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Abstract. The study of genome rearrangements is an important tool
in comparative genomics. This paper revisits the problem of sorting a
multichromosomal genome by translocations, i.e. exchanges of chromo-
some ends. We give an elementary proof of the formula for computing
the translocation distance in linear time, and we give a new algorithm
for sorting by translocations, correcting an error in a previous algorithm
by Hannenhalli.

1 Introduction

We revisit the problem of sorting multichromosomal genomes by translocations
that was introduced by Kececioglu and Ravi [7] and Hannenhalli [5]: Given two
genomes A and B, the goal is to find a shortest sequence of exchanges of non-
empty chromosome ends that transforms A into B. The length of such a shortest
sequence is the translocation distance between A and B, and the problem of
computing this distance is called the translocation distance problem.

The study of genome rearrangements allows to better understand the pro-
cesses of evolution and is an important tool in comparative genomics. However,
the combinatorial theories that underly rearrangement algorithms are complex
and prone to human errors [9, 10].

Given their prevalence in eukaryotic genomes [4], a good understanding of
translocations is necessary. Using tools developed in the context of sorting two
signed genomes by inversions, we establish on solid grounds Hannenhalli’s equa-
tion for the translocation distance, and give a new algorithm for sorting by
translocations.

Restricting genome rearrangements to translocations only might look, at first
glance, a severe constraint. However, mastering the combinatorial knowledge of
a single operation is always a step towards a better understanding of the global
picture. As more and more genomes are decoded, sound mathematical models,
and correct algorithms will play a crucial role in analyzing them.

The next section introduces the basic background needed in the following.
The third section gives a counter-example to Hannenhalli’s algorithm. Section 4
presents a new proof and formula for the translocation distance formula, and
Section 5 discusses the algorithms.



2 Definitions and examples

2.1 Genes, chromosomes and genomes

As usual, we represent a gene by a signed integer where the sign represents its
orientation. A chromosome is a sequence of genes and does not have an orien-
tation. A genome is a set of chromosomes. We assume that each gene appears
exactly once in a genome. If the k-th chromosome in a genome A of N chromo-
somes contains mk genes, then the genes in A are represented by the integers
{1, . . . , n} where n =

∑N
k=1 mk:

A = {(a11 a12 . . . a1m1), (a21 a22 . . . a2m2), . . . , (aN1 aN2 . . . aNmN
)}.

For example, the following genome consists of three chromosomes and nine
genes:

A1 = {(4 3), (1 2 −7 5), (6 −8 9)}.

For an interval I = ai . . . aj of elements inside a chromosome we denote by
−I the reversed interval where the sign of each element is changed, i.e. −I =
−aj . . .− ai. Since a chromosome does not have an orientation, we can flip the
chromosome X = (x1, x2, . . . , xk) into −X = (−xk, . . . ,−x1) and still have the
same chromosome. More precisely, let us consider two chromosomes X and Y .
We say that a chromosome X is identical to a chromosome Y if either X = Y
or X = −Y . Genomes A and B are identical if for each chromosome contained
in A there is an identical chromosome in B and vice versa.

A translocation transforms the chromosomes X = (x1, . . . , xi, xi+1, . . . , xk)
and Y = (y1, . . . , yj , yj+1, . . . , yl) into new chromosomes (x1, . . . , xi, yj+1, . . . , yl)
and (y1, . . . , yj , xi+1, . . . , xk). It is called internal if all exchanged chromosome
ends are non-empty, i.e. 1 < i < k and 1 < j < l.

Given a chromosome X = (x1, x2, . . . , xk), the elements x1 and −xk are
called its tails. Two genomes are co-tailed if their sets of tails are equal. Note
that an internal translocation does not change the set of tails of a genome.

In the following, we assume that the elements of each chromosome of the
target genome B are positive and in increasing order. For example, we have that

A1 = {( 4 3), ( 1 2 −7 5), (6 −8 9)}
B1 = {( 1 2 3), (4 5), (6 7 8 9)}.

The sorting by translocations problem is to find a shortest sequence of translo-
cations that transforms one given genome A into the genome B. We call the
length of such a shortest sequence the translocation distance of A, and denote
this number by d(A). The problem of computing d(A) is called the translocation
distance problem.

In the following, we will always assume that translocations are internal.
Therefore, in the sorting by translocations problem, genomes A and B must
be co-tailed.



Translocations on a genome can be simulated by inversions of intervals of
signed permutations, see [6, 9, 10]. For a genome A with N chromosomes, there
are 2NN ! possible ways to chain the N chromosomes, each of these is called a
concatenation. Given a concatenation, we extend it by adding a first element 0
and a last element n + 1. This results in a signed permutation PA on the set
{0, . . . , n + 1}:

PA = (0 a11 a12 . . . a1m1 a21 a22 . . . a2m2 . . . aN1 aN2 . . . aNmN
n + 1).

An inversion of an interval reverses the order of the interval while changing
the sign of all its elements. We can model translocations on the genome A by
inversions on the signed permutation PA. Sometimes it is necessary to flip a
chromosome. This can also be modeled by the inversion of a chromosome, but
does not count as an operation in computing the translocation distance since
the represented genomes are identical. See Fig. 1 for an example.

A1 = {(4 3), (1 2 -7 5), (6 -8 9)}

{(4 -7 5), (1 2 3), (-9 8 -6)}

{(4 -7 -6), (1 2 3), (-5 -8 9)}

{(-9 -4), (1 2 3), (-5 -8 -7 -6)}

B1 = {(1 2 3), (4 5), (6 7 8 9)}

PA1 = (0 4 3 1 2 -7 5 6 -8 9 10)b b
(0 4 3 -5 7 -2 -1 6 -8 9 10)r r
(0 4 -7 5 -3 -2 -1 6 -8 9 10)r r
(0 4 -7 -6 1 2 3 -5 -8 9 10)b b
(0 4 -7 -6 1 2 3 -9 8 5 10)r r
(0 4 9 -3 -2 -1 6 7 8 5 10)b b
(0 -9 -4 -3 -2 -1 6 7 8 5 10)r r
(0 -9 -8 -7 -6 1 2 3 4 5 10)b b
(0 -5 -4 -3 -2 -1 6 7 8 9 10)b b

Id =(0 1 2 3 4 5 6 7 8 9 10)

Fig. 1. Left: An optimal sorting scenario for the translocation distance problem for the
genomes A and B; the exchanged chromosome ends are underlined. Right: Given an
arbitrary concatenation, the problem can be modeled by sorting the signed permutation
PA by inversions; solid lines denote inversions that represent translocations, dashed
lines denote inversions that flip chromosomes.

In the following sections we consider several concepts such as elementary
intervals, cycles and components that are central to the analysis of the sorting by
translocation problem. These concepts were originally developed for the analysis
of the inversion distance problem. The notation follows [2].



2.2 Elementary intervals and cycles

Let A be a genome on the set {1, . . . , n}. We consider the extended signed
permutation PA defined by an arbitrary concatenation of the chromosomes of
A.

Definition 1. A pair p · q of consecutive elements in a signed permutation is
called a point. A point is called an adjacency if it is a point of the form i · i + 1
or −(i + 1) · −i, 0 ≤ i ≤ n, otherwise it is called a breakpoint.

The signed permutation PA has n + 1 points, N − 1 of them are between
tails, and two other points are between 0 and a tail and between a tail and n+1.
Those N + 1 points define the concatenation of the genome A, and are called
white points. The points inside chromosomes are black points.

For example, the signed permutation PA1 has ten points; three of them are
adjacencies, and all the other points are breakpoints. The points 0 · 4, 3 · 1, 5 · 6
and 9 · 10 are white.

PA1 = (0 4 3 1 2 -7 5 6 -8 9 10)b r b r r r b r r b
When sorting, eventually all black points must become adjacencies. A translo-

cation acts on two black points inside different chromosomes. We can flip chro-
mosomes by performing an inversion between two white points.

Definition 2. For each pair of unsigned elements (k, k + 1), 0 ≤ k < n + 1,
define the elementary interval Ik associated to the pair k · k + 1 of unsigned
elements to be the interval whose endpoints are:

1. the right point of k, if k is positive, otherwise its left point;
2. the left point of k + 1, if k + 1 is positive, otherwise its right point.

Since we assume that genomes are co-tailed and that the elements of the
target genome are positive and in sorted order, the two endpoints of an elemen-
tary interval will always be either both black or both white. From Definition 2
it follows that exactly two elementary intervals of the same color meet at each
breakpoint.

Definition 3. A black (or white) cycle is a sequence of breakpoints that are
linked by black (respectively white) elementary intervals. Adjacencies define triv-
ial cycles.

The elementary intervals and cycles of our example permutation PA1 are
shown in Fig. 2.

The white cycles formed by the N + 1 white points depend on the concate-
nation. Since the order and the orientation of the chromosomes are irrelevant
for the sorting by translocation problem, we focus on the black cycles that are
formed by the n−N black points. The number of black cycles of PA is maximized,
and equals n−N , if and only if genome A is sorted.



PA1 = (0 4 3 1 2 -7 5 6 -8 9 10)
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b b
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Fig. 2. Elementary intervals and cycles of the signed permutation PA1 .

2.3 Effects of a translocation on elementary intervals and cycles

In the previous section we have seen that we have to reduce the number of
black breakpoints or increase the number of black cycles of PA in order to sort
a genome A by translocations. Thus, we are interested in how a translocation
changes the number of breakpoints, as well as the number of cycles.

Lemma 1 (Kececioglu and Ravi [7]). A translocation in genome A modifies
the number of black cycles of PA by 1, 0 or −1.

Following the terminology of Hannenhalli [5], a translocation is called proper
if it increases the number of black cycles by 1, improper if it leaves the number
of black cycles unchanged and bad if it decreases the number of black cycles by
1. As a consequence of Lemma 1 we get the lower bound d(A) ≥ n − N − c,
where c is the number of black cycles of a genome A.

An elementary interval whose endpoints belong to different chromosomes is
called interchromosomal, otherwise it is called intrachromosomal. Given an inter-
chromosomal elementary interval Ik of PA, we can always assume that elements
k and k+1 have different signs, since we can always flip a chromosome. This im-
plies that the corresponding translocation creates a new adjacency: either k ·k+1
or −(k + 1) · −k. Hence we have:

Lemma 2. For each interchromosomal elementary interval in PA, there exists
a proper translocation in the genome A.

2.4 Intrachromosomal components

As discussed in [1] for the inversion distance problem, elementary intervals and
cycles can be grouped into higher structures:

Definition 4. A component of a signed permutation is an interval from i to
i+ j or from −(i+ j) to −i, where j > 0, whose set of elements is {i, . . . , i+ j},
and that is not the union of smaller such intervals.

We refer to a component by giving its first and last element such as [i . . . j].
When the elements of a component belong to the same chromosome, then the
component is said to be intrachromosomal. An intrachromosomal component is



called minimal if it does not contain any other intrachromosomal component.
An intrachromosomal component that is an adjacency is called trivial, otherwise
non-trivial.

For example, consider the genome

A2 = {( 1 −2 3 8 4 −5 6), ( 7 9 −10 11 −12 13 14 −15 16)}.

The signed permutation PA2 has six intrachromosomal components; all of them
are minimal and all except [13 . . . 14] are non-trivial. They can be represented
by a boxed diagram such as in Fig. 3. Note that [3 . . . 9] is a component that is
not intrachromosomal.

The relationship between intrachromosomal components plays an important
role in the sorting by translocations problem. As shown in [3], two different
intrachromosomal components of a chromosome are either disjoint, nested with
different endpoints, or overlapping on one element.

When two intrachromosomal components overlap on one element, we say
that they are linked. Successive linked intrachromosomal components form a
chain. A chain that cannot be extended to the left or right is called maximal.
We represent the nesting and linking relation of intrachromosomal components
of a chromosome in the following way:

Definition 5. Given a chromosome X and its intrachromosomal components,
define the forest FX by the following construction:

1. Each non-trivial intrachromosomal component is represented by a round
node.

2. Each maximal chain that contains non-trivial components is represented by
a square node whose (ordered) children are the round nodes that represent
the non-trivial intrachromosomal components of this chain.

3. A square node is the child of the smallest intrachromosomal component that
contains this chain.

We extend the above definition to a forest of a genome by combining the
forests of all chromosomes:

Definition 6. Given a genome A consisting of chromosomes {X1, X2, . . . , XN}.
The forest FA is the set of forests {FX1 , FX2 , . . . , FXN

}.

Note that the forest FA can consist of more than one tree in contrast to the
unichromosomal case [1]. Figure 3 shows the forest FA2 that consists of three
trees.

2.5 Effects of a translocation on intrachromosomal components

We say that a translocation destroys an intrachromosomal component C if C is
not an intrachromosomal component in the resulting genome. When sorting a
genome, eventually all its non-trivial intrachromosomal components, and hence
all its trees, are destroyed.



PA2 = (0 1 -2 3 8 4 -5 6 7 9 -10 11 -12 13 14 -15 16 17)

FA2 :

c [1 . . . 3] c [4 . . . 6]

���
����

HHH
HHHHc [9 . . . 11] c [11 . . . 13] c [14 . . . 16]

Fig. 3. The intrachromosomal components of the signed permutation PA2 of the
genome A2 = {(1 − 2 3 8 4 − 5 6), (7 9 − 10 11 − 12 13 14 − 15 16)} and
the forest FA2 .

The only way to destroy an intrachromosomal component with translocations
is to apply a translocation with one endpoint in the component, and one end-
point in another chromosome. Such translocations always merge cycles and thus
are always bad. Yet, a translocation may destroy more than one component at
the same time. In fact, a translocation that acts on one point of an intrachromo-
somal component C destroys C and all the intrachromosomal components that
contain C. Thus, at most two minimal intrachromosomal components on two
different chromosomes, plus all intrachromosomal components containing these
two components, can be destroyed by a single translocation.

It is also possible to eventually destroy by a single translocation two intra-
chromosomal components that initially belong to two different trees of the same
chromosome. The next results show how.

Lemma 3. If a chromosome X of genome A contains more than one tree, then
there exists a proper translocation involving chromosome X.

Proof. Consider the chromosome X = (x1 . . . xm). We assume that all elemen-
tary intervals involving chromosome X are intrachromosomal. The first step is to
show that then the whole chromosome is an intrachromosomal component. We
have to show that the first element of the chromosome is the smallest element
and the last element is the greatest, if both are positive, and the reverse, if both
are negative, and that all elements between the smallest and the greatest are
contained in the chromosome.

Let i be the smallest unsigned element contained in chromosome X. Suppose
that i has positive sign and x1 6= i. The left point of i is an endpoint of the
elementary interval Ii−1. Since i is the smallest element, the unsigned element
i−1 belongs to a chromosome different from X. Therefore the elementary interval
Ii−1 is interchromosomal. This contradicts our assumption that all elementary
intervals involving the chromosome X are intrachromosomal.

Let j be the greatest unsigned element contained in chromosome X. Suppose
that j has positive sign and xm 6= j. Then the right point of j is an endpoint



of the elementary interval Ij , and the element j + 1 belongs to another chro-
mosome. Thus, the elementary interval Ij is interchromosomal contradicting our
assumption.

By a similar argumentation, we can show that x1 = −j, if j is the greatest
element and has negative sign, and xm = −i, if i the smallest element and has
negative sign. Moreover, all elements between i and j have to be contained in
chromosome X because otherwise there would be an interchromosomal elemen-
tary interval. Thus, chromosome X itself is an intrachromosomal component,
and contains a single tree. This leads to a contradiction. Therefore, there must
exist an interchromosomal elementary interval with exactly one endpoint in X.
By Lemma 2, the corresponding translocation is proper. ut

Hannenhalli has shown that if there exists a proper translocation, then there
exists a proper translocation that does not create any new minimal intrachromo-
somal components (see Theorem 10 in [5]). However, as we will see in Section 3,
Hannenhalli’s result is not sufficient to prove his claims, and leads to an incorrect
algorithm. The following theorem states a stronger result, which is necessary to
prove the distance formula and to develop sound algorithms.

Theorem 1. If a chromosome X of genome A contains more than one tree, and
no other chromosome of A contains any non-trivial intrachromosomal compo-
nent, then there exists a proper translocation involving chromosome X that does
not modify FA.

Proof. A proper translocation can modify FA either by linking two existing non-
trivial intrachromosomal components, or by creating new ones. In the first case,
the two existing components must be in separate chromosomes, contrary to the
hypothesis.

By Lemma 3, there exists at least one proper translocation involving chromo-
some X. Assume that they all create new non-trivial components, and consider
a proper translocation T that creates a component [i . . . j] of minimal length,
where i < j−1. We will show that then there must exist another proper translo-
cation that either creates smaller components, or does non create non-trivial
components.

Since T creates the component [i . . . j], by flipping chromosomes as necessary,
the signed permutation PA can be written as:

PA = ( . . . i . . . x . . . −j . . . −y . . . ).r r
T

where i and x are on the same chromosome and j and y on a different chromo-
some. Translocation T transforms PA into PA′ :

PA′ = ( . . . i . . . x y . . . j . . . ).

Since the interval (i . . . x y . . . j) is a component, neither (i . . . x) nor (y . . . j)
can be a component, otherwise we would have nested components with the same
endpoints. Moreover, since i < j − 1, we have that i 6= x or j 6= y (or both).



Suppose i 6= x, this means that there exists an elementary interval J that has
one endpoint between i and x and the other endpoint between j and y, other-
wise (i . . . x) would be a component. Thus J is an interchromosomal elementary
interval of PA.

PA = ( . . . i . . . x . . . −j . . . −y . . . )r r
J

Applying the corresponding translocation to A yields:

PA′′ = ( . . . i . . . j . . . −x . . . −y . . . ).

where i and j are on the same chromosome, and x and y on a different one.
If x or y belong to a new non-trivial component in PA′′ , then this component

must by strictly shorter than [i . . . j], since both x and y are in {i . . . j}.
A new non-trivial component cannot contain both i and j, since the element

x ∈ {i . . . j} is on a different chromosome. If it contains i and is longer than
[i . . . j], then it must be an interval of the form: (i′ . . . i . . . j′), where i′ < i < j′ <
j. But all the elements at the right of i are greater than i, and all the elements
at the left of i are smaller than i, implying that either i′ = i or i = j′, which is a
contradiction. Similar arguments hold if the new non-trivial component contains
j and is longer than [i . . . j].

The case where j 6= y can be treated similarly. ut

Efficient sorting by translocations will use the fact that trees belonging to
different chromosomes can be easily dealt with. When all the trees are in one
chromosome, we want to separate them, that means move them to different
chromosomes. The next result states that such a separation is always possible
with translocations that do not modify the topology of the forest.

Corollary 1. If a chromosome X of genome A contains more than one tree,
and no other chromosome of A contains any non-trivial intrachromosomal com-
ponent, then the trees can be separated by proper translocations without modifying
FA.

Proof. By Theorem 1, there exists a proper translocation that does not change
FA. Such a proper translocation either separates the trees or not. If all the
trees are still contained in the same chromosome, then, by the same argument,
there exists another proper translocation that does not change the number of
trees. Thus, there always exists either a separating or a non-separating proper
translocation. Since the number of successive proper translocations is finite, there
always exists a sequence of proper translocations that separates the trees. ut

3 A discussion of Hannenhalli’s algorithm

In order to compute the translocation distance, Hannenhalli [5] introduced the
notions of subpermutations and even-isolation. Subpermutations are equivalent
to the non-trivial intrachromosomal components defined in the previous section.



A genome A has an even-isolation if all the minimal subpermutations of A reside
on a single chromosome, the number of minimal subpermutations is even, and
all the minimal subpermutations are contained within a single subpermutation.
Hannenhalli showed that

d(A) = n−N − c + s + o + 2i

where s denotes the number of minimal subpermutations, o = 1 if the number
of minimal subpermutations is odd and o = 0 otherwise, and i = 1 if P has an
even-isolation and i = 0 otherwise.

Based on the above equation, Hannenhalli gave a polynomial time algorithm
for the sorting by translocations problem (Algorithm 1) where a translocation
is called valid if it decreases the translocation distance.

Algorithm 1 (Hannenhalli’s algorithm, from [5])
1: while A is not identical to the target genome do
2: if there is a proper translocation in A then
3: select a valid proper translocation ρ
4: else
5: select a valid bad translocation ρ
6: end if
7: A← Aρ
8: end while

The main assumption behind the algorithm is that if there exists a proper
translocation, then there always exists a valid proper translocation (Theorem 12
in [5]). This is based on the argument that there exists a proper translocation
that increases the number of cycles by 1 and does not change the number of
minimal subpermutations. Hannenhalli wrongly concludes that such a proper
translocation cannot create an even-isolation. The following genome shows that,
apart from the obvious way to create an even-isolation by creating new subper-
mutations, there is a second way:

A3 = {(1 2 4 3 5 12), (11 6 8 7 9 10)}.

Genome A3 has exactly one proper translocation, yielding

A′
3 = {(1 2 4 3 5 6 8 7 9 10), (11 12)}.

This translocation creates an even-isolation by chaining the two existing subper-
mutations [2 . . . 5] and [6 . . . 9]. Therefore the translocation is not valid.

In order to prove the translocation formula, Hannenhalli first shows that
if there exists a proper translocation, then there exists an alternative proper
translocation that does not create new minimal subpermutations (Theorem 10 in
[5]). Then Hannenhalli assumes that there is no proper translocation and follows
by indicating how to destroy subpermutations (Theorem 13 in [5]). These results



lead to an algorithm based on the false impression that the subpermutations can
be destroyed independently of the sorting procedure.

Sometimes, in an optimal sorting scenario, we first have to destroy the sub-
permutations as it is the case of genome A3. But in other cases, we first have
to separate the subpermutations before destroying them. For example, consider
the following genome:

A4 = {(−9 8 −7 4 −3 2 −1), (10 6 5 11)}.

In order to sort genome A4 optimally, we first have to apply a proper transloca-
tion separating the subpermutations [−9 . . .− 7] and [−3 . . .− 1].

A′
4 = {(−9 8 −7 4 5 11), (10 6 −3 2 −1)}

In the resulting genome A′
4, the two subpermutations belong to different chro-

mosomes so that we can destroy them by a single bad translocation.
However, in the next section we will show that Hannenhalli’s equation for

the translocation distance holds, but that any sorting strategy should deal with
destroying intrachromosomal components at each iteration step.

4 Computing the translocation distance

Given a genome A and the forest FA, let L be the number of leaves, and T the
number of trees of the forest. The following lemma will be central in proving the
distance formula and establishing an invariant for the sorting algorithm.

Lemma 4. Let A be a genome whose forest has L leaves and T trees. If L is
even, and T > 1, then there always exists a sequence of proper translocations,
followed by a bad translocation, such that the resulting genome A′ has L′ = L−2
leaves and T ′ 6= 1 trees.

Proof. If all the trees are on the same chromosome then, by Corollary 1, we can
separate the forest with proper translocations without modifying T or L.

Assume that there exist trees on different chromosomes. In the following,
we show how to pair two leaves such that the bad translocation destroying the
corresponding intrachromosomal components reduces the number of leaves by
two. We have to show that T ′ > 1 or T ′ = 0. Therefore, we consider the following
cases.

If T = 2, then either both trees have an even number of leaves or both have
an odd number of leaves since the total number of leaves is even. If both trees
have an even number of leaves, we pair any two leaves belonging to different
trees and destroy them. In this case, the number of trees can only be increased.
If both trees have an odd number of leaves, then we choose the middle leaves
of both trees. In the best case, if both trees consist of a single leaf each, we get
T ′ = 0, or otherwise T ′ > 1.

If T > 2 and one of the trees has an even number of leaves, we pair one of
its leaves with any other leaf of a tree that belongs to a different chromosome.
Since at most one tree will be destroyed, it follows that T ′ > 1.



If T > 2 and all the trees have an odd number of leaves, then T must be
even since the total number of leaves is even. Hence the number of trees is at
least four and we can choose any two leaves of the trees that belong to different
chromosomes. It follows immediately that T ′ > 1. ut

Lemma 4 implies that when the number of leaves is even, and T > 1, we can
always destroy the forest optimally: we can use proper translocations to separate
the forest, and then remove two leaves with a bad translocation. Eventually, all
trees are destroyed, i.e. T = 0. The basic idea is to reduce all other cases to the
simple case of Lemma 4.

Theorem 2. Let A be a genome with c black cycles and FA be the forest asso-
ciated to A. Then

d(A) = n−N − c + t

where

t =

L + 2 if L is even and T = 1 (1)
L + 1 if L is odd (2)
L if L is even and T 6= 1. (3)

Proof. We first show d(A) ≥ n−N−c+ t. Consider an optimal sorting of length
d containing p proper translocations and b bad translocations, thus d = p + b.
Since b translocations remove b cycles, and p translocations add p cycles, we
must have:

c− b + p = n−N, implying d = n−N − c + 2b.

We will show that 2b ≥ t, implying d ≥ n−N − c + t.
Since a bad translocation removes at most two leaves, we have that b ≥ L/2,

if L is even, and b ≥ (L + 1)/2, if L is odd. Therefore, in cases (2) and (3), it
follows that b ≥ t/2.

If there is only one tree with an even number of leaves, then there must be
a bad translocation B in the optimal sorting that has one endpoint in a tree
and the other not contained in a tree. If this translocation does not destroy any
leaves, then b ≥ 1 + L/2. If translocation B destroys a minimal component, it
destroys exactly one, and the minimal number of bad translocations needed to
get rid of the remaining ones is ((L−1)+1)/2, implying again that b ≥ 1+L/2.
Thus, in case (1), we also have b ≥ t/2.

In order to show that d(A) ≤ n − N − c + t, we will exhibit a sequence of
proper and bad translocations that achieve the bound n−N − c + t.

In case (2), if L is odd and T = 1, we destroy the middle leaf of the tree.
Then L − 1 is even, and T > 1 or T = 0. If T > 1, then the preconditions of
Lemma 4 apply, and the total number of bad translocations will be 1+(L−1)/2.

If L is odd and T > 1, we destroy a single leaf of some tree with more than
one leaf, if such a tree exists. Otherwise, we must have T > 2, since the number
of leaves is odd, and we destroy any leaf. In both cases, we have T ′ > 1. Again,
the total number of bad translocations will be 1 + (L− 1)/2.



In case (3), if L is even and T 6= 1, then the preconditions of Lemma 4 apply,
and the total number of bad translocations will be L/2.

In case (1), if L is even and T = 1, destroy any leaf and apply case (2), the
total number of bad translocations will be 1 + L/2. ut

For example, the genome

A2 = {( 1 −2 3 8 4 −5 6), ( 7 9 −10 11 −12 13 14 −15 16)}

of Section 2.4 consists of two chromosomes and 16 elements. The signed permu-
tation PA2 has seven black cycles. The forest FA2 has three trees and five leaves
(see Fig. 3). Therefore, we have

d(A2) = n−N − c + t = 16− 2− 7 + 6 = 13.

5 Algorithms

In this section we present two algorithms. The first algorithm allows to compute
the translocation distance between two genomes in linear time, a result previ-
ously given by Li et al. [8], although we believe that our algorithm is simpler
than theirs. The second algorithm is the first correct polynomial time algorithm
for sorting a genome by translocations.

The algorithm to compute the translocation distance is similar to the one
to compute the reversal distance presented in [1]. We only sketch the algorithm
here and discuss those parts that need to be modified.

Assume that a genome A and an extended signed permutation PA are given.
The algorithm consists of three parts. In the first part, the cycles of PA are
computed by a left-to-right scan of PA without taking into account the points
between tails. The second part is the computation of the intrachromosomal com-
ponents. We apply to each chromosome the linear-time algorithm of [1] to com-
pute the direct and reversed components of a permutation. Note that the intra-
chromosomal components are equivalent to the direct and reversed components.
Finally, in the third part of the algorithm the forest FA is constructed by a single
pass over the intrachromosomal components, and the distance can then easily
be computed using the formula of Theorem 2.

Altogether, we can state the following theorem, previously established in [8].

Theorem 3. The translocation distance d(A) of a genome A can be computed
in linear time.

We now turn to the sorting by translocations problem. An algorithm that
sorts a genome optimally is shown in Algorithm 2. Assume that the forest FA

of the genome A is given. We denote by L the number of leaves and by T the
number of trees of the forest.

Initially, we apply one or two translocations in order to arrive at the precon-
ditions of Lemma 4. If the forest consists of a single tree with an even number
of leaves (line 2), we destroy any leaf. In the resulting genome, if the number of



leaves is odd and in a single tree, we destroy its middle leaf, if there is more than
one tree, we apply a translocation that destroys one leaf of the greatest tree. In
all cases, we get a genome A′ with T ′ = 0, or T ′ > 1 and L′ even.

Then, as long as there exist intrachromosomal components (i.e. T > 1 and
L is even), we can destroy the forest optimally as described in Lemma 4: we use
proper translocations to separate the forest, and remove two leaves with each
bad translocation. Once all intrachromosomal components are destroyed (i.e.
T = 0), we can sort the genome using proper translocations that do not create
new non-trivial intrachromosomal components. Such proper translocations exist
as we have shown in the proof of Theorem 1. Thus, there always exists either a
proper translocation that does not modify the topology of the forest, or a bad
translocation that maintains the preconditions of Lemma 4. This establishes the
correctness of the algorithm and we have:

Theorem 4. Algorithm 2 solves the sorting by translocations problem in O(n3)
time.

Initially, the forest FA associated to a genome A is constructed. This can
be done in O(n) time as discussed above. The algorithm requires at most O(n)
iterations. The bad translocations of line 9 can be found in constant time as de-
scribed in the proof of Lemma 4. Since there are O(n) proper translocations and
each translocation requires the construction of the forest to verify the condition
T ′ = T and L′ = L, the search for a proper translocation in line 11 takes O(n2)
time. Hence, the total time complexity of Algorithm 2 is O(n3).

Algorithm 2 (Sorting by translocations algorithm)
1: L is the number of leaves, and T the number of trees in the forest FA associated

to the genome A
2: if L is even and T = 1 then
3: destroy one leaf such that L′ = L− 1
4: end if
5: if L is odd then
6: perform a bad translocation such that T ′ = 0, or T ′ > 1 and L′ = L− 1
7: end if
8: while A is not sorted do
9: if there exist intrachromosomal components on different chromosomes then

10: perform a bad translocation such that T ′ = 0, or T ′ > 1 and L′ is even
11: else
12: perform a proper translocation such that T and L remain unchanged
13: end if
14: end while



6 Conclusion

The real challenge in developing genome rearrangement algorithms is to propose
algorithms whose validity can be checked, both mathematically and biologically.
The most useful set of rearrangements operations is currently including translo-
cations, fusions, fissions and inversions [10]. Unfortunately, we think that few
people are able to assess the mathematical validity of the current algorithms.
The work we have done in this paper opens the way to simpler description and
implementation of such algorithms.
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