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Abstract. Genome rearrangements have been modeled by a variety of
operations such as inversions, translocations, fissions, fusions, transposi-
tions and block interchanges. The double cut and join operation, intro-
duced by Yancopoulos et al., allows to model all the classical operations
while simplifying the algorithms. In this paper we show a simple way to
apply this operation to the most general type of genomes with a mixed
collection of linear and circular chromosomes. We also describe a graph
structure that allows simplifying the theory and distance computation
considerably, as neither capping nor concatenation of the linear chromo-
somes are necessary.

1 Introduction

The problem of sorting multichromosomal genomes can be stated as: Given two
genomes A and B, the goal is to find a shortest sequence of rearrangement
operations that transforms A into B. The length of such a shortest sequence is
called the distance between A and B. Clearly, the solutions depend on what kind
of rearrangement operations are allowed.

Given their prevalence in eukaryotic genomes [7], the usual choices of opera-
tions include translocations, fusions, fissions and inversions. However, there are
some indications that transpositions should also be included in the set of opera-
tions [1], but the lack of theoretical results showing how to include transpositions
in the models led to algorithms that simulate transpositions as sequences of in-
versions.

In [9], the authors describe a general framework in which circular and linear
chromosomes can coexist throughout evolving genomes. They model inversions,
translocations, fissions, fusions, transpositions and block interchanges with a
single operation, called the double cut and join operation. This general model
accounts for the genomic evidence of the coexistence of both linear and circular
chromosomes or plasmids in many genomes [2, 8].

In this paper, we present a simplified formalization of genomes with coexisting
circular and linear chromosomes, and a formal treatment of sorting such genomes
by the double cut and join operation. We introduce a very simple data structure,



the adjacency graph, that is symmetric with respect to the two genomes under
study and is closely related to the visual picture of the genomes themselves. We
also show how the algebraic simplicity of the double cut and join operation yields
efficient sorting algorithms that can be tailored to optimize the use of certain
types of operations.

2 Notes on graphs with vertices of degree one or two

An essential ingredient in genome rearrangment studies are graphs where each
vertex has degree one or two. Here we recall some of their properties.

Let G be a graph where each vertex has degree one or two. We call a vertex
of degree one external and a vertex of degree two internal. An internal vertex
connecting edges p and q is denoted by the unordered multiset {p, q} and an
external vertex incident to an edge p by the singleton set {p}.

It follows immediately from the definition of G that any connected component
of G is either circular, consisting only of internal vertices, or it is linear, consisting
of internal vertices bounded by two external vertices, one at each end. We denote
circular components as cycles and linear components as paths. A cycle or path
is even if it has an even number of edges, otherwise it is odd.

Example 1. The following graph has four vertices of degree one and six vertices
of degree two. It has two cycles and two paths, one of which is even and one of
which is odd.

t t t t tt t t t t
Definition 1. The double cut and join (DCJ) operation acts on two vertices u
and v of a graph with vertices of degree one or two in one of the following three
ways:

(a) If both u = {p, q} and v = {r, s} are internal vertices, these are replaced by
the two vertices {p, r} and {s, q} or by the two vertices {p, s} and {q, r}.

(b) If u = {p, q} is internal and v = {r} is external, these are replaced by {p, r}
and {q} or by {q, r} and {p}.

(c) If both u = {q} and v = {r} are external, these are replaced by {q, r}.

In addition, as an inverse of case (c), a single internal vertex {q, r} can be
replaced by two external vertices {q} and {r}.

Figure 1 illustrates the definition.

The DCJ operation, although defined locally on a pair of vertices, has global
effects on the connected components of the graph. In order to describe these, we
use a terminology essentially borrowed from biology.

First, consider Figure 2. If the two vertices are contained in two different
paths and at least one of them is internal, then these paths exchange their ends,
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Fig. 1. Definition of the double cut and join operation. Note that the operations be-
tween the two top graphs of part (c) are the identity.

which is called a path translocation. If both are external vertices of different
paths, as in Figure 2 (c), then these paths are merged, called a path fusion. The
inverse of a path fusion is a path fission.

The case shown in Figure 3, where both linear and circular components are
mixed, is more intricate. If the DCJ operation acts on vertices contained in the
same path and at least one of them is internal, then the intermediate part of the
path is either reversed, called an inversion, or spliced out producing a new cycle,
called an excision. The inverse operation of an excision is called an integration.
If both are external vertices of the same path, as in Figure 3 (c), then a cycle is
formed, called a circularization. Its opposite is a linearization.

If the vertices are contained in the same cycle, or in two different cycles, as
shown in Figure 4, then we have either an inversion, a cycle fusion or a cycle
fission.

The following lemma is an immediate consequence of the enumeration of all
possible cases in Figures 2, 3 and 4:

Lemma 1. The application of a single DCJ operation changes the number of
circular or linear components by at most one.

We will see in the next two sections how graphs with vertices of degree
one or two appear in two natural ways when modeling genomes and genome
rearrangements.

3 Genes, chromosomes and genomes

In this section we introduce our notation of genomes and how they are modeled
as graphs with vertices of degree one or two.

A gene is an oriented sequence of DNA that starts with a tail and ends with a
head. These are called the extremities of the gene. The tail of a gene a is denoted
by at, and its head is denoted by ah. In biology, the tail of a gene is often called
its 3’ end and the head its 5’ end.
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Fig. 2. The DCJ operation applied on one or two paths yields path translocations,
fusions and fissions.
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Fig. 3. The DCJ operation applied on a single path or a path and a cycle yields
inversions, excisions, integrations, circularizations and linearizations.
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Fig. 4. The DCJ operation applied on a single cycle or on two cycles yields inversions,
cycle fusions and fissions.



Two consecutive genes do not necessarily have the same orientation, since
DNA is double stranded and the complementary strands are read by the tran-
scription machinery in opposite direction. Thus an adjacency of two consecutive
genes a and b, depending on their respective orientation, can be of four different
types:

{ah, bt}, {ah, bh}, {at, bt}, {at, bh}.
An extremity that is not adjacent to any other gene is called a telomere, repre-
sented by a singleton set {ah} or {at}.

A genome is a set of adjacencies and telomeres such that the tail or the head
of any gene appears in exactly one adjancency or telomere.

Given a genome, one reconstructs its chromosomes by representing the telom-
eres and adjacencies as vertices and then joining for each gene its tail and its
head by an edge. Note that the genome graph obtained this way is a graph with
vertices of degree one or two. The connected paths and cycles are chromosomes of
the genome which are either linear or circular. Linear chromosomes are bounded
by telomeres.

Chromosomes are often represented by lists of gene labels. These lists are
obtained by choosing a telomere in a linear chromosome, or an arbitrary gene in
a circular chromosome, and then enumerating the gene labels along the compo-
nent, using positive signs to indicate genes that are read from tail to head and
negative signs to indicate genes that are read from head to tail. For linear chro-
mosomes, the enumeration stops at its other telomere, for circular chromosomes
when the initial gene appears for the second time in the list. Positive signs may
be omitted where convenient.

Example 2. Let

A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {ft}, {fh, gt}, {gh}}

be a genome with seven genes {a, b, c, d, e, f, g}. The corresponding genome graph
is the following:

t t t t tt t t tat ah ct ch dtdh
bt

bh et

eh

ft fh gt gh

One possible list representation of A is {(a, c,−d), (b, e, b), (f, g)}.

Since the chromosome graph is a graph with vertices of degree one or two, the
double cut and join operation defined in Section 2 can be applied to these graphs.
This operation is the same as defined, in different notation, by Yancopoulos et
al. [9].

We can now formulate the problem that we consider:

The DCJ Sorting and Distance Problem. Given two genomes A and B
defined on the same set of genes, find a shortest sequence of DCJ operations
that transforms A into B. The length of such a sequence is called the DCJ
distance between A and B, denoted by dDCJ(A,B).



Example 3. Consider the following two genomes that are defined over the set of
genes {a, b, c, d, e, f, g}:

A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {ft}, {fh, gt}, {gh}}
B = {{ah, bt}, {bh, at}, {ct}, {ch, dt}, {dh}, {et}, {eh}, {fh, gt}, {gh, ft}}

Sorting A into B can, for example, be done in the following five steps, where the
affected gene extremities are underlined:

A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {ft}, {fh, gt}, {gh}}
{{at}, {ah, bt}, {ch, dh}, {dt}, {bh, et}, {eh, ct}, {ft}, {fh, gt}, {gh}}
{{et}, {ah, bt}, {ch, dh}, {dt}, {bh, at}, {eh, ct}, {ft}, {fh, gt}, {gh}}
{{et}, {ah, bt}, {ch, dt}, {dh}, {bh, at}, {eh, ct}, {ft}, {fh, gt}, {gh}}
{{et}, {ah, bt}, {ch, dt}, {dh}, {bh, at}, {eh}, {ct}, {ft}, {fh, gt}, {gh}}

B = {{ah, bt}, {bh, at}, {ct}, {ch, dt}, {dh}, {et}, {eh}, {fh, gt}, {gh, ft}}

The DCJ distance between A and B is dDCJ(A,B) = 5.

4 The adjacency graph

In order to solve the DCJ Distance Problem stated above, another graph of the
type discussed in Section 2 proves to be useful, this time defined on the pair of
genomes A and B.

Definition 2. The adjacency graph AG(A,B) is a graph whose set of vertices
are the adjacencies and telomeres of A and B. For each u ∈ A and v ∈ B there
are |u ∩ v| edges between u and v.

Example 4. The adjacency graph of our two genomes

A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {ft}, {fh, gt}, {gh}}
B = {{ah, bt}, {bh, at}, {ct}, {ch, dt}, {dh}, {et}, {eh}, {fh, gt}, {gh, ft}}

is the following:

t t t t t t t t tat ahct ch dh dt bt eh et bh ft fh gt gh

t t t t t t t t t
ahbt bh at ct ch dt dh et eh fh gt gh ft
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Obviously, every vertex in the adjacency graph has degree one or two, there-
fore it is a union of cycles and paths. Since the graph is bipartite, all cycles have
even length.



Algorithm 1 (Construction of the adjacency graph)
1: create a vertex for each adjacency and each telomere in genomes A and B
2: for each adjacency {p, q} in genome A do
3: create an edge connecting {p, q} and the vertex of genome B that contains p
4: create an edge connecting {p, q} and the vertex of genome B that contains q
5: end for
6: for each telomere {p} of genome A do
7: create an edge connecting {p} and the vertex of genome B that contains p
8: end for

The adjacency graph can easily be constructed as shown in Algorithm 1. Let
N be the number of genes in genomes A and B, respectively. Then Algorithm 1
takes O(N) time and uses O(N) space if the genomes are stored in a data
structure where, for each gene extremity, one has constant time access to the
adjacency or telomere that it is contained in. For example, this can be a table
with two rows of length at most 2N storing the adjacencies and telomeres of the
genome, and another table with two rows of length N storing for each gene in
which columns of the first table to find its head and its tail. For genome

A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {ft}, {fh, gt}, {gh}}

from the previous example, the two tables are shown in the following.

1 2 3 4 5 6 7 8 9

first at ah ch dt bh eh ft fh gh

second – ct dh – et bt – gt –

Table 1. Table storing the adjacencies and
telomeres of genome A. Adjacencies have
two entries, telomeres just one.

a b c d e f g

head 2 5 3 3 6 8 9
tail 1 6 2 4 5 7 8

Table 2. Table storing for each
gene in A the location of its head
and its tail in Table 1.

5 Sorting by DCJ operations

As we will see in this section, the adjacency graph allows a simple characteriza-
tion of many of the properties of sorting by DCJ operations.

Lemma 2. Let A and B be two genomes defined on the same set of N genes,
then we have

A = B if and only if N = C + I/2

where C is the number of cycles and I the number of odd paths in AG(A,B).

Proof. Let a be the number of adjacencies and t the number of telomeres in
A = B, then N = a+ t/2. The adjacency graph AG(A,B) has C = a cycles and
I = t odd paths, hence N = a + t/2 = C + I/2.



To show that N = C + I/2 implies A = B, assume an adjacency graph
G = AG(A,B) such that N = C + I/2. Let a be the number of adjacencies and
t the number of telomeres in A, then N = a + t/2. Each cycle in G contains at
least one adjacency of A, thus C ≤ a. Each odd path in G contains exactly one
telomere of A, thus I ≤ t. From C + I/2 = N = a + t/2 it follows that C = a
and I = t. Thus all cycles have length two and all odd paths have length one,
which is only possible if the genomes are equal. ut

When a DCJ operation is applied to genome A, it acts on the adjacencies
and telomeres of genome A. The same DCJ operation acts also on the adjacency
graph since the adjacencies and telomeres of genome A are vertices of this graph.
Since the adjacency graph is a union of paths and cycles, all the tools and
terminology of Section 2 can be used.

In Lemma 1, we showed that the number of circular and linear components
can change by at most one when a DCJ operation is applied to a graph that
is a union of paths and cycles. In the case of adjacency graphs we have also
constraints on the possible changes in the number of odd paths:

Lemma 3. The application of a single DCJ operation changes the number of
odd paths in the adjacency graph by –2, 0, or 2.

Proof. Consider operations that are path translocations, fusions or fissions (Fig-
ure 2). Two odd paths can be either transformed into two odd paths, or into
one or two paths of even length. Path(s) of even length(s) can be either trans-
formed into path(s) of even length, or into two paths of odd length. One even and
one odd path are always transformed into one even and one odd path. Finally,
splitting one odd path always yields an even and an odd path.

Inversions, excisions, integrations, circularizations and linearizations (Fig-
ure 3) do not change the number of odd paths since all cycles have even length.
No paths are involved in the DCJ operations of Figure 4. ut

Lemma 3 allows to derive the following lower bound for the DCJ distance:

Lemma 4. Let A and B be two genomes defined on the same set of N genes,
then we have

dDCJ(A,B) ≥ N − (C + I/2)

where C is the number of cycles and I the number of odd paths in AG(A,B).

Proof. Since none of the cases of the DCJ operation modifies the number of
cycles and odd paths simultaneously, this follows immediately from Lemmas 1,
2 and 3. ut

The adjacency graph is also very useful when one wants to find an optimal
sequence of sorting operations.

Observe that any pair of edges in the adjacency graph that connect two
different vertices of genome A with an adjacency {p, q} in genome B can be
transformed by a single DCJ operation into a cycle of length two, plus the



Algorithm 2 (Greedy sorting by DCJ)
1: for each adjacency {p, q} in genome B do
2: let u be the element of genome A that contains p
3: let v be the element of genome A that contains q
4: if u 6= v then
5: replace u and v in A by {p, q} and (u \ {p}) ∪ (v \ {q})
6: end if
7: end for
8: for each telomere {p} in genome B do
9: let u be the element of genome A that contains p

10: if u is an adjacency then
11: replace u in A by {p} and (u \ {p})
12: end if
13: end for

remaining structure, reduced by the two edges. This operation always increases
C + I/2 by one since C is increased by one and we have already seen that no
DCJ operation can simultaneously change C and I.r r r r

r r r r r rS
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SS
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�� ⇒

Now assume that all adjacencies of genome B are contained in cycles of length
two. There might still be pairs of telomeres of B that form an adjacency in A.
These adjacencies can be split into two telomeres, thus creating two odd paths
of length one each, increasing I by two.r r r
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Pseudocode for this greedy sorting procedure is given in Algorithm 2. Note
that the adjacency graph does not need to be constructed explicitly if the
genomes are stored in the way sketched at the end of Section 4. Interestingly,
the algorithm is optimal:

Theorem 1. Let A and B be two genomes defined on the same set of N genes,
then we have

dDCJ(A,B) = N − (C + I/2)

where C is the number of cycles and I the number of odd paths in AG(A,B).
An optimal sorting sequence can be found in O(N) time by Algorithm 2.

Proof. Lemma 4 together with the fact that Algorithm 2 increments in each
iteration either C by one or I by two prove the distance formula.

The linear time complexity follows from the fact that our genome represen-
tation allows to find and perform each sorting operation in constant time and
the DCJ distance is never larger than N . ut



Remark 1. It is worth mentioning that our distance formula is equivalent to the
result dDCJ = b−c given by Yancopulos et al. [9], where b is the number of break-
points and c is the number of cycles of the breakpoint graph after appropriate
capping of the linear chromosomes.

To see this, let lA and lB be the number of linear chromosomes in genomes
A and B, respectively. Then the total number of breakpoints, as defined in [9],
is b = N + lB +aa = N + lA +bb where aa is the number of even paths that start
and end in genome A and bb is the number of even paths that start and end in
genome B. The number of cycles is c = C+I+E where C is the number of cycles,
I the number of odd paths and E the number of even paths in the adjacency
graph AG(A,B) as defined in this paper. Obviously E = aa + bb. Moreover,
each linear chromosome is associated to two path ends, thus the number of
linear chromosomes equals the number of paths, lA + lB = I + E. Together this
implies that 2b = 2N + 2E + I, giving b− c = N − C − I/2.

6 Conclusion

We have shown that, with a suitable representation, it is possible to model all
rearrangement operations on the most general genome structure that mixes both
circular and linear chromosomes.

The basic tools for this representation are graphs that are unions of paths and
cycles. Surprisingly, this type of graph can be used for representing genomes, for
computing the DCJ distance, and for suggesting rearrangement scenarios. This
variety of uses suggests many interesting problems.

The first one is to investigate formal properties of graphs that are unions of
paths and cycles, with respect to the DCJ operation. For example, the cyclic
organization of these operations is a striking feature of Figures 2, 3 and 4 and
offers new ways to classify rearrangement operations. These graphs also give
a firm starting point to explore difficult rearrangement problems that involve
either gene duplications [10] or missing information about the actual order of
genes in a genome [3].

Last, but not the least, adding constraints on the type of allowed operations
often yields equations of the form

d(A,B) = dDCJ(A,B) + t

where t represents the additional cost of not resorting to DCJ operations. For
example, the Hannenhalli-Pevzner distance, that allows only translocations and
inversions on linear chromosomes [4], can be recast as avoiding all DCJ op-
erations that create a circular chromosome in either genome A or B. These
operations live only on Figure 2 and the upper half of Figure 3.

Another kind of restriction has recently been studied in [6], where opera-
tions are fusions and fissions between circular unsigned chromosomes, and block
interchanges within a circular unsigned chromosome. The authors assign equal
weight to the three operations, even if a block interchange requires two DCJ op-
erations, and propose an O(N2) time algorithm to sort these circular genomes.



Their algorithm first applies fusions to both source and target genome, until they
have two genomes whose chromosomes have equal gene content. These fusions
can be identified in linear time by a search of the adjacency graph. They then
sort the resulting genomes by block interchanges using an O(N2) time algorithm
described in [5]. This can be done in the same time complexity, but with elemen-
tary means, using a modification of our Algorithm 2 where every intermediate
chromosome created by a fission is immediately re-absorbed in the next step,
such that only block interchanges are performed. The modification is to search,
in the newly created circular chromosomes, a pair of genes that are adjacent in
the target genome, but on different chromosomes in the source genome.
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