
Detecting Repeat Families

in Incompletely Sequenced Genomes

José Augusto Amgarten Quitzau1,2 and Jens Stoye1

1 AG Genominformatik, Technische Fakultät
2 International NRW Graduate School in Bioinformatics and Genome Research

Bielefeld University, Germany

Abstract. Repeats form a major class of sequence in genomes with
implications for functional genomics and practical problems. Their de-
tection and analysis pose a number of challenges in genomic sequence
analysis, especially if the genome is not completely sequenced. The most
abundant and evolutionary active forms of repeats are found in the form
of families of long similar sequences. We present a novel method for
repeat family detection and characterization in cases where the target
genome sequence is not completely known. Therefore we first establish
the sequence graph, a compacted version of sparse de Bruijn graphs.
Using appropriate analysis of the structure of this graph and its con-
nected components after local modifications, we are able to devise two
algorithms for repeat family detection. The applicability of the methods
is shown for both simulated and real genomic data sets.

1 Introduction

In the later 1980’s, scientists had the first contact with genome sequences of
higher-order organisms. At that time, they were amazed by the amount of “junk”
in these sequences. Examining this junk in the following decades, they discovered
that these portions of the genome were less useless than they first suspected. In
fact, there is a myriad of active elements between coding sequences, some of
them being able to replicate themselves, acting like virus DNA, termed insertion
sequences in bacterial genomes, and mobile elements in eukaryotes. They are in
fact believed to be the vestiges of virus infections in ancestral species.

Although repetitive elements may not be active parts of the genome, since
they encode only proteins which are related to their own replication, they are
able to change the genome in many ways. It is known that pairs of insertion
sequences act sometimes together and duplicate not only themselves, but the
whole sequence between them [11]. Also when mobile elements work alone, the
position where the new copy is inserted may belong to important regions in the
genome, like active genes. In fact, insertions of mobile elements are observed
in several genetic disorders, like Duchenne muscular dystrophy, type 2 retinitis
pigmentosa, β-thalassemia, or chronic granulomatous disease [15].

A maybe less noble, but really important motivation to study repetitive ele-
ments is the waste of time and money they cause in genomic research. Finishing

a whole eukaryotic genome sequencing project is neither cheap nor fast, and the
study of specific regions in these huge genomes still depends on specific primer
design. But even when using very specific primers, PCR experiments may result
in garbage, if the sequence to which the primer was designed appears thousands
of times in the whole genome. In many cases, however, there may be enough
sequenced information available to give an overview of the repetitive elements
in the genome. Finding these elements in an incompletely sequenced, unfinished
genome is the aim of this work.

Strategies for de novo repeat identification usually assume that two similar
sequences in a given collection cannot be different copies of the same locus of the
genome. Therefore they may assume that alignments with quality above a certain
threshold provide evidence of a repeat family. We overcome this limitation by
accepting any kind of sequence sets as input, including sets with several copies of
the same locus. For doing this, we do not align the sequences, like the traditional
approaches [1], but partially assemble them using a de Bruijn graph.

The first use of de Bruijn graphs in Bioinformatics was probably the Eulerian
path approach to sequence assembly proposed by Idury and Waterman [9] and
extended by Pevzner, Tang and Waterman [14]. Despite the success achieved by
Pevzner and colleagues’ Euler assembler in assembling bacterial genomes, the
use of de Bruijn graphs for other biological applications does not seem to be
further explored. We find many extensions of the de Bruijn graph based assem-
bly approach in the recent literature [2–5, 19], but they usually focus either on
improvements in error correction methods or in adapting the original method
to new sequencing data. Other works present graphs that slightly remind of de
Bruijn graphs, but miss the main feature of them, namely, the unique represen-
tation of tuples of a given size [13, 17].

The main problem with de Bruijn graphs becomes clear as soon as one starts
working with them. As Myers [12] points out, de Bruijn graphs are simply space
inefficient. And we believe Myers is right when he says that in the context of
sequence assembly the whole process of cutting reads into small pieces to finally
build the de Bruijn graph may not be necessary. To circumvent this, we propose
an efficient implementation of sparse de Bruijn subgraphs, detailed in [16], and
two strategies for using them as repeat family detection tools in incompletely
sequenced genomes.

2 Sparse de Bruijn Graphs

A d-dimensional de Bruijn graph G = (V, A) on an alphabet Σ is the graph
defined as follows:

V = Σd

A = {(u, v) | u, v ∈ V and ui+1 = vi, for all i, 1 ≤ i < d}

where ui denotes the ith character of string u. Strings of length at least d over
the same alphabet describe walks on the d-dimensional de Bruijn graph.

Let s be a string over Σ. The d-dimensional spectrum of s, spectrum(s, d), is
the set of all substrings of s with length d. The spectrum of a set of sequences
is the union of the individual spectra. Given a set S of strings, the associated
d-dimensional de Bruijn subgraph is the graph GS = {VS , AS}, where:

VS = spectrum(S, d)

AS = {(u, v) | u, v ∈ VS and u1 . . . udvd ∈ spectrum(S, d + 1)}.

A vertex in an associated de Bruijn subgraph is called a junction when it has
in-degree greater than 1. A vertex with out-degree greater than 1 is called bifur-

cation.
Sequence associated de Bruijn subgraphs have a very nice asymptotic be-

havior. Their maximum number of nodes increases linearly with the size of the
input, and even decreases with the dimension of the graph. The main problem is
that, although these graphs scale very well with the sequence set size, the graphs
corresponding to genomes as small as bacterial genomes are already huge.

2.1 Sequence Graph

De Bruijn graphs are by definition sparse [6, Chapter 7]. Even in applications
where smaller dimensions are required [8], their number of edges in the DNA
world is not greater than four times the number of nodes. Their subgraphs are
surely sparser. In a typical sequence analysis application [14, 20], the probability
of having a node with maximum in- or outdegree is very low. Therefore the
graph construction in such applications is usually followed by a step where long
branch-free paths are collapsed to single nodes. In [16], we present a way to
directly construct the compact representation of a sparse de Bruijn graph, called
a d-dimensional sequence graph, or simply sequence graph.

An example of a sequence graph is shown in Figure 1. Like a d-dimensional
de Bruijn subgraph, every d-tuple over the given alphabet may be represented
by at most one vertex in the sequence graph. Furthermore, a sequence graph
may contain an arc (u, v) only if the suffix of length d− 1 of u matches perfectly
the prefix of v. The main difference between a sequence graph and a de Bruijn
graph is that vertices in a sequence graph are not limited to the size d, but
may have any size between d and |Σ|

d
+ d − 1. This allows the representation

of non-branching paths in a single node. The compression, however, depends on
the way the structure is built.

There is an index mapping every d-tuple represented by the sequence graph
to the node in which it is found. The tuple position in the node is also stored,
so that it may be directly accessed, after the index search. We also extend the
natural concept of neighborhood from nodes to tuples. In a sequence graph, two
d-tuples a and b are called neighbors if either there is an arc (u, v) such that the
suffix of length d of u is a, and the prefix of length d of v is b; or both a and
b are in the same node and the occurrence of a precedes the occurrence of b by
one position.

Apart from the inclusion of nodes, there are two operations that can be
applied on the set of nodes.

AAC

AAG

ACT

AGA

AGT

ATA

ATG

ATT

CAA

CAT

CCT

CTA

CTT

GAG

GAT

GCA

GCC

GGT

GTA

GTG

GTT

TAA

TAT

TGA

TGC

TGG

TGT

TTA

TTG

TTT

TAAGATGCATATTGTG

TGAGTA

TGGTTTGCCTTA

CAACTA

11

1

2

4

7

10

3

6

8

13

9

5

0

12

Fig. 1. Sequence graph corresponding to a 3-dimensional de Bruijn subgraph on the
alphabet Σ = {A, C, G, T}. Links connecting the index to the node TAAGATGCATATTGTG

are shown as black arrows with offsets, all other such connectors are shown in gray.

Cut: Transforms a single node in two neighbor nodes. A cut does not change
the set of sequences represented by the graph, since no new tuple of size d

or greater is created, and the new edge binds two tuples that were neighbors
before.

Merge: Is the inverse operation of cut. Notice that this operation can only be
applied on neighbor nodes u and v such that u has outdegree 1 and v has
indegree 1. The operation removes the edge (u, v) by merging its nodes into
a single node.

2.2 Repeat Families in Sequence Graphs

The length of repetitive elements may vary from the few bases of short tandem
repeats to the thousands of bases of long transposons. We know that only exact
repeats with length greater than the underlying graph dimension can be iden-
tified in such a graph, since they are represented by single nodes both in the
sequence graphs, and in the original form of de Bruijn graphs.

Although they may be much smaller than the graph dimension, the exhaus-
tive, uninterrupted succession of almost perfect copies in tandem repeats is able
to create tangled patterns in the graph. In these cases, the large number and
perfection of copies is responsible for the rising of larger perfect matches.

In the case of interspersed repeats, their replication mechanism allows the
appearance of copies which are physically far away from each other in the DNA
molecule. On the other hand, the content of a single copy is usually unique. Apart
from the usual reverse short repeats in their extremities, the sequence inside
mobile elements often lacks exact repeats. Therefore the portion of a sequence
graph corresponding to a repeat family is much better organized than the tangled
tandem repeats regions. Often the sequence graphs of repeat families are directed
acyclic graphs. This can be used as a starting point for repeat identification.

3 Repeat Family Detection

Although the real challenge we want to address with this work is the detection of
repeat families in eukaryotic genomes, our first subject of study are the simpler,
easier to understand bacterial genomes. A typical bacterial genome is not bigger
than six or seven million base pairs, and roughly the same number of l-tuples,
when l is relatively small. The number of possible strings of length l for an
alphabet of size 4, by contrast, is already huge for very small values of l. For
typical sequence analysis applications, like approximate string matching, the
value of l is chosen large enough to allow the assumption that very few tuples
appear twice in the genome just by chance.

The number of repeat families in a single genome is quite small. The average
number of different families in a single genome found in [11] is 2.79. The copy
number of a family in a single genome is also not big. Although the number of
copies can be as big as 14, like the number of copies belonging to the family
IS1 in Mycoplasma, the average number of distinct elements of the same family
is 2.27. Therefore, assuming that copies are uniformly spread along the genome
sequence, we may expect repeats to be separated by quite long non-repetitive
sequences. This may be also true for some eukaryotes, like Arabidopsis thaliana,
which has 10% of its genome composed by mobile elements [7], while other
eukaryotes have a much more complicated genome structure.

3.1 Connected Components

Nodes corresponding to repetitive sequences may be discovered and marked dur-
ing the sequence graph construction. Nodes corresponding to unique sequences
either represent larger sequences from the unique parts of the genome, or are
the result of small dissimilarities between elements of the same repeat family. In
the second case, unique nodes are not larger than a repeat family element, since
entities of the same repeat family are similar enough to share perfect matches.
On the other hand, unique sequences between repeat copies can be much longer.

The sequence graph for a genome must therefore be composed of clusters
of small repetitive nodes, interconnected by longer single ones. As a result, the
deletion of long unique nodes may decompose the graph into a few connected
components, containing one or more repeat families. Based on this simple prin-
ciple, we devised a method for separating repeat families in a genome. The
procedure is described in Algorithm 1. The input is a set S of reads of some
genome and a length threshold value l. We start building the sequence graph
for this set of sequences. Originally, nodes with different sequence sets cannot
be merged. As a result, every read end coincides with a node end, which leads
in many cases to branch free paths in the sequence graph. Therefore we ignore
this restriction and merge nodes in branch free paths, as long as they are ei-
ther both marked as repeats, or both unmarked, even if their sequence sets are
not identical. The resulting graph may contain long single nodes, exceeding the
length threshold l. We delete them, and merge the repeated nodes that were not

merged only because of the now deleted long nodes. Notice that, at this point,
no other node can be merged or deleted.

The resulting graph is already a collection of separated connected compo-
nents. However, some of them may be the result of unrelated small perfect
matches. These repeats created by chance are easy to identify. They are in com-
ponents with few nodes (not more than 5), with a single, short repeated node in
the center. We call these components small components. The small components
are removed from the graph as well, leaving only components corresponding to
larger families.

We implemented this approach in the Java programming language and tested
it with artificially created chromosomes, simulating situations from simple bacte-
rial chromosomes to chromosomes which are more than 50% composed of repet-
itive elements. Details about simulation and results are given in Section 4.1.

Algorithm 1 Connected Components

1: function IsolateComponents(S , l)
2: Build the sequence graph for S
3: Merge all possible pairs of nodes
4: Remove all single nodes of length ≥ l

5: Merge all possible pairs of nodes
6: Remove all small components
7: return the resulting connected components
8: end function

3.2 Combining Nodes

In cases when elements of the same repeat family differ in many close bases, the
connected component based detection method may miss some less represented
families. This happens because the few sequences do not share any l-tuple in a
certain region.

As a result, although two (or more) long closely related single nodes can be
found in the graph, they are discarded as long unique nodes, and the remaining
part is either detected as a partial family, or is discarded as a small compo-
nent. On the other hand, repeats of the same family often share at least one
l-tuple somewhere along their sequence. And in the cases where sequences share
only a few tuples, the nodes representing the common ones can be extended by
combining the closely related unique nodes around them.

By combining two nodes we mean replacing both nodes by a single node
whose sequence is the consensus between them. The procedure is shown in Al-
gorithm 2 and represented in Figure 2. In the most general case, the two nodes
to be combined, n1 and n2, are of different length. We assume w.l.o.g. that n1

is longer than n2.
In the first step, the node prefixes are aligned. We use a semi-global align-

ment algorithm [18, Section 3.2.3] for that. The score matrix considers matches

Algorithm 2 Combine

1: procedure Combine(n1, n2, t)
2: Let n1 be the longer of the two nodes
3: Align the sequences of n1 and n2, creating a semi-global alignment of length l

4: if the alignment score is smaller than t ×
⌈

l−d+1

d

⌉

then

5: Cut the node n1 at the end of the aligned prefix
6: Let n1 be the left portion of the cut node n1

7: Create a new node n with the consensus of n1 and n2

8: Bind the nodes in the neighborhood of n1 and n2 to n

9: Remove n1 and n2

10: end if

11: end procedure

between any two possible symbols found in the IUPAC standard code for nu-
cleotides. For symbols that represent a single nucleotide (A, C, G, T), the score is
simply 0 for a match and 1 for a mismatch. For matches involving at least one
symbol representing a set of nucleotides, like W = {A, T}, the score is 0 if one
set contains the other; otherwise it is the minimum number of replacements and
deletions needed to transform one set into the other. For instance, the score for
aligning W with G is 2, since we need to replace one of the elements of W by G,
and delete the remaining one; on the other hand, the score for aligning W with T

is 0, since W contains T.

GGATAGGC AAT

A

AAT GGC A

A CT G

A AC TG CA TA ACT GG

A AC TG CA TA ACT GG

A

T

A

C AGT C T TA CG

TCTGACWAAC

Fig. 2. The combine operation. The two shaded nodes on the left are combined, and
result in the shaded node on the right. Two nodes are only combined when the edit dis-
tance between their prefixes is below a certain threshold. The new node label contains
the consensus sequence.

Alignments with a score below a certain threshold allow the combination. The
threshold is defined by the minimum number of mismatches needed to separate
the nodes, m, rescaled by a user defined scale factor t. The minimum number of
mismatches is given by

m =

⌈

l − d + 1

d

⌉

,

where l is the alignment length and d is the underlying de Bruijn graph dimen-
sion.

When the alignment score allows a combination, the longer of the two nodes,
n1, is cut at the point where the aligned prefix ends. The prefix and the second

node n2 are then replaced by a node n representing the alignment consensus.
This new node is finally connected to the neighborhood of the replaced nodes.

In the general case, combining two nodes does not reduce the graph size,
but its complexity. In practice, a series of combinations may reduce tangled
subgraphs to simple paths, which may be finally merged into a single longer node.
Especially for more complex datasets sequenced at low genome coverage, this
procedure gives a considerable advantage over the simple connected component
approach, as shown by the results in Section 4.2.

4 Results

We applied our methods to both real and artificially created data. Comparing
our methods to already published de novo repeat identification methods is not
possible because they differ both in the input and in the output. We have as input
not continous portions of an incompletely sequenced genome, but a low coverage
set of reads. And we output connected components, which may be interpreted
as collections of reads which belong to the same repeat family. Therefore, when
measuring the success of our method in separating repeat families in a genome,
the most successful scenario is clearly the situation where, we get each family in
a different connected component, and components containing only members of
a single family.

4.1 Connected Components

For a proof of concept, we applied the connected component strategy to ar-
tificially created chromosomes with different numbers of repeat families. Each
simulated chromosome has a total length of 1 million base pairs and is composed
by two kinds of sequences:

Background Sequence: The background sequence corresponds to the non-
repetitive genome sequence. In our tests we used 19-dimensional de Bruijn
subsequences as background, which means that the background sequences
do not contain any duplicated substring of length 19.

Repeat Families: The repeat families are collections of similar sequences, called
the family members. They originate from a 19-dimensional de Bruijn subse-
quence, called the family’s base sequence, which is then used to create the
other family members. Families are created in an incremental tree-like fash-
ion: for creating a new member, we randomly take a pre-existing one and
imperfectly duplicate it by simulating insertions, deletions and replacements.
Each newly created sequence differs from its original in 6% of the nucleotides
on average. This agrees with real cases, like the Alu family in the human
genome, where the sequences diverge by up to 12% from other elements in
the family [10]. The number of members in a family is called the family size.

The inserted repeat families were of size 2, 4, 16, and 256. In our tests, an
artificial chromosome can have either 0 or 2 families of each size. All possible

combinations were used, giving a total of 15 chromosome configurations. For
each configuration we created 15 different chromosomes and read sets with 0.25,
0.5, 0.75, and 1 time coverage, simulating partially finished sequencing projects.
The artificially created reads have average length of 250 base pairs.

The sets of reads were given as input to the connected component based re-
peat family detector, resulting in a collection of connected components. Because
we know which sequences correspond to family members, we were able to asso-
ciate each resulting graph component to the families contained in it. The result
of this association is shown in Table 1.

In the ideal case, we would find each family contained in a single connected
component. Table 1 shows a different reality. In the left column (“Components
per Family”), we see that families are usually split into more than three com-
ponents. However, each component usually contains sequences of a single fam-
ily, which is shown by the column “Families per Component”. This shows that
although the families are split, they are at least not so mixed up that their
separation is impossible.

In the rightmost column (“Discovered Families (%)”) we see how much of
the inserted families could be detected by the method. The fact that we were
never able to identify all the families in the odd rows is expected. These are
cases where the chromosomes have families of size two. In such cases, depending
on the underlying sequence graph dimension used, it can happen that the two
family sequences do not share any tuple, or the number of shared tuples is so
small that they end up being discarded as small components. In these cases, the
combine operation plays an important role, as the next section shows.

Components per Family Families per Component Discovered Families (%)
25 50 75 100 25 50 75 100 25 50 75 100

6.33 5.57 4.41 5.68 1.00 1.00 1.00 1.00 20 40 70 73

4.50 3.50 4.33 4.70 1.00 1.00 1.00 1.00 63 97 97 100

5.26 4.78 4.82 4.32 1.00 1.00 1.00 1.00 43 70 85 92

4.27 4.37 4.18 4.42 1.00 1.00 1.00 1.00 100 100 100 100

3.93 4.48 4.31 4.12 1.00 1.00 1.00 1.02 58 78 87 93

4.41 4.01 4.31 4.47 1.00 1.01 1.00 1.02 83 95 100 100

4.31 4.83 4.25 4.20 1.01 1.01 1.02 1.05 64 82 91 94

4.08 3.80 3.89 4.44 1.93 1.93 1.93 1.93 100 100 100 100

4.68 4.56 3.98 4.51 1.78 1.93 1.61 1.51 65 70 80 90

4.38 4.93 4.45 4.72 1.78 1.50 1.58 1.91 85 100 100 100

4.88 4.36 4.28 4.14 1.64 1.55 1.40 1.48 60 77 89 96

4.83 4.69 5.08 4.23 2.18 2.89 2.98 3.31 100 100 100 100

4.48 4.89 4.81 4.50 2.29 2.19 2.36 2.28 72 89 90 98

4.28 4.62 4.63 4.24 1.66 1.82 2.35 2.50 89 98 99 100

4.26 4.51 4.91 4.98 1.60 1.66 1.78 1.87 68 93 97 98

Table 1. Summary of the experiments with artificial data described in Section 4.1.
Each row corresponds to one of our 15 data sets. On the left we see the average number
of different components containing sequences of the same family. In the middle are the
average numbers of different families found in a single component. On the right we see
the percentage of inserted families which could be found in the graph after eliminating
long nodes.

4.2 Combine

In order to evaluate our more advanced algorithm, we created a dataset with real
bacterial genome sequences and their known insertion sequences. The bacterial
chromosomes were obtained from the NCBI Website1, while the correspond-
ing insertion sequences were obtained from the insertion sequence database IS

Finder2. We created 15 read sets covering 25, 75, 50, and 100 percent of the
genome on average. Each of the read sets was used twice as input for the com-

bine method: once with combine scale factor t = 1.0, and a second time with
scale factor t = 3.0. Again we associated the resulting connected components to
the repeat families found in each of them.

In Table 2 we see the percentages of the known insertion sequence fami-
lies which could be detected by the method at different coverages. The biggest
percentage is shown in bold. We see that, by allowing more divergent nodes to
combine, we are not only able to identify more families, but also to identify them
at lower coverage.

Combine Factor (t) 1.0 3.0
Sequencing Coverage (%) 25 50 75 100 25 50 75 100

Bacillus anthracis (plasmid PX01)∗ 0 7 0 40 17 58 92 100
Bifidobacterium longum 14 54 63 64 39 68 81 83
Burkholderia xenovorans 44 67 73 78 50 67 75 81
Colwellia psychrerythraea∗

40 100 100 100 83 100 100 100
Desulfitobacterium hafniense∗ 67 80 97 100 71 96 100 100
Desulfovibrio desulfuricans∗ 33 47 93 100 33 75 92 100
Escherichia coli 17 50 62 70 44 65 85 92
Geobacter uraniumreducens 32 62 67 70 46 68 75 80
Gloeobacter violaceus 30 70 60 83 54 75 88 100
Granulibacter bethesdensis∗ 7 7 40 53 25 33 42 75
Haloarcula marismortui 3 12 22 28 13 25 50 63
Halobacterium sp-plasmid pNRC100 37 57 56 61 37 42 53 57

Legionella pneumophila-Paris 0 13 20 7 8 0 0 17
Legionella pneumophila-Philadelphia 1 27 63 93 93 54 63 63 92

Methanosarcina acetivorans 88 98 98 100 93 100 99 100
Methylococcus capsulatus 22 65 77 83 44 71 90 96
Nitrosospira multiformis∗ 53 93 100 100 92 100 100 100
Photobacterium profundum 87 100 100 100 100 100 100 100
Pseudomonas syringae 92 99 100 100 97 100 100 100
Pyrococcus furiosus 47 58 71 73 50 72 81 89
Ralstonia solanacearum 38 60 75 89 53 78 93 95
Rhodopirellula baltica 82 98 100 100 97 100 100 100
Roseobacter denitrificans∗ 40 80 87 100 42 92 100 92

Salinibacter ruber∗ 100 100 100 100 100 100 100 100
Shewanella oneidensis 10 26 18 23 18 38 15 41
Sulfolobus solfataricus 94 99 100 99 94 100 100 100

Table 2. Percent of known insertion sequence families found in incompletely sequenced
bacterial genomes at different coverages. Bacteria marked with a ‘∗’ symbol do not have
any family with a single member. Numbers marked in bold indicate for which of the
two combine factors more families were identified, on average.

1 NCBI: http://www.ncbi.nlm.nih.gov
2 IS Finder: http://www-is.biotoul.fr/is.html

5 Conclusion

We presented two methods for detecting repeat families in incompletely se-
quenced genomes. The methods are based on operations on the set of nodes
and edges of a sequence graph, a compacted variant of a sparse de Bruijn graph.

The first method was based on the deletion of long nodes corresponding
to non-repetitive genome portions. Based on experiments involving artificially
created data, we showed that the use of this method for family detection is
possible, although the families may be split in a few components in the resulting
graph. We also noticed that families appearing in small copies are in many cases
not detected by the method.

Another node operation was presented in order to combine similar, but not
identical, nodes of different members in a family. This operation was applied
before the deletion of long nodes, in order to avoid the splitting of family com-
ponents. Although the combination of nodes leads to a reduction in the number
of components per families (data not shown), the main advantage of this oper-
ation is better observed in experiments involving real bacterial genomes, where
the node combination leads to the detection of only weakly represented families.

The main obstacle for using these methods in practical applications is the
splitting of repeat families in separated components. This is for us the main prob-
lem to be tackled before applying the method in genomes of higher complexity,
like eukaryotes.

References

1. Zhirong Bao and Sean R. Eddy. Automated de novo identification of repeat se-
quence families in sequenced genomes. Genome Res., 12:1269–1276, 2002.

2. Shahid H. Bokhari and Jon R. Sauer. A parallel graph decomposition algorithm
for DNA sequencing with nanopores. Bioinformatics, 21(7):889–896, 2005.

3. Jonathan Butler, Iain MacCallum, Michael Kleber, Ilya A. Shlyakhter, Matthew K.
Belmonte, Eric S. Lander, Chad Nusbaum, and David B. Jaffe. ALLPATHS: De
novo assembly of whole-genome shotgun microreads. Genome Res., 18:810–820,
March 2008.

4. Mark Chaisson, Pavel Pevzner, and Haixu Haixu Tang. Fragment assembly with
short reads. Bioinformatics, 20(13):2067–2074, 2004.

5. Mark J. Chaisson and Pavel A. Pevzner. Short read fragment assembly of bacterial
genomes. Genome Res., 18:324–330, March 2008.

6. Reinhard Diestel. Graph Theory. Number 173 in Graduate Texts in Mathematics.
Springer-Verlag, third edition, 2005.

7. Anne E. Hall, Aretha Fiebig, and Daphne Preuss. Beyond the arabidopsis genome:
Opportunities for comparative genomics. Plant Physiol., 129:1439–1447, August
2002.

8. Lenwood S. Heath and Amrita Pati. Genomic signatures in de Bruijn chains. In
Raffaele Giancarlo and Sridhar Hannenhalli, editors, Proceedings of WABI 2007,
volume 4645 of LNCS, pages 216–227. Springer, 2007.

9. Ramana M. Idury and Michael S. Waterman. A new algorithm for DNA sequence
assembly. J. Comput. Biol., 2(2):291–306, 1995.

10. Warren R. Jelinek, Thomas P. Toomey, Leslie Leinwald, Craig H. Duncan, Paul A.
Biro, Prabhakara V. Choudary, Sherman M. Weissman, Carol M. Rubin, Cather-
ine M. Houck, Prescott L. Deininger, and Carl W. Schmid. Ubiquitous, inter-
spersed repeated sequences in mammalian genomes. Proc. Natl. Acad. Sci. USA,
77(3):1398–1402, March 1980.

11. Jacques Mahillon and Michael Chandler. Insertion sequences. Microbiol. Mol. Biol.

Rev., 62(3):725–774, September 1998.
12. Eugene W. Myers. The fragment assembly string graphs. Bioinformatics, 21:ii79–

ii85, 2005.
13. Pavel A. Pevzner, Haixu Tang, and Glenn Tesler. De novo repeat classification

and fragment assembly. In Proceedings of RECOMB 2004, pages 213–222, March
2004.

14. Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An Eulerian path
approach to DNA fragment assembly. Proc. Natl. Acad. Sci. USA, 98(17):9748–
9753, August 2001.

15. Eline T. Luning Prak and Haig H. Kazazian Jr. Mobile elements and the human
genome. Nature Rev., 1:134–144, November 2000.

16. José A. Amgarten Quitzau and Jens Stoye. A space efficient representation for
sparse de Bruijn subgraphs. Report, Technische Fakultät der Universität Bielefeld,
Abteilung Informationstechnik, 2008. http://bieson.ub.uni-bielefeld.de.

17. Benjamin Raphael, Degui Zhi, Haixu Tang, and Pavel Pevzner. A novel method
for multiple alignment of sequences with repeated and shuffled elements. Genome

Res., 14:2336–2346, 2004.
18. João C. Setubal and João Meidanis. Introduction to Computational Molecular

Biology. PWS Publishing, 1997.
19. Daniel R. Zerbino and Ewan Birney. Velvet: Algorithms for de novo short read

assembly using de Bruijn graphs. Genome Res., 18:821–829, March 2008.
20. Yu Zhang and Michael S. Waterman. An Eulerian path approach to local multi-

ple alignment for dna sequences. Proc. Natl. Acad. Sci. USA, 102(5):1285–1290,
February 2005.

