
Algorithms for Finding Gene Clusters

Steffen Heber1 and Jens Stoye2

1 Department of Computer Science & Engineering
University of California, San Diego

sheber@ucsd.edu
2 Max Planck Institute for Molecular Genetics

Berlin, Germany
stoye@molgen.mpg.de

Abstract. Comparing gene orders in completely sequenced genomes is
a standard approach to locate clusters of functionally associated genes.
Often, gene orders are modeled as permutations. Given k permutations
of n elements, a k-tuple of intervals of these permutations consisting of
the same set of elements is called a common interval. We consider several
problems related to common intervals in multiple genomes. We present
an algorithm that finds all common intervals in a family of genomes,
each of which might consist of several chromosomes. We present an-
other algorithm that finds all common intervals in a family of circular
permutations. A third algorithm finds all common intervals in signed
permutations. We also investigate how to combine these approaches. All
algorithms have optimal worst-case time complexity and use linear space.

1 Introduction

The conservation of gene order has been extensively studied so far [25,
19, 16, 12]. There is strong evidence that genes clustering together in phy-
logenetically distant genomes frequently encode functionally associated
proteins [23, 4, 24] or indicate recent horizontal gene transfer [11, 5]. Due
to the increasing amount of completely sequenced genomes, the compari-
son of gene orders to find conserved gene clusters is becoming a standard
approach for protein function prediction [20, 17, 22, 6].

In this paper we describe efficient algorithms for finding gene clusters
for various types of genomic data. We represent gene orders by permu-
tations (re-orderings) of integers. Hence gene clusters correspond to in-
tervals (contiguous subsets) in permutations, and the problem of finding
conserved gene clusters in different genomes translates to the problem of
finding common intervals in multiple permutations.

In addition to this bioinformatical application, common intervals also
relate to the consecutive arrangement problem [2, 7, 8] and to cross-over
operators for genetic algorithms solving sequencing problems such as the



traveling salesman problem or the single machine scheduling problem [3,
15, 18].

Recently, Uno and Yagiura [26] presented an optimal O(n + K) time
and O(n) space algorithm for finding all K ≤

(n
2

)
common intervals of

two permutations π1 and π2 of n elements. We generalized this algorithm
to a family Π = (π1, . . . , πk) of k ≥ 2 permutations in optimal O(kn+K)
time and O(n) space [10] by restricting the set of common intervals to a
smaller, generating subset. To apply common intervals to the bioinformat-
ical problem of finding conserved clusters of genes in data derived from
completely sequenced genomes we further extended the above algorithm
to additional types of permutations.

Genomes of higher organisms generally consist of several linear chro-
mosomes while bacterial, archaeal, and mitochondrial DNA is organized
in one to several circular pieces. While in the first case the algorithm from
[10] might report too many gene clusters if the multiple chromosomes are
simply concatenated, in the latter case gene clusters might be missed if the
circular pieces are cut at some arbitrary point. We handle this problem
by adapting the original algorithm to multichromosomal permutations as
well as circular permutations.

For prokaryotes, it is also known that, in the vast majority of cases,
functionally associated genes of a gene cluster lie on the same DNA strand
[20, 12]. We take this into account by constructing signed permutations
where the sign of a gene indicates the strand it lies on. We then determine
all common intervals with the additional restriction that within each per-
mutation, the elements of a common interval must have the same sign,
while between permutations the sign might vary. This allows us to restrict
the set of common intervals to biologically meaningful candidates.

The paper is organized as follows. In Section 2 we formally define
common intervals and related terminology. We briefly describe the algo-
rithms of Uno and Yagiura [26] and of Heber and Stoye [10] to find all
common intervals of 2 (respectively k ≥ 2) permutations. Then we present
time- and space-optimal algorithms for the problem of finding all com-
mon intervals in multichromosomal permutations (Section 3), in signed
permutations (Section 4), and in circular permutations (Section 5). In
Section 6 we show how the various approaches can be combined without
sacrificing the optimal time complexity. Section 7 concludes with few final
remarks.



2 Common and Irreducible Intervals

2.1 Basic Definitions

A permutation π of (the elements of) the set N := {1, 2, . . . , n} is a re-
ordering of the elements of N . We denote by π(i) = j that the ith element
in this re-ordering is j. For 1 ≤ x ≤ y ≤ n, we set [x, y] := {x, x+1, . . . , y}
and call π([x, y]) := {π(i) | i ∈ [x, y]} an interval of π.

Let Π = (π1, . . . , πk) be a family of k permutations of N . Without
loss of generality we assume in this section that π1 = idn := (1, . . . , n). A
subset c ⊆ N is called a common interval of Π if and only if there exist
1 ≤ lj < uj ≤ n for all 1 ≤ j ≤ k such that

c = π1([l1, u1]) = π2([l2, u2]) = . . . = πk([lk, uk]).

Note that this definition excludes common intervals of size one.
In the following we represent a common interval c either by specifying

its elements or by the shorter notation πj([lj , uj ]) for a j ∈ {1, . . . , n}.
(For πj = idn this notation further simplifies to [lj , uj ].) The set of all
common intervals of Π = (π1, . . . , πk) is denoted CΠ .

Example 1. Let N = {1, . . . , 9} and Π = (π1, π2, π3) with π1 = id9,
π2 = (3, 2, 1, 9, 7, 8, 6, 5, 4), and π3 = (4, 5, 6, 8, 7, 1, 2, 3, 9). With respect
to π1 we have

CΠ = {[1, 2], [1, 3], [1, 9], [2, 3], [4, 5], [4, 6], [4, 8], [5, 6], [5, 8], [6, 8], [7, 8]}.
ut

In order to keep this paper self-contained, in the remainder of this
section we recall the algorithms of Uno and Yagiura [26] and of Heber
and Stoye [10] that find all common intervals of 2 (respectively k ≥ 2)
permutations. We will restrict our description to basic ideas and only
give details where they are necessary for an understanding of the new
algorithms described in Sections 3–6 of this paper.

2.2 Finding All Common Intervals of Two Permutations

Here we consider the problem of finding all common intervals of k = 2
permutations π1 = idn and π2 of N .

An easy test if an interval π2([x, y]), 1 ≤ x < y ≤ n, is a common
interval of Π = (π1, π2) is based on the following functions:

l(x, y) := minπ2([x, y])
u(x, y) := maxπ2([x, y])
f(x, y) := u(x, y)− l(x, y)− (y − x).



Since f(x, y) counts the number of elements in [l(x, y), u(x, y)]\π2([x, y]),
an interval π2([x, y]) is a common interval of Π if and only if f(x, y) = 0.
A simple algorithm to find CΠ is to test for each pair of indices (x, y)
with 1 ≤ x < y ≤ n if f(x, y) = 0, yielding a naive O(n3) time or,
using running minima and maxima, a slightly more involved O(n2) time
algorithm.

In order to save the time to test f(x, y) = 0 for some pairs (x, y), Uno
and Yagiura [26] introduce the notion of wasteful candidates for y.

Definition 1. For a fixed x, a right interval end y > x is called wasteful
if it satisfies f(x′, y) > 0 for all x′ ≤ x.

Based on this notion, Uno and Yagiura give an algorithm called RC
(short for Reduce Candidate) that has as its essential part a data structure
Y consisting of a doubly-linked list ylist for the indices of non-wasteful
right interval end candidates and, storing intervals of ylist, two further
doubly-linked lists llist and ulist that implement the functions l and u
in order to compute f efficiently. An outline of Algorithm RC is shown
in Algorithm 1 where L.succ(e) denotes the successor of element e in a
doubly linked list L.

Algorithm 1 (Reduce Candidate, RC)
Input: A family Π = (π1 = idn, π2) of two permutations of N = {1, . . . , n}.
Output: The set of all common intervals CΠ .
1: initialize Y
2: for x = n− 1, . . . , 1 do
3: update Y // trim ylist, update llist and ulist
4: y ← x
5: while (y ← ylist.succ(y)) defined and f(x, y) = 0 do
6: output [l(x, y), u(x, y)]
7: end while
8: end for

After initializing the lists of Y , a counter x (corresponding to the cur-
rently investigated left interval end) runs from n − 1 down to 1. In each
iteration step, during the update of Y , ylist is trimmed such that after-
wards the function f(x, y) is monotonically increasing for the elements y
remaining in ylist. In lines 5–7, this allows us to efficiently find all com-
mon intervals with left end x by evaluating f(x, y) running left-to-right
through the elements y > x of ylist until an index y is encountered with
f(x, y) > 0 when the reporting procedure stops.



For details of the data structure Y and the update procedure in line 3,
see [26, 10]. The analysis shows that the update of data structure Y in
line 3 can be performed in amortized O(1) time, such that the complete
algorithm takes O(n+K) time to find the K common intervals of π1 and
π2.

2.3 Irreducible Intervals

Before we show how to generalize Algorithm RC to find all common in-
tervals of k ≥ 2 permutations, we first present a useful generating subset
of the set of common intervals, the set of irreducible intervals [10] and
report a few of their properties.

We say that two common intervals c1, c2 ∈ CΠ have a non-trivial over-
lap if c1 ∩ c2 6= ∅ and neither includes the other. A list p = (c1, . . . , c`(p))
of common intervals c1, . . . , c`(p) ∈ CΠ is a chain (of length `(p)) if ev-
ery two successive intervals in p have a non-trivial overlap. A chain of
length one is called a trivial chain, all other chains are called non-trivial
chains. A chain that can not be extended to its left or right is a maximal
chain. It is easy to see that for a chain p of common intervals, the interval
τ(p) :=

⋃
c′∈p c′ is a common interval as well. We say that p generates

τ(p).

Definition 2. A common interval c is called reducible if there is a non-
trivial chain that generates c, otherwise it is called irreducible.

This definition partitions the set of common intervals CΠ into the
set of reducible intervals and the set of irreducible intervals, denoted IΠ .
Obviously, 1 ≤ |IΠ | ≤ |CΠ | ≤

(n
2

)
.

Example 1 (cont’d). For Π = (π1, π2, π3) as above, the irreducible inter-
vals (with respect to π1 = id9) are

IΠ = {[1, 2], [1, 9], [2, 3], [4, 5], [5, 6], [6, 8], [7, 8]}.

The reducible intervals are generated as follows:

[1, 3] = [1, 2] ∪ [2, 3],
[4, 6] = [4, 5] ∪ [5, 6],
[4, 8] = [4, 5] ∪ [5, 6] ∪ [6, 8],
[5, 8] = [5, 6] ∪ [6, 8]. ut



We cite the following two results from [10] (without proofs) which
indicate the great value of the concept of irreducible intervals.

Lemma 1. Given a family Π = (π1, . . . , πk) of permutations of N =
{1, 2, . . . , n}, the set of irreducible intervals IΠ allows us to reconstruct
the set of all common intervals CΠ in optimal O(|CΠ |) time. ut

Lemma 2. Given a family Π = (π1, . . . , πk) of permutations of N =
{1, 2, . . . , n}, we have 1 ≤ |IΠ | ≤ n− 1. ut

2.4 Finding All Common Intervals of k Permutations

Now we can describe the algorithm from [10] that finds all K common
intervals of a family of k ≥ 2 permutations of N in O(kn + K) time.

For 1 ≤ i ≤ k, set Πi := (π1, . . . , πi). Starting with IΠ1 = {[j, j + 1] |
1 ≤ j ≤ n − 1}, the algorithm successively computes IΠi from IΠi−1 for
i = 2, . . . , k (see Algorithm 2). The algorithm employs a mapping

ϕi : IΠi−1 → IΠi

that maps each element c ∈ IΠi−1 to the smallest common interval c′ ∈
CΠi that contains c. It is shown in [10] that this mapping exists and is
surjective, i.e., ϕi(IΠi−1) := {ϕi(c) | c ∈ IΠi−1} = IΠi . Furthermore, it is

Algorithm 2 (Finding all Common Intervals of k Permutations)
Input: A family Π = (π1 = idn, π2, . . . , πk) of k permutations of N = {1, . . . , n}.
Output: The set of all common intervals CΠ .
1: IΠ1 ← ([1, 2], [2, 3], . . . , [n− 1, n])
2: for i = 2, . . . , k do
3: IΠi ← {ϕi(c) | c ∈ IΠi−1} // (see Algorithm 3)
4: end for
5: generate CΠ from IΠ = IΠk using Lemma 1
6: output CΠ

shown that ϕi(IΠi−1) can be efficiently computed by a modified version
of Algorithm RC where the data structure Y is supplemented by a data
structure S that is derived from IΠi−1 . S consists of several doubly-linked
clists containing intervals of ylist, one for each maximal chain of the
intervals in IΠi−1 .

Using π1 and πi, as in Algorithm RC, the ylist of Y allows for a given
x to access all non-wasteful right interval end candidates y of C(π1,πi).



The aim of S is to further reduce these candidates to only those indices y
for which simultaneously [x, y] ∈ CΠi−1 (ensuring [x, y] ∈ CΠi) and [x, y]
contains an interval c ∈ IΠi−1 that is not contained in any smaller interval
from CΠi . Together this ensures that exactly the irreducible intervals
[x, y] ∈ ϕi(IΠi−1) are reported.

An outline of the modified version of Algorithm RC is shown in Algo-
rithm 3. Essentially, S keeps a list of active intervals, i.e., intervals from

Algorithm 3 (Extended Algorithm RC)
Input: A family Π = (π1 = idn, πi) of two permutations of N = {1, . . . , n}; a set of

irreducible intervals IΠi−1 .
Output: The set of irreducible intervals IΠi .
1: initialize Y and S
2: for x = n− 1, . . . , 1 do
3: update Y and S // trim ylist, update l/ulist; activate elements of the clists
4: while ([x′, y]← S .first active interval(x)) defined and f(x, y) = 0 do
5: output [l(x, y), u(x, y)]
6: deactivate [x′, y]
7: end while
8: end for

IΠi−1 for which the image under mapping ϕi has not yet been determined.
In the reporting loop of lines 4–7, rather than testing if f(x, y) = 0 run-
ning from left to right through all indices y > x of ylist, only right ends of
active intervals are tested. Therefore, function S.first active interval(x)
returns the active intervals in left-to-right order with respect to their right
end y. If an active interval [x′, y] gives rise to a common interval, i.e., if
f(x, y) = 0, then an element of ϕi(IΠi−1) is encountered and the active
interval is deactivated. Similar to Algorithm RC, reporting stops when-
ever the first active interval with right end y is encountered such that
f(x, y) > 0.

Again, for details of the data structure and the update procedure in
line 3 we refer to the original description [10]. There it is also shown that
updating the data structure S takes amortized O(1) time. Hence, due
to the reduced output size (see Lemma 2), the Extended Algorithm RC
takes only O(n) time. Together with Lemma 1 this implies the overall
time complexity O(kn + K) for Algorithm 2. The additional space usage
is O(n).



3 Common Intervals of Multichromosomal Permutations

In view of biological reality, in the following we consider variants of the
common intervals problem that have to be addressed when dealing with
real genomic data. Our first variant that we consider is the scenario where
the genome consists of multiple chromosomes.

As above, let N := {1, 2, . . . , n} represent a set of n genes. A chro-
mosome c of N is defined as a linearly ordered subset of N and will be
represented as a linear list. A multichromosomal permutation π of N is
defined as a set of chromosomes, containing each element of N exactly
once, i.e.

π = {c1, . . . , cl} with N =
⋃̇

1≤i≤l
ci.

Given a family Π = (π1, . . . , πk) of k multichromosomal permutations
of N , a subset s ⊆ N is called a common interval of Π if and only if
for each multichromosomal permutation πi, i = 1, . . . , k, there exists a
chromosome with s as an interval.

Example 2. Let N = {1, . . . , 6} and Π = (π1, π2, π3) with π1 = {(1, 2, 3),
(4, 5, 6)}, π2 = {(1, 5, 6, 4), (3, 2)}, and π3 = {(1, 6, 4, 5), (3), (2)}. Here
chromosome ends are indicated by parentheses. The only common interval
is {4, 5, 6}. ut

A modification of Algorithm 2 can be used for finding all common
intervals of k multichromosomal permutations. We start by arranging the
chromosomes of each multichromosomal permutation in arbitrary order.
This way we obtain a family Π ′ = (π′1, π

′
2, . . . , π

′
k) of k (standard) per-

mutations π′i, i = 1, . . . , k. Without loss of generality we assume that
π′1 = idn. Now, as above, set Π ′

i := (π′1, π
′
2, . . . , π

′
i). Then, starting with

IΠ′
1

:= {[j, j+1] | j, j+1 on the same chromosome in π1 and 1 ≤ j < n},

the algorithm successively computes IΠ′
i

from IΠ′
i−1

for i = 2, . . . , k us-
ing a modification of Algorithm 2, where in the extended Algorithm RC
(Algorithm 3) the reporting procedure is not only stopped whenever
f(x, y) > 0, but also as soon as the genes at indices x and y belong
to different chromosomes of πi.

By the definition of IΠ′
1
, this algorithm will never place two genes from

different chromosomes in π1 together in a common interval. Moreover, by
the modification of Algorithm 3, two genes from different chromosomes of
the other genomes π2, . . . , πk will never be placed together in a common
interval. Nevertheless, the location of common intervals that lie on the



same chromosome in all genomes is not affected by the modification of
the algorithm. Since the additional test if x and y belong to the same
chromosome is a constant time operation, and the output can only be
smaller than that of the original Algorithm 3, the new algorithm also takes
O(n) time to generate IΠ′

i
from IΠ′

i−1
. The outer loop (Algorithm 2) and

the final generation of the common intervals from the irreducible intervals
(Lemma 1) are unchanged, so that we have the following

Theorem 1. Given k multichromosomal permutations of N = {1, . . . , n},
all K common intervals can be found in optimal O(kn + K) time using
O(n) additional space. ut

4 Common Intervals of Signed Permutations

In this section we consider the problem of finding all common intervals in
a family of signed permutations. It is common practice when considering
genome rearrangement problems, to denote the direction of a gene in the
genome by a plus (+) or minus (−) sign depending on the DNA strand
it is located on [21]. In the context of sorting signed permutations by
reversals [1, 9, 13, 14], the sign of a gene tells the direction of the gene
in the final (sorted) permutation and changes with each reversal. In our
context, it has been observed that for prokaryotes, functionally coupled
genes, e.g. in operons, virtually always lie on the same DNA strand [20,
12]. Hence, when given signed permutations, we require that the sign does
not change within an interval. Between the different permutations, the
sign of the intervals might vary, though. This restricts the (original) set
of all common intervals to the biologically more meaningful candidates.

Example 3. Let N = {1, . . . , 6} and Π = (π1, π2, π3) with π1 = (+1,+2,
+3,+4,+5,+6), π2 = (−3,−1,−2,+5,+4,+6), and π3 = (−4,+5,+6,
−2,−3,−1). With respect to π1 the interval [1, 3] is a common interval,
but [4, 5] and [4, 6] are not. ut

Obviously, the number of common intervals in signed permutations
can be considerably smaller than the number of common intervals in un-
signed permutations. Hence, applying Algorithm 2 followed by a filtering
step will not yield our desired time-optimal result.

However, the problem can be solved easily by applying the algorithm
for multichromosomal permutations from the previous section. Since a
common interval in signed permutations can never contain two genes
with different sign, we break the signed permutations into pieces (“chro-
mosomes”) wherever the sign changes. This is clearly possible in linear



time. Then we apply the algorithm from the previous section to the ob-
tained family of multichromosomal permutations, the result being exactly
the common intervals of the original signed permutations. Hence, we have
the following

Theorem 2. Given k signed permutations of N = {1, . . . , n}, all K com-
mon intervals can be found in optimal O(kn + K) time using O(n) addi-
tional space. ut

5 Common Intervals of Circular Permutations

As discussed in the Introduction, much of the DNA in nature is circular.
Consequently, by representing genomes as (possibly multichromosomal)
linear permutations of genes and then looking for common gene clusters,
one might miss clusters that span across the (mostly arbitrary) dissection
point where the circular genome is linearized.

In this section we consider an arrangement of the set of genes N =
{1, 2, . . . , n} along a circle and call this a circular permutation. Given a
family Π = (π1, . . . , πk) of k circular permutations of N , a (sub)set c ⊆ N
of genes is called a common interval if and only if the elements of c occur
uninterruptedly in each circular permutation.

Example 4. Let N = {1, . . . , 6} and Π = (π1, π2, π3) with π1 = (1, 2, 3, 4,
5, 6), π2 = (2, 4, 5, 6, 1, 3), and π3 = (6, 4, 1, 3, 2, 5). Apart from the trivial
intervals (N , the singletons, and N minus each singleton), the common
intervals of Π are {1, 2, 3}, {1, 2, 3, 4}, {1, 4, 5, 6}, {2, 3}, {4, 5, 6}, {5, 6}.

ut

In the following we will show how to find all K common intervals
in a family of circular permutations in optimal O(kn + K) time. Again,
this can be done by an easy modification of the original algorithm from
Section 2, in combination with the following observation.

Lemma 3. Let c be a common interval of a family Π of circular permu-
tations of N . Then its complement c̄ := N \ c is also a common interval
of Π.

Proof. This follows immediately from the definition of common intervals
of circular permutations. ut

Note that Lemma 3 does not hold for irreducible intervals.



Algorithm 4 (Finding all Common Intervals of k Circular Permutations)
Input: A family Π = (π1 = idn, π2, . . . , πk) of k circular permutations of N =
{1, . . . , n}.

Output: The set of all common intervals CΠ .
1: I∗Π1 ← ({1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1})
2: for i = 2, . . . , k do
3: I∗Πi

← {ϕ∗
i (c) | c ∈ I∗Πi−1

} // (see text)
4: end for
5: generate C∗

Π from I∗Π = I∗Πk
using Lemma 1

6: C
∗
Π ← {c̄ | c ∈ C∗

Π}
7: output C∗

Π ∪ C
∗
Π

The general idea is now to first find only the common intervals of size
≤ bn

2 c, and then find the remaining common intervals by complement-
ing these. The procedure is outlined in Algorithm 4. The main difference
to Algorithm 2 is that function ϕi is replaced by a variant, denoted ϕ∗

i ,
that works on circular permutations and only generates irreducible inter-
vals of size ≤ bn

2 c. This function is implemented by multiple calls to the
original function ϕi. The two circular permutations π1 and πi are there-
fore linearized in two different ways each, namely by once cutting them
between positions n and 1, and once cutting between positions bn

2 c and
bn

2 c+1. Then ϕi is applied to each of the four resulting pairs of linearized
permutations. For convenience, the output of common intervals of length
> bn

2 c is suppressed. Finally, the resulting intervals of the four runs of ϕi

are merged, sorted according their start and end positions using count-
ing sort, and duplicates are removed. Clearly, ϕ∗

i generates all irreducible
intervals of size ≤ bn

2 c in O(n) time. Hence, we have the following

Theorem 3. Given k circular permutations of N = {1, . . . , n}, all K
common intervals can be found in optimal O(kn + K) time using O(n)
additional space. ut

6 Combination of the Algorithms

In this section we show how to handle arbitrary combinations of multi-
chromosomal, signed, and circular permutations.

Combining multichromosomal and signed permutations is straightfor-
ward, but it is not obvious how to handle combinations which involve
circular chromosomes without loosing the optimal running time. Circu-
lar chromosomes of different genomes might now have incompatible gene
contents and Lemma 3 no longer holds as the following example shows.



Example 5. Let N = {1, . . . , 8} and Π = (π1, π2) with π1 = {(1, 2, 3, 4),
(5, 6, 7, 8)} and π2 = {(1, 3, 5, 6, 7), (2, 4, 8)} where all chromosomes are
circular. While c = {5, 6} is a common interval, its complement N \ c =
{1, 2, 3, 4, 7, 8} is not. ut

We overcome these problems by a preprocessing step where we include
artificial breakpoints into the genomes. The breakpoints do not affect
common intervals but refine the permutations so that they can be handled
by our algorithms. The preprocessing is performed as follows.

We compare permutation π1 successively to each of the other per-
mutations πi, 2 ≤ i ≤ k and test for each pair of neighboring genes in
π1 (i.e. for each chromosome c = (π1(l), π1(l + 1), . . . , π1(r)) the pairs
{π1(j), π1(j + 1)} for l ≤ j ≤ r − 1, plus the pair {π1(l), π1(r)} for cir-
cular c) if they lie on the same chromosome in πi or not. If not, they
can not be elements of the same common interval and we introduce a
new artificial breakpoint between the two genes in π1. Then we do the
same comparison in the opposite direction, i.e. we introduce breakpoints
between neighboring genes of πi, 2 ≤ i ≤ k whenever they do not lie on
the same chromosome of π1. At the first time a breakpoint is inserted in
a circular chromosome, the chromosome is linearized by cutting at the
breakpoint and replacing it in the genome by the appropriately circularly
shifted linear chromosome. Breakpoints in a linear chromosome dissect
the chromosome. This preprocessing can be performed in O(kn) time.

After the preprocessing, the genes that do not occur in any circular
chromosome can be handled by the algorithm for multichromosomal per-
mutations (Section 3) in a straightforward way. The genes that occur in
at least one circular chromosome are partitioned into sets of genes which
correspond to a single circular chromosome. This partition is well defined,
since the set of genes of each remaining circular chromosome corresponds,
in the other genomes, either to one circular or to one or several linear
chromosomes. Each element of this partition is now treated separately.
We start by restricting all genomes to the selected gene set. If each of the
restricted genomes is circular we can apply the algorithm for circular per-
mutations (Section 5) directly. Otherwise we choose a restricted genome
that consists of one or several linear chromosomes and arrange the chro-
mosomes in an arbitrary order. Denote l (r) the first (last) gene in this
order. We proceed as in the multichromosomal case (Section 3) except we
encounter a circular genome πc. If l and r are neighboring genes in πc we
linearize πc by cutting between them and proceed as for a linear genome.
Otherwise, similar to the case of circular permutations (Section 5), we
copy πc four times and linearize the copies by cutting one copy on the left



of l, one copy on the right of l, one copy on the left of r, and one copy
on the right of r. For each of these genomes we compute all irreducible
intervals. The resulting intervals are merged, sorted according their start
and end positions using counting sort, and duplicates are removed. This
procedure guarantees that we determine all irreducible intervals except
for those, which contain l and r simultaneously. But due to our choice of
l and r there is at most one such interval, the trivial one, which contains
all genes. We test this interval separately.

Since the above described preprocessing and the modifications of the
algorithms for multichromosomal and circular permutations do not affect
the optimal asymptotic running time, we have

Theorem 4. Given k multichromosomal, signed, circular or linear (or
mixed) permutations of N = {1, . . . , n}, all K common intervals can be
found in optimal O(kn + K) time using O(n) additional space. ut

7 Conclusion

In this paper we have presented time and space optimal algorithms for
variants of the common intervals problem for k permutations. The vari-
ants we considered, multichromosomal permutations, signed permuta-
tions, circular permutations, and their combinations, were motivated by
the requirements imposed by real data we were confronted with in our
experiments. While in preliminary testing we have applied our algorithms
to bacterial genomes, it is obvious that in a realistic setting, one should
further relax the problem definition. In particular, one should allow for
missing or additional genes in a common interval while imposing a penalty
whenever this occurs. Such relaxations seem to make the problem much
harder, though.
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