
Suboptimal Local Alignments across Multiple
Scoring Schemes

Morris Michael1,2, Christoph Dieterich2, and Jens Stoye1

1 Technische Fakultät, Universität Bielefeld, 33594 Bielefeld, Germany
mmichael@techfak.uni-bielefeld.de, stoye@techfak.uni-bielefeld.de

2 Computational Molecular Biology, Max Planck Institute for Molecular Genetics,
14195 Berlin, Germany, christoph.dieterich@molgen.mpg.de

Abstract. Sequence alignment algorithms have a long standing tradi-
tion in bioinformatics. In this paper, we formulate an extension to exist-
ing local alignment algorithms: local alignments across multiple scoring
functions. For this purpose, we use the Waterman-Eggert algorithm for
suboptimal local alignments as template and introduce two new features
therein: 1) an alignment of two strings over a set of score functions and
2) a switch cost function δ for penalizing jumps into a different scoring
scheme within an alignment.
Phylogenetic footprinting, as one potential application of this algorithm,
was studied in greater detail. In this context, the right evolutionary dis-
tance and thus the scoring scheme is often not known a priori. We mea-
sured sensitivity and specificity on a test set of 21 human-rodent pro-
moter pairs. Ultimately, we could attain a 4.5-fold enrichment of verified
binding sites in our alignments.
Key words: Sequence alignment, non-parametric alignment, phyloge-
netic footprinting, comparative sequence analysis.

1 Introduction

Comparative sequence analysis is a powerful tool in bioinformatics for addressing
a variety of issues. Applications range from grouping of sequences (e.g. protein
sequences) into families to de novo pattern discovery of functional signatures.
Thus, sequence comparison aims at detecting “biologically meaningful” simi-
larities between sequences. Considering gene regulation, it has been known for
a long time that there is considerable sequence conservation between species
in non-protein-coding regions of the genome. Especially, sequence conservation
within promoter regions of genes often stems from transcription factor binding
sites that are under selective pressure (see [5] for a review). Duret and Bucher [4]
give an overview on exploiting sequence conservation across species for the detec-
tion of regulatory elements. This concept is commonly referred to as phylogenetic
footprinting.

Phylogenetic footprinting in a strict sense is carried out on orthologous pro-
moter regions. Local sequence similarities can then be directly interpreted as
related regions harboring conserved functional binding sites. Selecting suitable

Fig. 1. The concept of phylogenetic footprinting. Local sequence similarities
in orthologous promoter regions of genes (light “framed” regions) occur often due to
selective pressure on transcription factor binding sites (shaded boxes).

sequence pairs and the choice of the right scoring parameters is crucial to the
success of the footprinting approach.

Computational approaches to phylogenetic footprinting. If we recall the situation
in Figure 1, an appropriate way of detecting local similarities is to retrieve many
local alignments from the search space. Waterman and Eggert [14] proposed an
extension of the Smith-Waterman [11] local alignment algorithm for finding non-
trivial local similarities (non-intersecting suboptimal local alignments). In earlier
work, we have employed an implementation of the Waterman-Eggert algorithm
successfully in a large-scale study of man-mouse promoter regions [3].

Related approaches. Heuristic algorithms for large-scale comparison of genomic
regions emerged as a new field in computational biology [9]. Recent reviews [12,
2] give a survey of the field and list all available “genome alignment” tools. These
software packages are readily applicable to compare whole syntenic regions of
genomes. BLASTZ [10] is the most similar heuristic solution to the Waterman-
Eggert approach since it computes suboptimal local alignments with gaps, which
have no constraints on their position. Although, BLASTZ is not guaranteed to
find the optimal solution in our setting, it performs well in practice.

Alignment over several score functions. None of the previously mentioned solu-
tions aligns sequence pairs over more than one score function. However, this is
desirable in the context of phylogenetic footprinting. In maximizing local scores
over more than one scoring scheme, sequence properties that can be reflected
in the scoring scheme (e.g. local GC-content, bias in substitution patterns) are
better captured by the alignment algorithm. As another application, Altschul [1]
introduced the idea of multiple score functions for database searches where one
does not know a priori the right evolutionary distance between two sequences.
This is analogous to comparing two promoter regions where we do not know the
evolutionary rates of neutrally diverging sequence and sequence elements under
selective pressure. In this paper, we propose an extension to the Waterman-
Eggert algorithm to meet these demands.

Structure of the paper. Firstly, we introduce the basic notation and edit opera-
tions of local alignment algorithms. Secondly, we formally extend the set of edit
operations to alignments over several score functions. Subsequently, we present
our implementation of an extended version of the Waterman-Eggert algorithm
(as implemented by Huang and Miller [8]), and finally we evaluate the impact of
our modifications on the problem of finding regulatory elements by comparative
sequence analysis.

2 Definitions and Notation

The empty string is denoted by ε and an alphabet of symbols by A. α1α2 . . . αn is
the concatenation of α1, α2, . . . , αn, where αi can be either a string or a symbol
and ε is the neutral element: αε = α = εα. |w| denotes the length and wi the
ith symbol of the string w.

2.1 Basic Definitions

Here, we briefly review the standard terminology of sequence alignment, as we
will use it throughout this paper.

Definition 1 (Edit Operation). An edit operation is a pair

(α, β) ∈ (A ∪ {ε})× (A ∪ {ε}) \ {(ε, ε)}.

It is usually denoted by α→ β.

Edit operations describe the step by step transformation of a source string
into a target string. Three kinds of edit operations exist:

α→ ε denotes the deletion of the symbol α.
ε→ β denotes the insertion of the symbol β.
α→ β denotes the replacement of the symbol α by β. Here we distinguish

between two cases. If α = β it is called a match, otherwise it is called a
mismatch or an exchange.

A maximal sequence of adjacent insertions and deletions forms a gap.

Definition 2 (Alignment). An alignment A of two strings u and v is a se-
quence (α1 → β1, . . . , αh → βh) of edit operations such that α1 . . . αh = u and
β1 . . . βh = v.

An alignment is usually displayed by placing the symbols of the two aligned
strings in different lines, where ε is replaced by -.

Example 1. The alignment (d → ε, a → a, ε → i, r → r, l → l, i → i, n → n,
g → e) is displayed as follows:

u: da-rling
v: -airline

Definition 3 (Score Function). A (similarity) score function σ assigns to
each edit operation α → β a score σ(α → β), where similar pairs of symbols
(matches or exchanges) are scored by positive values and dissimilar pairs by
negative values. Using affine gap costs, the score of an alignment A = (α1 → β1,
. . . , αh → βh) is the sum of the scores of all edit operations and an additional
cost for each gap: σ(A) =

∑h
k=1 σ(αk → βk) + g · γ, where g is the number of

gaps in A and γ ≤ 0 denotes the gap open cost.

Definition 4 (Local Alignment Problem). Let two strings u and v and
a score function σ be given. The local alignment problem is to determine an
alignment A of u′ and v′ such that u′ and v′ are substrings of u and v and the
score of A is maximal:

σ(u, v) = max
{
σ(A)

∣∣∣∣A is an alignment of u′ and v′,
u′ is a substring of u, v′ is a substring of v

}
.

Each alignment that satisfies this condition is called an optimal local alignment
of u and v, and σ(u, v) is called the optimal local alignment score of u and v.

Definition 5 (Suboptimal Alignments). A local alignment A of u and v is
called suboptimal if σ(A) is smaller than the optimal alignment score of u and
v. If we are looking for suboptimal alignments, we want to find them ordered by
decreasing score.

2.2 Several Score Functions

Sequence alignment over several score functions can now be introduced as a
direct generalisation of (standard) local alignment. Again, we first define edit
operations and score functions before we state the alignment problem.

Definition 6 (Edit Operation over Several Score Functions). An edit
operation over p score functions σ1, . . . , σp is a tuple

(α, β, i) ∈ (A ∪ {ε})× (A ∪ {ε})× {1..p} \ {(ε, ε, j) | j ∈ {1..p}}.

It is denoted by α→i β. Its score is σi(α→ β).

Definition 7 (Alignment over Several Score Functions). An alignment A
of two strings u and v over p score functions σ1, . . . , σp is a sequence (α1 →i1 β1,
. . . , αh →ih βh) of edit operations such that α1 . . . αh = u and β1 . . . βh = v.

An alignment over several score functions is displayed by placing the symbols
of the two aligned strings in p+1 lines. For each edit operation α→i β the symbol
α is placed in the first line and β in the i+ 1st line, where ε is replaced by - and
the symbols of each edit operation are in the same column.

Example 2. The alignment (d →2 ε, a →2 a, ε →2 i, r →1 r, l →1 l, i →1 i,
n→1 n, g →2 e) is displayed as follows:

u: da-rling
v1: rlin
v2: -ai e

Definition 8 (Score of an Alignment over Several Score Functions).
The cost of switching between two score functions σ1 and σ2 is determined by a
switch cost function δ(σ1 → σ2).

Using a given switch cost function δ and affine gap costs, the score of an align-
ment A = (α1 →i1 β1, . . . , αh →ih βh) over σ1, . . . , σp is the sum of the scores of
all edit operations, the gap open costs, and all switch costs:

σ(A) =
h∑
k=1

σik(αk → βk) +
p∑
k=1

gk · γk +
h−1∑
k=1

δ(σik−1 → σik)

where gk is the number of gap openings in A scored by σk and γk denotes the
gap open cost for score function σk.

Note that according to this score function gap open costs are applied where
the gap begins, although the score function may be switched within the gap.

Definition 9 (Local Alignment over Several Score Functions Prob-
lem). Let two strings u and v, p score functions σ1, . . . , σp and a switch cost
function δ be given. The local alignment over several score functions problem is
to determine an alignment A over σ1, . . . , σp of u′ and v′ such that u′ and v′ are
substrings of u and v and the score of A is maximal:

σ(u, v) = max
{
σ(A)

∣∣∣∣A is an alignment over σ1, . . . , σp of u′ and v′,
u′ is a substring of u, v′ is a substring of v

}
.

Each alignment that satisfies this condition is called an optimal local alignment
of u and v over σ1, . . . , σp, and σ(u, v) is called the optimal local alignment score
of u and v over σ1, . . . , σp.

2.3 Nonintersecting Alignments

In order to avoid redundancies, similar to Waterman and Eggert [14] we con-
sider only nonintersecting alignments. Two alignments are nonintersecting if they
share no replacement ui → vj . More formally, we define:

Definition 10 (Projection). Let two strings u and v, and substrings u′ =
ubu . . . ueu and v′ = vbv . . . vev be given. The projection of an alignment A =
(α1 → β1, . . . , αh → βh) of u′ and v′ is

Ă = {(bu + |α1 . . . αk| − 1, bv + |β1 . . . βk| − 1) | 1 ≤ k ≤ h, αk 6= ε 6= βk} .

The projection of an alignment over several score functions A = (α1 →i1 β1,
. . . , αh →ih βh) of u′ and v′ is

Ă = {(bu + |α1 . . . αk| − 1, bv + |β1 . . . βk| − 1, ik) | 1 ≤ k ≤ h, αk 6= ε 6= βk} .

Definition 11 (Nonintersecting Alignments). Two local alignments A1 and
A2 of u and v over σ or over σ1, . . . , σp, respectively, are nonintersecting if and
only if Ă1 ∩ Ă2 = ∅.

3 Algorithms

Various techniques have been developed to calculate optimal and suboptimal lo-
cal alignments and have been improved to save resources. Huang and Miller [8]
combined some of them to obtain an algorithm that calculates, for a given num-
ber K, the K best nonintersecting local alignments. In the following, we first
sketch their algorithm, before we extend it to calculate the K best nonintersect-
ing local alignments over p score functions.

3.1 Algorithm of Huang and Miller

Given two sequences u and v of lengths M and N , respectively, in the first phase
of Huang and Miller’s algorithm, a classical linear-space dynamic programming
computation is performed to collect the K highest scores of local alignments of
u and v in O(M · N) time and O(M + N) space, together with the start and
end position of each such alignment (see Algorithm 1). If some of these scores
belong to intersecting alignments, only the highest score of mutually intersecting
alignments is stored. Unfortunately, there is no guarantee that the K best scores
found this way belong to the overall K best nonintersecting alignments, since
some nonintersecting high-scoring alignments may be shaded by even higher
scoring intersecting ones. Therefore, additional passes are required after a local
alignment has been calculated.

More precisely, right after the first pass, using Hirschberg’s [7] technique, the
highest-scoring alignment (of length L1) is computed in O(L1) space and O(L2

1)
time by calculating a global alignment of the substrings determined by the start
and end positions saved with the highest score. Thereby, the used replacements
are recorded to be not used again.

Afterwards, the hidden high scoring alignments are discovered by a limited
backwards dynamic programming pass determining the region of influence of
the calculated alignment, and a forward pass to recompute the score matrix in
this region. To determine the region of influence, some additional information is
recorded. The possible local alignments are partitioned into equivalence classes.
The K classes are stored in a data structure called LIST. An equivalence class S
stored in LIST is represented by a tuple (C,F, u, T,B, L,R) where C is the score
of the best alignment in S, F is the start position of all alignments in S, u is the
end position of an alignment in S that gains score C, and [T,B]× [L,R] contains
the end position of each alignment in S whose score is better than W , the lowest
score of the K saved high scoring classes. The region of influence that needs to
be recomputed is the part [T ′, B]× [L′, R] of the score matrix that contains all
entire alignments ending in [T,B]× [L,R] with a score greater than W .

An implementation of LIST must support the following operations:

– find(f): returns the tuple whose F = f or null if there is no such one.
– insert(S): adds S to LIST.
– maxtuple(): removes a highest scoring tuples in LIST and returns it.
– minscore(): returns the lowest score (W) of all tuples in LIST.

Algorithm 1 Calculating alignment start position
The score for a local alignment ending at (i, j) is usually calculated by

1: D(i, j)← max{D(i− 1, j), C(i− 1, j) + γ}+ σ(ui → ε)
2: I(i, j)← max{I(i, j − 1), C(i, j − 1) + γ}+ σ(ε→ vj)
3: C(i, j)← max{0, D(i, j), I(i, j), C(i− 1, j − 1) + σ(ui → vj)}

To compute the start position the first line is refined to

1: if D(i− 1, j) > C(i− 1, j) + γ then
2: D(i, j)← D(i− 1, j) + σ(ui → ε)
3: StartD(i, j)← StartD(i− 1, j)
4: else if D(i− 1, j) < C(i− 1, j) + γ then
5: D(i, j)← C(i− 1, j) + γ + σ(ui → ε)
6: StartD(i, j)← StartC(i− 1, j)
7: else {tie!}
8: D(i, j)← D(i− 1, j) + σ(ui → ε)
9: StartD(i, j)← max≺{StartD(i− 1, j),StartC(i− 1, j)}

StartD(i, j) denotes the start position of a highest scoring local alignment ending at
(i, j) with a deletion. Similarily, StartI and StartC denote the start of an alignment
ending with an insertion and replacement, respectively.
The other two lines are extended in the same way. If the maximum for C(i, j) is 0,
StartC(i, j) = (i, j).
In case of a tie the start position is chosen by an ordering ≺ of positions. This way,
Huang and Miller showed that two alignments intersect if and only if they have the
same start position.

– replace(S): replaces a lowest scoring tuple in LIST by S.
– size(): returns the number of tuples in LIST.

The LIST is maintained by a function enter [8, Figure 3]: enter(C,F,u,W,l)
first tests if there already is a class S in LIST with the same F. If there is one,
its attributes are adjusted. Otherwise, a new class is added. If there are more
than l classes in LIST, the class with the lowest score is deleted. enter returns
the new minimum score W .

The steps – calculate alignment, determine its region of influence and search
for hidden alignments – are repeated K times. If gaps and mismatches are not
penalized too lightly by the used score function, Huang and Miller show that
the algorithm takes O(M ·N +

∑K
n=1 L

2
n) time and O(M +N +

∑K
n=1 Ln) space

in the expected case, where Ln is the length of nth reported alignment.

3.2 Extended Algorithm for Alignments over Several Score
Functions

An outline of the extended algorithm that calculates the K best local alignments
over several score functions σ1, . . . , σp is shown in Algorithm 2. It differs from
Huang and Miller’s algorithm in additional for loops (lines 4 and 15) that iterate
over the possible score functions, and in the calculations for the scores (lines 5
and 16), the alignment (line 10) and the region of influence (line 12). The function

Algorithm 2 Extension of Huang and Miller’s alg. for several score functions
1: W ← 0
2: for i← 0 to M do
3: for j ← 0 to N do
4: for r ← 1 to p do
5: calculate C(i, j, r) and StartC(i, j, r).
6: if C(i, j, r) > W then
7: W ← enter(C(i, j, r),StartC(i, j, r), (i, j, r),W,K)
8: for n← 1 to K do
9: S ← maxtuple()

10: alignment(S) {calculates and reports an optimal alignment for the equivalence
class S that does not intersect with any already calculated alignment}

11: if n 6= K then
12: calculate the region of influence [T ′, S.B]× [L′, S.R].
13: for i← T ′ to S.B do
14: for j ← L′ to S.R do
15: for r ← 1 to p do
16: Calculate C(i, j, r) and StartC(i, j, r) relating to [T ′, S.B]× [L′, S.R].
17: if C(i, j, r) > W and (i, j) in [S.T, S.B]× [S.L, S.R] then
18: W ← enter(C(i, j, r),StartC(i, j, r), (i, j, r),W,K − n)

enter (lines 7 and 18) that maintains the LIST is almost unchanged. It is only
adapted to consider the used score function as the third coordinate of start and
end positions. Algorithm 3 shows exemplarily how the calculation of C(i, j, r)
and StartC(i, j, r), of the alignment and of the region of interest is extended for
several score functions.

The additional for loops (Algorithm 2, lines 4 and 15) and the nested loop
(Algorithm 3, line 3) needed to compute the score, alignment and region of
interest result in an additional factor of p2 in the time complexity, yielding
O(p2 ·(M ·N+

∑K
n=1 L

2
n)) in the expected case. Regarding the space complexity,

there is an additional factor of p for the intermediate results, yielding O(p · (M+
N) +

∑K
n=1 Ln).

4 Proof of Concept

Now that we have presented our extension of the algorithm, we assess the im-
pact of our modifications. Wasserman et al. [13] compiled a small test set of
mammalian promoter regions where some binding sites had been verified exper-
imentally. We retrieved 21 well annotated man-rodent sequence pairs from this
set and investigated the effect of different parameter settings on the performance
of the algorithm. We measured performance based on two factors: sensitivity in
order to measure the ability of the method to recognize binding sites and cover-
age in order to measure the specificity of detected possible binding sites.

Definition 12 (Sensitivity). The quotient of the number of found binding sites
vs. the number of all annotated binding sites. We deem a binding site as found

Algorithm 3 Extension of Algorithm 1 for several score functions
1: D(i, j, r)← γr
2: StartD(i, j, r)← (i, j, r)
3: for rr ← 1 to p do
4: if C(i− 1, j, rr) + γrr + σ(ui →rr ε) + δ(σrr → σr) > D(i, j, r) then
5: D(i, j, r)← C(i− 1, j, rr) + γrr + σ(ui →rr ε) + δ(σrr → σr)
6: StartD(i, j, r)←StartC(i− 1, j, rr)
7: else if C(i− 1, j, rr) + γrr + σ(ui →rr ε) + δ(σrr → σr) = D(i, j, r) then
8: StartD(i, j, r)← max≺{StartD(i, j, r),StartC(i− 1, j, rr)}
9: if D(i− 1, j, rr) + σ(ui →rr ε) + δ(σrr → σr) > D(i, j, r) then

10: D(i, j, r)← D(i− 1, j, rr) + σ(ui →rr ε) + δ(σrr → σr)
11: StartD(i, j, r)←StartD(i− 1, j, rr)
12: else if D(i− 1, j, rr) + σ(ui →rr ε) + δ(σrr → σr) = D(i, j, r) then
13: StartD(i, j, r)← max≺{StartD(i, j, r),StartD(i− 1, j, rr)}

if at least 70% of the site (core region) are covered by an alignment in the lowest
employed PAM distance.

Definition 13 (Coverage). The length of all alignment parts in the lowest em-
ployed PAM distance divided by the arithmetic mean of the two sequence lengths.

Our test scenario is as follows: The first 10 local alignments are computed for
each sequence pair across all combinations of jump costs and scoring functions.
Alignment gap open and extension costs are set to 11 and 0.1 times the match
score, respectively (see [3]). All scoring matrices are derived from the HKY model
of sequence evolution [6], which takes single nucleotide frequencies into account,
and assume a transition to transversion ratio of 3 : 1. An enumeration of all
parameter settings follows below:

1. Score function sets L (all data in PAM): {1, 5, 15, 20}, {1, 5, 10, 15, 20},
{5, 20, 40, 80}, {1, 20}, {5, 80}, {10, 80}, {20, 80}, {30, 80}, and {40, 80}.

2. Switch cost factors F : 1, 3, 5, 7, 9, 12, 16, 20, 24, and 99999 (no switch
in score function within alignment). The switch cost function δ(σ1 → σ2) is
then given by F · |σ1(A→ ε)− σ2(A→ ε)|.

Before the systematic evaluation here we present parts of an alignment in order
to illustrate how the output of our algorithm may look like. Shown are the 5’
untranslated regions of human cardiac actin gene (first row) and mouse alpha-
cardiac actin gene (other rows). Switch cost factor is F = 7, and the set of score
functions is L = {1, 5, 15, 20}. The annotated binding sites (SRF, SP1, MYF),
showing up nicely in the PAM 1 row, are marked by asterisks in the last row:

1 11 21 358 368 378 388
TGGAAGATGAGAAGCCGCTGTTGC ... CTAGCGGGTGCGAAGGGGACCAAATAAGGCAAGGTGGCAG

PAM 1 TGGAAGATGAGAAGC ... GACCAAATAAGGCAAGGTGGCAG
PAM 5 ...
PAM 15 ...
PAM 20 TGCTGTCTG ... CTAGATGGTGCTAAGGC

158 168 178 547 557 567 577
SRF> ***************

398 408 418 428 436 446 456
ACC--GGGCCCCCCACCCCTGCCCCCGGCTGCTCCAACTGACCCTGTCCATCAGCGTTCTATAA ...

PAM 1 A GGGCCCCCCACCCCTGCCCCCGGCTGCTCCAACTGACCC ...
PAM 5 ...
PAM 15 CGTCCATCAG CTATAA ...
PAM 20 TCAG AGAG ...

587 597 607 617 627 637 647
************** <SP1 *************** <MYF

4.1 Influence of Score Function Set

Figure 2 depicts how the performance of the algorithm is affected by the set of
employed score functions. As expected, sets that include small PAM distances
(1 and 5) perform generally better with respect to “specificity”, whereas larger
PAM distances are a bit more sensitive. Note that the variance along the x-axis
is substantially larger than for the y-axis. This means that the choice of the
scoring scheme mainly affects “specificity”.

4.2 Influence of Switch Costs

Figure 3 demonstrates how switch costs that penalize jumping between different
score functions alter the performance of the algorithm. Evidently, the coverage
drastically increases if switch costs are low (F ≤ 3) and alignments simply grow
by alternating between score functions. Other than that, we could not observe
any general trend with respect to sensitivity or specificity. The key data on the
test set of 21 promoter pairs is shown in the following table:

Table 1 - maximal values
sensitivity coverage sensitivity : coverage
87.3 % 14.3 % 4.46

F=99999; L=30.80 F=20; L=1.5.10.15.20 F=16; L=1.5.10.15.20

5 Discussion

The technique of sequence alignment is vital to bioinformatics. Sequence align-
ment is used in various fields for tasks as diverse as functional annotation, evo-
lutionary parameter estimation and motif discovery. In this paper, we have pre-
sented a versatile algorithm for computing suboptimal local alignments over
multiple score functions. Our implementation does not impose any constraints
or prior assumptions on the position and segmentation of alignments. Conse-
quently, two basic alignment problems are addressed by our solution: 1) Local
alignments often show a “mosaic” structure (the alternation of regions of high

0

20

40

60

80

100

020406080100

se
ns

iti
vi

ty
 [%

]

coverage [%]

ROC L V110U10

L1.5.15.20
L1.5.10.15.20

L5.20.40.80
L1.20
L5.80

L10.80
L20.80
L30.80
L40.80

Fig. 2. Performance over all tested score function sets. For each set of PAM
distances L with each switch cost factor F a point is plotted. Points with the same
value of L are displayed as the same symbol. For a definition of the axis labels see
Defs. 12 and 13.

0

20

40

60

80

100

020406080100

se
ns

iti
vi

ty
 [%

]

coverage [%]

ROC F V110U10

F=1
F=3
F=5
F=7
F=9

F=12
F=16
F=20
F=24

F=99999

Fig. 3. Performance over all switch cost settings. The same graph as in Fig. 2,
but points with the same value of F are displayed as the same symbol.

and low similarity, cf. [15]). We avoid this problem by aligning sequences with
more than one scoring functions and thus capture the problem in a better way.
2) Often one does not know the proper scoring scheme in advance. This challenge
is solved by employing a set of scoring schemes (e.g. for different evolutionary
distances, protein domains, or secondary structures).

In this paper, the algorithm was exemplarily employed for the identification
of transcription factor binding sites. For the test data, a 4.5-fold improvement
of the sensitivity-to-coverage ratio was attained (see Table 1). This is just an
estimation since we do not know how many binding sites escaped experimental
validation so far.

References

1. S. F. Altschul. A protein alignment scoring system sensitive at all evolutionary
distances. J. Mol. Evol., 36:290–300, 1993.

2. P. Chain, S. Kurtz, E. Ohlebusch, and T. Slezak. An applications-focused review of
comparative genomics tools: Capabilities, limitations and future challenges. Brief-
ings in Bioinformatics, 4:105–123, 2003.

3. C. Dieterich, B. Cusack, H. Wang, K. Rateitschak, A. Krause, and M. Vingron.
Annotating regulatory DNA based on man-mouse genomic comparison. Bioinfor-
matics, 18(Suppl 2):S84–S90, 2002. (Proceedings of ECCB 2002).

4. L. Duret and P. Bucher. Searching for regulatory elements in human noncoding
sequences. Curr. Opin. Struct. Biol., 7:399–406, 1997.

5. R. C. Hardison. Conserved noncoding sequences are reliable guides to regulatory
elements. Trends Genet., 16:369–372, 2000.

6. M. Hasegawa, Y. Iida, T. Yano, F. Takaiwa, and M. Iwabuchi. Phylogenetic rela-
tionships among eukaryotic kingdoms inferred from ribosomal RNA sequences. J.
Mol. Evol., 22:32–38, 1985.

7. D. S. Hirschberg. A linear space algorithm for computing maximal common sub-
sequences. Commun. ACM, 18:341–343, 1975.

8. X. Huang and W. Miller. A time-efficient, linear-space local similarity algorithm.
Adv. Appl. Math., 12:337–357, 1991.

9. W. Miller. Comparison of genomic DNA sequences: solved and unsolved problems.
Bioinformatics, 17:391–397, 2001.

10. S. Schwartz, W. J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. C. Hardison, D. Haus-
sler, and W. Miller. Human-mouse alignments with BLASTZ. Genome Res.,
13:103–107, 2003.

11. T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. J. Mol. Biol., 147:195–197, 1981.

12. A. Ureta-Vidal, L. Ettwiller, and E. Birney. Comparative genomics: genome-wide
analysis in metazoan eukaryotes. Nat. Rev. Genet., 4:251–262, 2003.

13. W. W. Wasserman, M. Palumbo, W. Thompson, J. W. Fickett, and C. E. Lawrence.
Human-mouse genome comparisons to locate regulatory sites. Nature Genetics,
26:225–228, 2000.

14. M. S. Waterman and M. Eggert. A new algorithm for best subsequence alignments
with application to tRNA-rRNA comparisons. J. Mol. Biol., 197:723–728, 1987.

15. Z. Zhang, P. Berman, T. Wiehe, and W. Miller. Post-processing long pairwise
alignments. Bioinformatics, 15:1012–1019, 1999.

