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Abstract. Database preprocessing in order to create an index often per-
mits considerable speedup in search compared to the iterated query of
an unprocessed database. In this paper we apply index-based database
lookup to a range search problem that arises in mass spectrometry-based
proteomics: given a large collection of sparse integer sets and a sparse
query set, find all the sets from the collection that have at least k integers
in common with the query set. This problem arises when searching for a
mass spectrum in a database of theoretical mass spectra using the shared
peaks count as similarity measure. The algorithms can easily be modi-
fied to use the more advanced shared peaks intensity measure instead of
the shared peaks count. We introduce three different algorithms solving
these problems. We conclude by presenting some experiments using the
algorithms on realistic data showing the advantages and disadvantages
of the algorithms.

1 Background

Large-scale protein identification methods play a critical role for systems biology
approaches [1]. In peptide mass fingerprinting and tandem mass spectrometry,
an experimental spectrum is compared to large databases of theoretical spectra
in time-consuming linear sweeps [13]. While sequence databases have already
been growing exponentially [17], there are a number of recent developments that
indicate even stronger growth in the databases of theoretical spectra that need
to be searched in unbiased proteomics approaches. These developments include
significant increases in the capacity of high-throughput sequencing [11], and
the realization that cells abundantly employ post-transcriptional modifications,
such as alternative splicing [7], and single-residue modifications [9]. Besides the
increase in the size of the search databases itself, ongoing efforts attempt to
improve the quality of the scoring functions used to compare an experimental
spectrum to a single theoretical spectrum. Typically this comes at the cost of
increasing the time of a comparison. Examples of improvements are the predic-
tion of peak intensities in theoretical spectra [3, 5] or the explicit consideration
of peptide modifications in tandem mass spectrometry. As a consequence of the
above, many large-scale proteomics efforts currently face the problem that the



database searching takes much longer time than the experimental generation of
data, making unbiased database search a bottleneck or impossibility in current
proteomics pipelines, and interfering with the application of new, sophisticated
scoring schemes.

One popular approach to speeding up database searching is to first employ a
simple scoring function to filter away spectra that do not score high enough to
be considered as true matches. As this step typically allows to quickly exclude
most candidate spectra, more sophisticated scoring functions can be applied on
the remaining, small, set of spectra. Other approaches attempt to avoid the
linear sweep through the database altogether. One such approach is based on
a standard method (MVP-tree) for accelerating k-nearest neighbor search in
metric spaces [14]. However, the high dimensionality of the spectra significantly
limits how much speedup can be achieved by this type of approach. Another
approach is based on local sensitivity hashing to obtain fast search times despite
the high dimensionality [2]. A drawback of local sensitivity hashing is a non-zero
probability that some spectra might be overlooked even though they are within
the chosen threshold range of the query spectrum. A third, heuristic approach is
based on sequence tags, short sequences of consecutive peaks, and filtering away
all spectra that do not fit these tags [4, 10].

The approach presented here is based on the identification of high-scoring
spectra according to the simple similarity measures shared peaks count (SPC)
and its extension shared peaks intensity (SPI). Since the same database of the-
oretical spectra is typically used for many searches, the database can be pre-
processed and stored in a data structure that enables faster searching. While in
bioinformatics, index-based search has extensively been studied in the context
of string pattern matching [12, 15, 16], we are not aware of any such approaches
in the context of searching a mass spectrometry database.

In Section 2 we give a formal definition of the search problem, called SPC
Range Search Problem, which we consider throughout most of this paper. In
Sections 3, 4 and 5 we introduce three algorithms. Section 6 discusses extensions
of the basic problem and how our algorithms can be adapted. In Section 7 we
present empirical tests of the algorithms on realistic peptide mass fingerprinting
data. Section 8 concludes.

2 Problem Definition

In the following, a mass spectrum is represented as a set of integer m/z values
in the range {1, . . . , N}. A simple similarity measure between two spectra is the
shared peaks count (SPC), the number of m/z values that two spectra have in
common.

Problem 1 (SPC Range Search Problem). Given a set D = {T1, . . . , Tn} of the-
oretical spectra Ti ⊆ {1, . . . , N} and a query spectrum Q ⊆ {1, . . . , N}, find all
the spectra in D that have at least k peaks in common with Q, i.e. identify the
set {i : SPC(Ti, Q) ≥ k} where SPC(S, Q) := |S ∩Q| is the shared peaks count
of sets S and Q.
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Algorithm 1 (Lookup SPC)
Input: array A where A[x] = {i | x ∈ Ti} for all x ∈ {1, . . . , N},

array B where B[i] = 0 for all i ∈ {1, . . . , n}
Output: set of indices I = {i : |Ti ∩Q| ≥ k}
1: I ← ∅
2: for all x ∈ Q do
3: for all y ∈ A[x] do
4: B[y]← B[y] + 1
5: if B[y] = k then
6: I.add(y)
7: end if
8: end for
9: end for

Let m denote the total number of peaks in all the spectra in the database,
i.e. m =

∑n
i=1 |Ti|. If we assume that D and Q are given as sorted lists, then

a straightforward algorithm for solving this problem would take O(
∑n

i=1(|Ti|+
|Q|)) = O(m + n · |Q|) time. However, if we are allowed to build more complex
data structures storing D, faster query times are possible. In the following we
disregard the preprocessing time needed to build the data structure, as long as
it is polynomial, and mainly consider the query times that can be achieved once
the data structure is built.

The above formal problem can be applied to the approaches of peptide mass
fingerprinting and tandem mass spectrometry. In practice, N is determined by
the limited m/z range and the resolution of the instrument used.

3 Lookup Algorithm

A simple data structure for speeding up the query time is an array, A, that maps
each integer in the range {1, . . . , N} to a list of the spectra in D that contains
the integer in question. While considering the elements of Q one after the other,
another array, B, of length n can be used to accumulate the shared peaks count
for each of the n spectra. Algorithm 1 shows pseudocode for this algorithm.

3.1 Analysis of Lookup Algorithm

The lookup algorithm assumes its worst case running time if all the peaks of
Q occur in all the spectra in the database. In this case the running time is
O(n · |Q|). In order to give a better time analysis than this, we have to include
some knowledge about the distribution of masses in the spectra in the database
so that we know that not all the spectra in the database are expected to be in
the result set. Counting the number of times each of the spectra occurs when
we look up all the peaks in the query spectrum means that we will never look
at the spectra that have no peaks in common with the query spectrum. This
should give a substantial speed-up since we expect |Q| to be much smaller than

3



N . If we assume that none of the N possible peaks is contained in more than
P · n spectra, the running time becomes O(P · n · |Q|) which is sub-linear in n
since P is a fraction between zero and one. The best case would occur if the
peaks in the spectra are uniformly distributed over the range {1, . . . , N}. Then
the expected value of P would be m

N ·n , but that is not realistic since we expect
to see more small masses than large masses in a spectrum. In experiments with
a realistic peptide mass fingerprinting database constructed from a list of all
human proteins (see also Section 7) we have measured the value of P to be 0.06
if we only look at masses over 500 Da and use a mass accuracy of 1 Da, see
Fig. 1.
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Fig. 1. Distribution of masses in theoretical tryptic digested spectra. Only masses
above 500 Da are shown, bin-width is 1 Da. The horizontal line shows the value of P ,
the maximal frequency of any of the bins.

4 Folding Algorithm

Our second algorithm uses a mapping of the range of masses {1, . . . , N} into
N ′ � N bins. The mapping should be defined so that the probability that a
spectrum contains a peak belonging to a certain bin should be approximately
the same for all bins. One simple possibility that probably satisfies this property
is by mapping mass i to bin H(i) := i mod N ′.

In the following, let VS be a vector of length N ′ so that VS [i] is the number of
peaks in S that fall in the ith bin, VS [i] := |{s ∈ S | H(s) = i}|. Given two spectra
S and Q, an element i ∈ S\Q contributes to VS [i], but not to VQ[i]. Similarly, an
element i ∈ Q\S contributes to VQ[i], but not to VS [i]. Together, these form the
symmetric difference of S and Q, S 4Q := (S \Q) ∪ (Q \ S). Summing over all
these elements, we observe that the overall number of element-wise differences
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Algorithm 2 (Folding SPC)
Input: D = {T1, . . . , Tn}, and VT for all T ∈ D
Output: set of indices I = {i : |Ti ∩Q| ≥ k}
1: calculate VQ

2: for i = 1 to n do
3: if U(Ti, Q) ≥ k then
4: if SPC(Ti, Q) ≥ k then
5: I.add(i)
6: end if
7: end if
8: end for

in all bins,
∑N ′−1

i=0 |VS [i]− VQ[i]|, is upper-bounded by the cardinality of S4Q,
|S 4 Q| = |S| + |Q| − 2SPC(S, Q). Thus, from the two vectors VS and VQ we
can calculate an upper bound U(S, Q) on the shared peaks count of these two
spectra:

U(S, Q) :=
|S|+ |Q| −

∑N ′−1
i=0 |VS [i]− VQ[i]|

2
≥ SPC(S, Q).

The idea of the folding algorithm is to preprocess the database by storing
for each spectrum Ti ∈ D the corresponding vector VTi . Then, for a given query
spectrum Q, the upper bounds U(Ti, Q) are computed and subsequently the
exact shared peaks count is computed only for those database entries Ti whose
bound was larger than k. Algorithm 2 shows pseudocode for this algorithm.
A speed-up is achieved if U can be computed faster than SPC and only few
computations of the actual shared peaks count are necessary.

4.1 Analysis of Folding Algorithm

Calculating all the upper bounds takes time O(nN ′), but on top of that we need
to calculate the actual shared peaks count of those spectra where the upper
bounds were larger than k. To calculate the actual shared peaks count we just
use the trivial algorithm for finding the intersection of two sorted lists which
takes time proportional to the lengths of the two lists. The number of spectra
for which we need to calculate the actual shared peaks count depends on k, N ′

and Q. In the worst case we would need to calculate the shared peaks count of
all the spectra, in which case the running time would be equal to the running
time of the straightforward algorithm.

5 Clustering Algorithm

The third algorithm solves the SPC Range Search Problem by dividing the
spectra (sets) in D into disjoint subsets C1, . . . , C`. The main idea is to perform
a type of group testing: if the query set Q has less than k peaks in common
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Algorithm 3 (Clustering SPC)
Input: clustering C = {C1, . . . , C`}
Output: set of indices I = {i : |Ti ∩Q| ≥ k}
1: I ← ∅
2: for i = 1 to ` do
3: peaks← ∅
4: for all x ∈ Q do
5: if x ∈

S
j∈Ci

Tj then
6: peaks.add(x)
7: end if
8: end for
9: if peaks.size() ≥ k then

10: for all j ∈ Ci do
11: count← 0
12: for all x ∈ peaks do
13: if x ∈ Tj then
14: count← count + 1
15: end if
16: end for
17: if count ≥ k then
18: I.add(j)
19: end if
20: end for
21: end if
22: end for

with the union of the sets in a cluster Ci, then none of the spectra in the cluster
is in the solution. If however the intersection between Q and the union of the
spectra in the cluster is larger than or equal to k, then we need to compare all
the spectra in the cluster with the intersection Ii := Q ∩ (

⋃
T∈Ci

T ) in order to
obtain SPC(T,Q) = |T ∩Q| = |T ∩ Ii|. Algorithm 3 shows pseudocode for this
algorithm.

The performance of the clustering strategy will depend on how good the
clustering is. The number of spectra that end up in clusters that share k peaks
with the query spectrum Q should be as small as possible, but at the same time
we want there to be as few clusters as possible. The difficulty in making the
clustering algorithm effective is in finding a good trade-off between the number
of clusters and the probability of the query spectrum having many peaks in
common with a cluster.

The probability of a peak from Q belonging to the union of the sets in a
cluster should be about the same for all clusters. If we assume that the peaks
are uniformly distributed, then this means that the size of a cluster should be
some constant factor of the number of possible peaks, i.e. |

⋃
T∈Ci

T | ≈ δN for
all i. Finding a clustering of D that satisfies this constraint using as few clusters
as possible is an NP-hard problem known as the Set-Bin-Packing Problem [6].
For this reason we do not try to find such an optimal clustering but use a
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Algorithm 4 (Clustering Heuristic)
Input: D = {T1, . . . , Tn}, δ, N
Output: clustering C = {C1, . . . , C`} of D
1: i← 1
2: while D is not empty do
3: Ci ← ∅
4: unioni ← ∅
5: T ← D.pop()
6: Ci.add(T )
7: for all x ∈ T do
8: unioni.add(x)
9: end for

10: newsize← |unioni|
11: while newsize ≤ δN do
12: best← D.first()
13: newsize← |unioni ∪ best|
14: for all T ∈ D do
15: if |unioni ∪ T | < newsize or (|unioni ∪ T | = newsize and |T | > |best|)

then
16: best← T
17: newsize← |unioni ∪ best|
18: end if
19: end for
20: if newsize ≤ δN then
21: Ci.add(best)
22: for all x ∈ best do
23: unioni.add(x)
24: end for
25: D.remove(best)
26: end if
27: end while
28: i← i + 1
29: end while

heuristic to create the clustering. Algorithm 4 shows pseudocode for an O(nm)
greedy heuristic for finding a clustering. The first spectrum in a cluster is picked
at random, and afterward we repeatedly add to the cluster the spectrum that
increases the union of the number of different peaks in the cluster the least, until
the union reaches the limit. If several spectra increase the number of peaks in the
cluster by the same amount we add the largest of these to the cluster. Spectra
whose size exceeds the limit become singleton clusters.

5.1 Analysis of Clustering Algorithm

For each cluster Ci it takes O(|Q|) time to calculate the intersection Ii if we store
the peaks in the clusters in a bitvector so that looking up whether a peak is in
the union of a cluster takes constant time. If the size of Ii is k or larger, then
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we need to use additional time O(|Ii| · |Ci|). This gives us an expected running
time of O(` · |Q| +

∑`
i=1 Pr(|Ii| ≥ k) · |Ii| · |Ci|). Since we are looking at the

expected running time, we can use the expected value n
` instead of |Ci| and in

view of |Q| ≥ |Ii| we can write the expected running time as O(` · |Q|+Pr(|Ii| ≥
k) · |Q| · n), because we expect Pr(|Ii| ≥ k) to be the same no matter what
the value of i is. This is always better than the straightforward algorithm since
` < n.

The value of Pr(|Ii| ≥ k) depends very much on the value of k. If k is large,
the probability will be small and the running time will be dominated by the
factor ` · |Q|. If on the other hand k is small, then Pr(|Ii| ≥ k) will be large and
Pr(|Ii| ≥ k) · |Q| · n will dominate the running time.

There is a trade-off between the value of ` and Pr(|Ii| ≥ k), since making `
larger would make the clusters and thus Pr(|Ii| ≥ k) smaller. The actual corre-
spondence between Pr(|Ii| ≥ k) and ` is difficult to calculate since it requires
knowledge about the distribution of peaks in the spectra in the database and
the query spectrum.

5.2 Recursive Clustering

The clustering idea can be applied recursively to yield a hierarchical clustering.
The probability of a peak belonging to a cluster should be the same for all of
the clusters on the same level, but it should be smaller for lower levels than
for higher levels. We can still use Algorithm 4 to make the clustering, now we
just need to apply it recursively to the clusters with a smaller value of δ. The
recursive clustering stops when we reach a certain level or if the clusters contain
only a few peaks. For a cluster that is a sub-cluster of another cluster we do
not need to remember which of all N possible peaks are in the cluster, but only
which of the peaks in the super-cluster are in the cluster. This allows us to save
some space. For a cluster C let C.subclusters be a list of subclusters of C and
let C.rank[i] be x if the ith peak of the super-cluster is in the cluster and there
are x − 1 peaks in the cluster that have got smaller masses. If the ith peak of
the super-cluster is not in the cluster then C.rank[i] should be −1. Algorithm 5
shows pseudocode for a recursive algorithm to search a hierarchical clustering.

6 Extensions

6.1 Shared Peaks Intensities

Apart from their m/z value, peaks in a mass spectrum also have an intensity.
Since there is a higher risk that a peak with small intensity does not come from
an actual protein fragment, but is just due to random noise, the high intensity
peaks should be trusted more than the low intensity peaks. One way of giving
more value to high intensity peaks is by using the shared peaks intensity (SPI)
as similarity measure. The shared peaks intensity of two spectra is the sum of
the intensities of all the peaks they have in common. The shared peaks count
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Algorithm 5 (Recursive Clustering SPC)
Input: cluster C, list of peaks peaks
Output: I = {i : |Ti ∩Q| ≥ k}
1: I ← ∅
2: newPeaks← ∅
3: for all x ∈ peaks do
4: if C.rank[x] 6= −1 then
5: newPeaks.append(C.rank[x])
6: end if
7: end for
8: if newPeaks.size() ≥ k then
9: if C contains only a single spectrum Tj then

10: I.add(j)
11: else
12: for all y ∈ C.subclusters do
13: make recursive call with y and newPeaks
14: end for
15: end if
16: end if

problem of the previous sections can be seen as a special case of the shared peaks
intensity problem where all peaks have intensity one.

Problem 2 (SPI Range Search Problem). Given a set D = {T1, . . . , Tn} of the-
oretical spectra Ti ⊆ {1, . . . , N} and a query spectrum Q = {q1, . . . , qw} ⊆
{1, . . . , N} and their corresponding intensities I(q1), . . . , I(qw), find all the spec-
tra in D where the sum of the intensities of the peaks they have in common
with Q is at least a fraction p of the total intensity of Q, i.e. identify the set
{i : SPI(Ti, Q) ≥ p} where SPI(S, Q) :=

∑
q∈S∩Q I(q)/

∑
q∈Q I(q) is the shared

peaks intensity of sets S and Q.

The lookup and clustering algorithms of the previous sections can easily be
extended to address this problem instead of the SPC problem. The only change
is that instead of counting we now need to sum the intensities.

6.2 Mapping Peaks to Integers

Our algorithms assume that the m/z values are integers even though the values
actually produced by the mass spectrometer are not integers. For this reason
we need to map the real values to integers. A mass spectrometer will have an
associated accuracy stating how much deviation between the real mass and the
measured mass can be expected. If we know that there is only a small risk that
the measured value deviates more than ε from the real value we can map the
value x to an integer by first dividing by a value larger than 2ε and then rounding
down: x → b x

rεc where r > 2. This, however, means that two values less than ε
apart can be mapped to different integers. One way of addressing this problem
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is by mapping the spectra in the database as described above, but mapping the
query spectrum so that if there are two integer values that are within 1

r of x
rε ,

then both of these integers are in the query set. Making the integer conversion
this way means that one might get a higher shared peaks count than one would
get using a more precise alignment between spectra. This is, however, not a big
problem since we intend to use our method as a fast filtering where a reasonable
number of false positives is acceptable, but false negatives are not. The mapping
described above might double the size of the query spectrum which of course
affects the running times, but it ensures that there will be no false negatives.

6.3 Tandem Mass Spectrometry

The algorithms could also be used on tandem mass spectrometry data. In tandem
mass spectrometry, the query spectra come from fragmented “parent” peptides,
whose mass is usually known. This additional information means that, in the case
of tandem mass spectrometry, the database does not need to be preprocessed as
a whole, but independent index structures can be made for all different parent
masses (the masses are rounded to integers). Even though this means that the
spectra in the databases are distributed on many separate data structures, it
does not mean that the data structures are necessarily small.

In tandem mass spectrometry one often wants to consider not just one spec-
trum for each peptide but also take into account the possibility that a peptide
could have been modified by, for example, phosphorylation. The so called virtual
database solution of searching for peptide modifications means that, for each
possible position of all interesting modifications, a new spectrum is added to the
database, resulting in a large increase of the database size. Hopefully the algo-
rithms presented here help making this virtual database approach more feasible.

7 Experiments

We have implemented the following four algorithms in C++ in order to evaluate
their search times in a comparative setting:

Simple: the straightforward algorithm that scans the database linearly for each
query spectrum.

Lookup: the algorithm that stores for each mass a list of the spectra that
contain this mass (Algorithm 1).

Folding: the algorithm that maps the mass range {1, . . . , N} into N ′ � N bins
(Algorithm 2).

Cluster: the algorithm that divides the spectra into disjoint subsets and then
searches these subsets recursively (Algorithms 3–5).

In order to test the running times on realistic peptide mass fingerprint (PMF)
data, we created a PMF database from a list of all human proteins obtained
from The International Protein Index [8]. From each protein we generated a
theoretical spectrum by simulating a tryptic digest of the protein. Trypsin is an
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enzyme that cleaves the protein after each occurrence of the amino acids lysine
or arginine, except if the next amino acid is proline. So for the generation of
theoretical spectra we first split the proteins into substrings based on the just
mentioned rule and then calculated the masses of these substrings by summing
the masses of their amino acids and then converting them to integer values.

We have simulated query spectra by randomly drawing a specific number of
different peaks between 400 and 5000 Da using the distribution of peaks that
we observed in the database. Figure 2 shows query times for searching 1000
different query spectra with 50 peaks each for different values of the threshold
parameter k. It can be seen that while the time usage of the simple algorithm
and the lookup algorithm is almost unaffected by changes in k, the time usage
of the cluster algorithm does depend on this parameter. The lookup algorithm
is always faster than the simple algorithm and for small values of k it also beats
the clustering algorithm, but for larger values of k the clustering algorithm is
the fastest.
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Fig. 2. Experimental results on simulated PMF data. The vertical axis shows the time
in seconds it took to perform 1000 queries. The horizontal axis shows different values of
the minimum shared peaks count k. The clustering algorithm used a recursive clustering
with three levels where the δ parameters for the three levels were 0.05, 0.02 and 0.01.

Figure 3 compares the time usage for the clustering algorithm using clus-
terings built with different values of δ and a version with recursive clustering
(parameters are given in the figure caption). The results show that for a given k
the recursive clustering algorithm is not much better than the best of the single
level clusterings, but the main effect of the recursive clustering is that the curve
is flatter so that the same data structure is good for more values of k.
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Fig. 3. Comparison of the clustering algorithm with different values of the δ parameter
on simulated PMF data. The vertical axis shows the time in seconds it took to perform
1000 queries. The recursive clustering had three levels and the δ parameters for the
three levels were 0.05, 0.02 and 0.01.

The International Protein Index we used contains 69164 human proteins. To
see how the size of the database affects the running times of the algorithms
we also tried creating some smaller databases by only using a fraction of the
69164 proteins and some larger ones by including some extra spectra that were
generated by adding a small value to all the peaks of an existing spectrum.
Figure 4 shows running times for varying database sizes when searching for
query spectra with 50 peaks and a threshold of k = 15. It is interesting to note
that while the clustering algorithm takes twice the time of the lookup algorithm
for n = 25000 it only takes half the time for n = 200000. This means that the
clustering algorithm scales better with database size than the lookup algorithm
does.

We have also tested the algorithms on the shared peaks intensity measure
by giving the peaks in the query spectra intensities picked randomly between 0
and 1 from a uniform distribution. The results can be seen in Fig. 5. They are
similar to the corresponding results for SPC.

8 Conclusion

We have developed three algorithms for searching in an indexed mass spectrom-
etry database using the simple shared peaks count and shared peaks intensity
similarity measures. The algorithms can be used to filter potential candidates in
a database before ranking them using a more sophisticated scoring thus reduc-
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Fig. 4. Experimental results of SPC algorithms on simulated PMF data with varying
database size. The vertical axis shows the time in seconds it took to perform 1000
queries.
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Fig. 5. Experimental results of SPI algorithms on simulated PMF data. The vertical
axis shows the time in seconds it took to perform 1000 queries.
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ing the overall time of the search. Speeding up database searching is becoming
increasingly important due to growing databases and faster data generation.

It is hard to make a good general analysis of the presented algorithms since
the running times depend on the distribution of peaks in the spectra in the
database and in the query spectrum, and these differ between different databases
and different mass spectrometry equipment. So we can not give solid theoretical
evidence that our algorithms will always be much faster than the trivial algo-
rithm, but our experiments show that on realistic data our algorithms do give a
significant speed-up.

A direction to be explored in the future might be the combination of dif-
ferent of our algorithms. In particular, the folding algorithm and the clustering
algorithm are somewhat complementary, such that a hybrid might provide an
additional speed-up.
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