
an
e. The parameter b 
an be de�nedby the user.The output format of REP�nd is either ASCII show-ing ea
h repeat on a single line or a portable binaryformat. The latter is mu
h more spa
e-eÆ
ient and re-quires no parsing. The program 
an optionally reportthe two instan
es of a repeat in form of an alignment.The program REPsele
t reads the binary format de-livered by REP�nd. It allows to sele
t repeats a

ord-ing to user de�ned sele
tion 
riteria. These are to bespe
i�ed by the user in form of exe
utable obje
t 
odethat is linked dynami
ally. Program 
ode for severalsu
h sele
tion fun
tions is supplied to aid the user indeveloping his/her own sele
tion fun
tions.Performan
e ResultsTable 1 shows the running time and spa
e 
onsumptionof REP�nd when applied to several genomes or 
hro-



mosomes. The 
onstru
tion of the suÆx tree is domi-nating the running time. It requires more than 70% ofthe running time. The 
omputation of exa
t repeats isonly slightly faster than the 
omputation of degeneraterepeats. This surprising behavior 
an be explained asfollows: To extend a seed, the only data that needs tobe pro
essed are two pairs of substrings of the input se-quen
e. This is only a very small amount of data whi
his pro
essed sequentially. As a 
onsequen
e, the lo
al-ity behavior of the extension phase is very good, andtherefore it runs very fast. On the other hand, the lo-
ality behavior of the suÆx tree is very poor, see (Kurtz1999). That is, the suÆx tree traversal leads to many
a
he misses, and it thus dominates the running timeof the repeat sear
hing phase.The heuristi
 strategy determines the length parame-ter l su
h that we always �nd degenerate repeats. How-ever, the number of repeats found di�ers very mu
h,espe
ially for the larger sequen
es. The number of ex-a
t repeats is always mu
h smaller than the number ofdegenerate repeats. In most 
ases the number of mis-mat
h repeats is about the same as the number of di�er-en
es repeats. The remarkable ex
eption is Drosophilamelanogaster with 4200 mismat
h repeats and 6731 dif-feren
es repeats.The spa
e requirement for 
omputing the di�eren
esrepeats is on average about 13.7 bytes per input sym-bol in
luding the spa
e for the sequen
e. This is verysimilar to the spa
e requirement for 
omputing exa
trepeats, see (Kurtz & S
hleierma
her 1999).VisualizationREPvis, the visualization 
omponent of the REPuterprogram family, provides an easy to use interfa
e forexamining repeat stru
tures 
omputed by REP�nd ; seeFigures 1, 4, 5, and 6. The program is designed to beused by the biologist, thus putting the data in the handsof those who 
an best interpret it.A typi
al mode of use is as follows: The visualization
omes up showing a single 
olored line, depi
ting eitherthe longest or the most signi�
ant repeat. The �rststep is to obtain an impression of the overall numberand distribution of repeats. By shifting a slider, welet further repeats rise on the s
reen, in the order ofde
reasing length or signi�
an
e, whi
h is 
oded in aten-
olor s
ale (see Figure 4). Sin
e bla
k is used asthe 
olor for the shortest/least signi�
ant repeats, wemay go down all the way: If we hit the noise level, themore signi�
ant repeats still shine up in 
olors before abla
k ba
kground of noise.During the overview, we may 
at
h interest in par-ti
ular repeats or repeat-ri
h regions. A mouse 
li
kbrings up the inspe
tion window; see Figure 6. Here we
an zoom in or out on a region by left or right 
li
kingthe mouse. Sele
ting a position on the strand symbolprints the information 
orresponding to this sequen
eposition in a browser box below. There, a single re-peat 
an be sele
ted to view the alignment of the twoinstan
es of the repeat or to submit the 
orresponding

nu
leotide sequen
e for further investigation of biologi-
al signi�
an
e to a FASTA or BLAST database sear
h.This is a
hieved by invoking Nets
ape Navigator withthe -remote argument, whi
h allows to 
onne
t to andinitiate the load of the database query data into analready-running Nets
ape pro
ess (Zawinski 1994).Con
lusionThe REPuter approa
h gives a 
omplete a

ount of de-generate dire
t and palindromi
 repeats, in
luding sig-ni�
an
e s
ores, with an eÆ
ien
y that allows the anal-ysis of all genomes 
urrently available. It allows in-spe
ting repeats on a ma
ros
opi
 s
ale as well as onthe sequen
e level.Aside from dire
t and palindromi
 repeats, REPuteralso dete
ts linguisti
 palindromes and forward, but
omplemented repeats. Although there is no bio-logi
al me
hanism known to produ
e su
h patterns,low 
omplexity regions are typi
ally exhibited as self-overlapping o

urren
es of the four kinds of repeats de-te
ted by REPuter.At the moment, visual inspe
tion of repeats found byREPuter will be the major mode of appli
ation. In thelong run, models will need to be developed that explainthe manifold aspe
ts of repetitive genome stru
ture. Weexpe
t that REPuter will serve as a basi
 vehi
le forsu
h resear
h.A
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Genome n l Tree Exa
t hdist � 4 edist � 4 Spa
e(MB) (se
) #reps (se
) #reps (se
) #reps (se
) (MB)Rhizobium sp. NGR234 0.51 120 1.10 9 1.71 11 1.71 13 1.71 7.14My
oplasma genitalium 0.55 130 1.19 9 1.84 59 1.89 62 1.90 7.71Ureaplasma urealyti
um 0.72 150 1.64 43 2.42 63 2.47 67 2.53 9.97My
oplasma pneumoniae 0.78 130 1.86 74 2.79 409 2.84 449 2.90 10.82Borrelia burgdorferi 0.87 140 2.10 9 3.22 28 3.23 28 3.27 12.07Chlamydia tra
homatis 0.99 130 2.53 3 3.80 6 3.83 6 3.85 13.82Chlamydia muridarum 1.02 130 2.64 4 3.91 8 3.94 8 3.98 14.16Ri
kettsia prowazekii 1.06 140 2.65 9 4.02 10 4.08 10 4.08 14.71Treponema pallidum 1.09 130 2.85 33 4.20 48 4.25 51 4.28 15.07Chlamydo. pneum. AR39 1.17 130 3.16 6 4.63 7 4.66 8 4.67 16.27Chlamydia pneumoniae 1.17 130 3.13 8 4.62 11 4.65 13 4.70 16.28Aquifex aeoli
us 1.48 140 4.15 12 6.06 22 6.08 23 6.13 20.50Campyloba
ter jejuni 1.57 160 4.29 25 6.33 39 6.37 39 6.38 21.71Methano
o

us jannas
hii 1.59 150 4.36 23 6.45 48 6.48 62 6.48 22.00Heli
oba
ter pylori 1.59 150 4.45 45 6.47 84 6.54 100 6.54 22.04Pyro
o

us horikoshii 1.66 140 4.76 3 6.85 3 7.00 3 7.09 22.97M. thermoautotrophi
um 1.67 140 4.79 29 6.98 51 7.00 57 7.16 23.14Pyro
o

us abyssi 1.68 140 4.82 0 5.00 4 7.00 4 7.09 23.32Haemophilus in
uenzae 1.75 140 4.99 24 7.34 79 7.34 85 7.42 24.19Plasmodium fal
iparum 1.91 240 4.94 46 7.43 107 7.53 126 7.81 26.51Ar
haeoglobus fulgidus 2.08 140 6.11 29 8.93 58 8.98 59 8.99 28.77Deino
o

us radiodurans 2.92 170 8.85 35 12.79 41 12.87 47 12.89 40.40Syne
ho
ystis PCC6803 3.41 160 11.27 347 15.64 655 15.68 686 15.82 47.15Ba
illus subtilis 4.02 150 13.61 286 18.80 411 18.86 496 18.88 55.60M. tuber
ulosis 4.21 170 13.79 118 19.32 189 19.40 190 19.50 58.19Es
heri
hia 
oli 4.42 150 15.18 209 20.66 473 20.89 507 20.98 61.19Sa

haromy
es 
erevisiae 11.50 180 43.19 3379 58.08 9093 58.49 9571 58.96 158.95Homo sapiens Chr. 22 32.06 670 136.56 58 185.88 482 186.71 548 187.33 443.04A. thaliana Chr. 2 and 4 35.47 590 169.06 151 226.43 665 227.30 797 227.64 490.23Caenorhabditis elegans 92.40 1905 584.76 74 762.44 191 767.31 227 769.86 1277.27Drosophila melanogaster 114.44 700 737.73 1330 1047.90 4200 1052.52 6731 1053.92 1582.80Table 1: The running time, the spa
e 
onsumption, and the number of repeats found when applying REP�nd toseveral genomes and large 
hromosomes. The timings are in se
onds. The program was run on a SUN-spar
 
omputerunder Solaris 2.5.1 with a 400 MHz-Pro
essor and 2 Gigabytes of main memory. The se
ond 
olumn shows the lengthof the genome in megabytes. The third 
olumn shows the length parameter l whi
h was 
hosen a

ording to thefollowing strategy: We 
ount, for ea
h possible d, the number b(d) of bran
hing nodes exa
tly of depth d in the suÆxtree. We then determine the largest d su
h that b(d) � 10:000 and set l = 5�d�log10(d). This heuristi
 strategy provedto be good sin
e it balan
es signi�
an
e and speed. Column four of the table shows the 
onstru
tion time of the suÆxtree. The last 
olumn shows the overall spa
e requirement (in megabytes) for 
omputing degenerate repeats withat most four di�eren
es. The remaining 
olumns show the number of repeats found and the 
orresponding runningtime for REP�nd when 
omputing exa
t repeats or degenerate repeats with hamming and edit distan
e at most 4.



Figure 4: A typi
al appli
ation of REPvis, showing a view of the 50 most signi�
ant dire
t repeats in E. 
oli (4.6Mb),ranging from 1147 to 2950 bases in length. There are �ve repeats longer than the longest one found inM. tuber
ulosis ;see Figure 5. In the main window graphi
s panel, two horizontal lines depi
t the input sequen
e and a 
opy of it.Diagonal lines stand for repeats by 
onne
ting their respe
tive starting positions. Below the graphi
s panel, a 
hoi
ebox lists all 
al
ulated sequen
es in a user spe
i�ed dire
tory. Three further buttons swit
h the visualization modeto square graph, 
ir
le graph or dot plot. An additional button leads to the 
omplete list of all repeats and their sizedistribution. Sele
tor buttons spe
ify whi
h type of repeat to display. The symbols F , P , C, and R indi
ate dire
t(forward), palindromi
 (reverse 
omplemented), 
omplemented and reversed repeats; the number of repeats for ea
htype is shown on the button.

Figure 5: A view of the 50 most signi�
ant dire
t repeats in M. tuber
ulosis (4.4Mb), 
omparable in size to E. 
oli.Here the longest repeat has 1697 bases, and no others 
ome 
lose to this one. The mesh-like pattern, 
learer than inE. 
oli, arises from multifold 
opies of the same repeat, around 1370 bases in length. Su
h patterns typi
ally arisefrom insertion sequen
es, whi
h is qui
kly 
on�rmed: A database sear
h indi
ates that this is an insertion sequen
ealso 
ommon in other my
oba
teria.



Figure 6: Zooming in on a repeat ri
h region on Homo sapiens, 
hromosome 22, here at zoom fa
tor 28. (See Figure 1for an overall view of the repeats.) Repeats are displayed with exa
t positions and E-values. An E-value smaller than1:0 � 10�300 is rounded to 0.00. The sequen
e information is available for database sear
h via the FASTA/BLASTbutton.Del
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