
Swiftly Computing Center Strings

Franziska Hufsky1,3, Léon Kuchenbecker2, Katharina Jahn2,
Jens Stoye2, and Sebastian Böcker1

1 Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, Jena, Germany,

{franziska.hufsky,sebastian.boecker}@uni-jena.de
2 AG Genominformatik, Technische Fakultät, Universität Bielefeld, Germany,

kjahn@cebitec.uni-bielefeld.de, {lkuchenb,stoye}@techfak.uni-bielefeld.de
3 International Max Planck Research School, Jena, Germany

Abstract. The center string (or closest string) problem is a classical
computer science problem with important applications in computational
biology. Given k input strings and a distance threshold d, we search for
a string within Hamming distance d to each input string. This problem
is NP-complete. In this paper, we focus on exact methods for the prob-
lem that are also fast in application. First, we introduce data reduction
techniques that allow us to infer that certain instances have no solution,
or that a center string must satisfy certain conditions. Then, we describe
a novel search tree strategy that is very efficient in practice. Finally, we
present results of an evaluation study for instances from a biological ap-
plication. We find that data reduction is mandatory for the notoriously
difficult case d = dopt − 1.

1 Introduction

The Center String problem (also called Closest String problem) is de-
fined as follows: Given k strings of length L over an alphabet Σ and a distance
threshold d, find a string of length L that has Hamming distances at most d to
each of the given strings.

The Center String problem has been studied extensively in theoretical
computer science and particularly in computational biology [5,9], and has various
applications such as degenerate PCR primer design [10] or motif finding [2,5]. We
are particularly interested in its application as part of finding approximate gene
clusters: The increasing speed of genome sequencing and the resulting number of
available data offers the possibility of comparing gene order of whole genomes.
During the course of evolution, speciation results in the divergence of genomes
that initially have the same gene order and content. Conserved gene order is
evidence for some biological signal [11]. Approximate gene cluster models account
for reordering inside the gene cluster, as well as additional and missing genes in
the compared genomes [1, 8]. The center gene cluster model limits the distance
between the gene cluster and each of the approximate occurrences. For given
approximate occurrences, finding the center gene cluster is equivalent to finding
a center string for binary input strings.

2 F. Hufsky, L. Kuchenbecker, K. Jahn, J. Stoye, S. Böcker

Previous Work. The Center String problem is NP-complete even for three
strings [3,5], hence no polynomial time algorithm can exist unless P = NP. Dif-
ferent approaches have been studied for the problem: Ma and Sun [7] presented
a polynomial time approximation scheme with time complexity O(nO(ε−2)) for
an approximation ratio of 1 + ε for any ε > 0. Also, heuristics and parallel im-
plementations with good practical running times have been developed [6]. The
drawback of these approaches is that they cannot guarantee to find an exact
solution.

Parameterized algorithms use a parameter to describe the complexity of a
problem instance and restrict the running time using this parameter, while at the
same time guarantee to find optimal solutions. Parameters that have been stud-
ied in the literature for the Center String problem are the distance threshold
d and the number of input strings k. For the latter parameter, Gramm et al. [4]
showed that the problem is fixed-parameter tractable using an Integer Linear
Program. Evaluations indicate that this approach is of theoretical interest only
and impractical for k ≥ 5. Regarding the distance threshold d, in the same paper
an algorithm was given with running time O(kL+kdd+1). Later, Ma and Sun [7]
presented an algorithm with running time O

(
kL+ kd · 16d (|Σ| − 1)d

)
. Recently,

Wang and Zhu [9] improved the running time to O
(
kL+kd ·9.53d (|Σ|−1)d

)
. All

of these algorithms are based on the search tree paradigm. Note that for binary
strings the term (|Σ| − 1)d vanishes.

Our Contribution. In this paper, we focus on exact methods that are also swift
in application. We have developed an advanced preprocessing to quickly filter
out unsolvable instances. Additionally, we compute rules that can be used within
search tree algorithms to bound the search space, excluding unsolvable instances.
We show how to integrate this information into the algorithms from [4, 7]. We
then present a new search tree strategy called MismatchCount that, despite its
bad worst case running time, works extremely well in practice. We implemented
all three algorithms to evaluate their performance in combination with our pre-
processing. We then present results of our experimental evaluation, showing that
preprocessing and the novel algorithm improve running times by several orders
of magnitude. We find that particularly the case d = dopt − 1 is notoriously
difficult for all approaches, where dopt is the smallest distance value for which a
solution exists.

2 Preliminaries

Given a string s over a finite alphabet Σ, let s[i] indicate the ith character of s
and s[i, j] the substring of s starting at position i and ending at position j. The
length of s is denoted by |s|.

The Hamming distance dH(s, t) of two strings s and t of the same length L
is the number of positions p with s[p] 6= t[p]. Let R = {p1, . . . , pm} ⊆ {1, . . . , L}
be a set of positions such that pi < pi+1 for all 1 ≤ i < m. Then s|R :=
s[p1] . . . s[pm] denotes the subsequence of s restricted to the positions in R. We

Swiftly Computing Center Strings 3

define the Hamming distance of two strings s and t restricted to R as dR
H(s, t) :=

dH(s|R, t|R). For two strings s and t, let Ds,t :=
{
p : s[p] 6= t[p]

}
⊆ {1, . . . , L}

denote the set of positions where s and t differ, and let Es,t :=
{
p : s[p] =

t[p]
}

= {1, . . . , L} \Ds,t be the set of positions where s and t are identical. Note
that d

Ds,t

H (s, t) = dH(s, t). For k input strings s1, . . . , sk, we write Di,j := Dsi,sj

and Ei,j := Esi,sj . For strings over the binary alphabet Σ = {0, 1}, which is our
default, we define s[p] = 1− s[p].

The Center String problem is defined as follows: Given strings s1, . . . , sk

of length L over an alphabet Σ, and a distance threshold d, find a string ŝ of
length L, called center string, that has Hamming distances at most d to each of
the given strings.

For k strings s1, . . . , sk and distance threshold d, we can construct a näıve
kernel as follows [4]: A position p is called clean if all sequences coincide at this
position, i.e. si[p] = sj [p] for all 1 ≤ i < j ≤ k, otherwise it is called dirty.
One can easily see that there can be at most kd dirty positions if an instance
allows for a center string of distance d. If a position is not dirty, then all strings
share the same character at this position, and the center string will also share
this character. So, we can remove all positions but the dirty ones, and get an
instance of length L ≤ kd.

In our algorithms, we assume a distance threshold d to be given. In appli-
cations, we might not know the distance threshold d in advance, but instead
search for a center string minimizing d. We can do so by calling our algorithms
repeatedly, increasing d = 0, 1, 2, . . . until a solution is found for d = dopt. Both
in theory and in our experimental evaluation, we find that the running time of
this iteration is governed by the last subroutine calls with d = dopt − 1 and
d = dopt. That is why in our evaluations we will put special focus on these two
cases.

In the following, we present a data reduction that will often allow us to
conclude that no solution can exist for a particular distance threshold d. But in
case we cannot rule out the existence of a center string by data reduction (what
is obviously the case when d = dopt) we still have to decide whether a valid center
strings exists. All algorithms for doing so, such as [4,7,9] and the MismatchCount
algorithm presented below, are based on the search tree paradigm: In principle,
we scan through all 2L possible binary strings and test whether any such string
is a center string of the input. The algorithms differ in the order in which they
process the 2L strings and, in particular, how they constrain the search space to
speed up computations.

3 Data Reduction

Our data reduction is based on the pairwise comparison of the input strings.
Given an instance s1, . . . , sk and d of the Center String problem, we can
divide all pairs of strings {si, sj} into three groups: pairs with distance less than
2d − 1, greater than 2d, or equal to 2d or 2d − 1. If there exist two strings si,
sj with Hamming distance dH(si, sj) > 2d, then the instance has no solution.

4 F. Hufsky, L. Kuchenbecker, K. Jahn, J. Stoye, S. Böcker

This follows from the fact that a center string ŝ can have at most distance d
to each of si and sj and, hence, dH(si, sj) ≤ dH(si, ŝ) + dH(ŝ, sj) ≤ 2d. So,
d ≥ 1

2 maxi,j dH(si, sj) must hold for the instance to have a solution.

Solving Trivial Positions. Some positions of the solution string can be trivially
solved. This is based on the following observation:

Lemma 1. Given strings s1, . . . , sk and a center string ŝ with distance d. For
two strings si, sj such that dH(si, sj) = 2d or dH(si, sj) = 2d− 1, we have

ŝ[p] = si[p] = sj [p] for all p ∈ Ei,j .

Proof. A center string with distance at most d to all strings is located central
between the two strings si and sj with distance 2d and hence has distance d
to both of them. Thus, all positions fixed between si and sj must also be fixed
in ŝ. Our reasoning can be extended to string pairs with distance 2d − 1: We
need to change, in at least one of the strings, d positions and Ei,j is the set of
equal positions between both strings, hence we are still not allowed to change
any position p ∈ Ei,j . ut

As a reduction rule, if we find two strings si, sj with dH(si, sj) ≥ 2d−1, then
we can set ŝ[p] := si[p] for all p ∈ Ei,j and mark these positions as “permanent”.
Let P denote this set of permanent positions. By doing this for all si, sj with
dH(si, sj) = 2d or dH(si, sj) = 2d − 1, we may run into conflicting situations
where we have to permanently set a certain position to ‘0’ and ‘1’ simultaneously.
We call such a situation a conflict and infer that the instance has no solution
for the current choice of d. If we do not have a conflict, then applying this data
reduction results in a partially solved solution string ŝ with ŝ[p] = c ∈ Σ fixed
for all p ∈ P, whereas all positions not in P still have to be decided.

Computation of Position Subsets. We next focus on pairs of strings si, sj with
dH(si, sj) = δ < 2d− 1. For a given center string ŝ we define

Xi,j(ŝ) :=
{
p ∈ Ei,j : si[p] = sj [p] 6= ŝ[p]

}
as the set of positions where si and sj agree, but disagree with the center string ŝ.
We extend the reasoning behind Lemma 1 as follows:

Lemma 2. Given strings s1, . . . , sk and a center string ŝ with distance d. For
two strings si, sj such that dH(si, sj) < 2d− 1, we have

|Xi,j(ŝ)| ≤ d− 1
2dH(si, sj) .

Proof. Let D := Di,j . Regarding the distances between ŝ|D and si|D as well
as sj |D, we can state that ŝ|D has to at least one of the strings si|D or sj |D a
distance at least 1

2dH(si, sj):

max {dH(si|D, ŝ|D), dH(sj |D, ŝ|D)} ≥ 1
2dH(si, sj) .

Swiftly Computing Center Strings 5

This is true since dH is a metric and the triangle inequality holds, dH(si|D) ≤
dH(si|D, ŝ|D) + dH(sj |D, ŝ|D). Since we need a distance of at least 1

2dH(si, sj) to
solve the positions from D, a distance of at most d− 1

2dH(si, sj) remains to solve
the positions from E. ut

Lemma 2 implies that the maximum number of positions p ∈ Ei,j we are al-
lowed to choose in the center string with ŝ[p] 6= si[p] is bounded by d− 1

2dH(si, sj).
We can transform this observation into a reduction rule as follows: When, dur-
ing search tree traversal or by other reduction rules, we have a partially solved
solution string ŝ such that

|Xi,j(ŝ)| > d− 1
2dH(si, sj)

for any pair si, sj , then we can infer that ŝ cannot be extended to a solution for
the current choice of d. For each pair si, sj , we therefore set xi,j := d− 1

2dH(si, sj)
and store all tuples (Ei,j , xi,j) in an array T .

Removing redundant information from T may lead to further trivially solved
positions. This is done by removing, for all 1 ≤ i < j ≤ k, all positions p ∈
P ∩ Ei,j from Ei,j . Moreover, if ŝ[p] 6= si[p] then we decrease xi,j by one.

For xi,j = 0 we set all positions p from Ei,j to “permanent” and include them
in P. Since P has changed, we continue our data reduction again until there is
no tuple (Ei,j , xi,j) with xi,j = 0 in T . For xi,j < 0 we can easily infer that
there must exist a conflict and, hence, the instance has no valid solution for this
distance threshold d.

Cascading. To further enlarge the number of solved positions we consider all
pairs of strings si, sj with xi,j = 1 and use cascading. A valid center string ŝ has
to agree with si in at least |Ei,j |−1 positions from Ei,j , hence for binary strings
at most one position p ∈ Ei,j can be set to ŝ[p] = si[p].

To this end, we test for all positions p ∈ Ei,j what we can infer from setting
ŝ[p] = si[p]. This implies xi,j = 0, hence the remaining positions q ∈ Ei,j , q 6= p,
are added to P and the tuple set T is reduced. If we run into a conflict during
this reduction, we know that setting ŝ[p] = si[p] cannot result in a valid solution.
In this case, we infer ŝ[p] = si[p] and permanently set position p.

Unfortunately, if not running into a conflict, setting ŝ[p] = si[p] is not manda-
tory. However, we get a partially solved solution string ŝp,v and a set of “po-
tentially permanent” positions Pp,v depending on the position p and the value
v = si[p]. We store this information in a set of rules R.

We can use the set of rules R when solving the remaining instance by, say,
a search tree algorithm. If, during the search tree traversal, we decide to set
ŝ[p] = v for the solution string ŝ, then we can immediately start the above data
reduction: For all positions q ∈ Pp,v \P, we set the solution string ŝ[q] = ŝp,v[q].
For the remaining positions q ∈ Pp,v ∩ P, the condition ŝ[q] = ŝp,v[q] must be
met, otherwise we run into a conflict and, thus, this branch of the search tree
does not lead to a valid solution.

6 F. Hufsky, L. Kuchenbecker, K. Jahn, J. Stoye, S. Böcker

4 Integration into Search Tree Algorithms

We can use the information derived during preprocessing, stored in the sets
P, T ,R, to speed up the algorithms of Ma and Sun [7] and Gramm et al. [4].
Integrating the set of solved positions P into the algorithm of Ma and Sun is
straightforward, as this algorithm tackles the more general Neighbor String
problem. In all other cases, it is necessary to interweave the use of P, T ,R with
the actual search tree algorithms. Here, we use the information from P, T ,R to
shrink the search tree, by excluding search tree branches which cannot lead to
a valid solution. To do so, we simply test if the (partial) string candidate of the
search tree is already conflicting with this information. The integration of P, T ,R
is somewhat different for the algorithms of Ma and Sun and Gramm et al., we
defer the technical details to the full version of this paper. Unfortunately, the
use of P, T ,R does not change the worst-case running times of both algorithms.
But our preprocessing, as an algorithm engineering technique, allows us to speed
up the algorithms in practice, as demonstrated in Sect. 6.

5 Algorithm MismatchCount

After we have applied our data reduction rules, we have to solve the remaining
instance using a search tree algorithm, like those from [4, 7]. In this section we
present another such procedure, MismatchCount, that is very efficient in practice,
as we will show below. Given binary strings s1, . . . , sk of length L and a distance
threshold d, the MismatchCount algorithm solves the Closest String problem
as follows: We iterate through all strings s with distance at most d to a chosen
string si — without loss of generality, we may choose that string to be s1. This
leaves us with a search space of size

∑d
d′=0

(
L
d′

)
. We present an enumeration

scheme for those s that allows efficient testing for the center condition on each
candidate, and that makes it possible to skip large areas of the search space
based on information gained while checking those candidates.

The mismatch positions for d mismatches in s1 (and therefore the center
string candidates s) are enumerated, equivalently to generating all binary num-
bers of length m with d bits set to 1, in reverse order.

An example for the placement of at most three mismatches is shown in Fig. 1.
For every s, its Hamming distance to the remaining strings s2, s3, . . . , sk has
to be checked. Rather than recomputing these distances entirely new for each
candidate, the Hamming distances from the previous candidate s′ are updated by
increasing (resp. decreasing) the distances according to the changed positions.
The running time for verifying a center candidate s is therefore bounded by
O(g · k), where g is the number of positions changed from s′ to s.

The overall number of changes performed during the enumeration of all center
candidates can be determined like this: using the presented enumeration scheme,
each position p in s is changed once to ‘1’ and once to ‘0’ for every configuration
of s[1, p − 1] with at most d mismatches to s1[1, p − 1]. There are

(
p−1
d′

)
such

configurations for each d′ = 1, 2, . . . , d. Summing over all possible combinations

Swiftly Computing Center Strings 7

dH(s, s1) = 0

0 0 0 0 0

dH(s, s1) = 1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

dH(s, s1) = 2

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1

dH(s, s1) = 3

1 1 1 0 0
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1
1 0 0 1 1
0 1 1 1 0
0 1 1 0 1
0 1 0 1 1
0 0 1 1 1

Fig. 1. Enumeration scheme for all strings s with Hamming distance at most 3 to a
bit string s1 of length 5. The ‘0’s denote matches between s and s1 at the respective
positions, while ‘1’s denote mismatches.

of p and d′, the number of bit changes performed can be bounded by O(2L).
Since for each character change in s, k Hamming distances need to be updated,
the overall worst-case running time of the algorithm is bounded by O(k · 2L).

However, this worst-case analysis refers to the exploration of all legal mis-
match configurations of s. As already mentioned above, the enumeration scheme
enables us to skip large areas of that search space. Using the maximum Ham-
ming distance dmax = maxi=2,...,k(dH(s, si)) computed in each iteration, we can
derive a lower bound for the number of positions that have to be changed in
s in order to fulfill the center condition. Therefore, for each candidate s taken
into consideration, we compute cmin =

⌈
dmax−d

2

⌉
, where 2 · cmin is the mini-

mum number of positions in s that have to be changed when its successor is
generated. This bound can be used in two ways: We cannot change 2 · cmin

positions in s by changing the positions of less than cmin mismatches. There-
fore, if currently all candidates s with dH(s1, s) = d are enumerated and we
encounter a candidate that reveals a cmin > d, we can proceed to the generation
of candidates with dH(s1, s) = cmin, omitting the enumeration for all s with
dH(s1, s) ∈ {d, d + 1, . . . , c− 1}.

Furthermore, even if cmin does not exceed d for a currently observed candi-
date, we can use that bound to skip the enumeration of certain candidates. Since
we know that we have to change at least 2 · cmin positions in s, we can omit all
enumeration steps that involve less than cmin mismatch positions.

Applying the data reduction to this algorithm is straightforward. Let Q :=
{1, . . . , L}\P be the set of positions that are not permanent. Then, the reduced
instance is s1|Q, . . . , sk|Q. When estimating for every candidate s its Hamming
distance to each remaining string si, the additional amount dH(ŝ|P , si|P) has to
be added to the distances of the reduced strings. This is done only once at the
beginning, since the Hamming distances are updated during the algorithm.

8 F. Hufsky, L. Kuchenbecker, K. Jahn, J. Stoye, S. Böcker

6 Computational Results

We performed our tests on a data set obtained by applying the approximate
gene cluster algorithm described in [1] to five γ-proteobacteria genomes from
the NCBI Genome database4, see Tab. 1. The gene classification is based on
COG5 functional categories.

Table 1. Five γ-proteobacteria from the NCBI Genome database, used for detection of
approximate gene clusters to generate biological instances of the center string problem.
‘Refseq’ denotes reference sequence from NCBI Genome database, ‘PC’ number of
protein-coding genes.

Species name Refseq Genes PC

Buchnera aphidicola str. APS NC 002528 607 564
Escherichia coli str. K-12 substr. MG1655 NC 000913 4493 4149
Haemophilus influenzae Rd KW20 NC 000907 1789 1657
Pasteurella multocida subsp. multocida str. Pm70 NC 002663 2092 2015
Xylella fastidiosa 9a5c NC 002488 2838 2766

The generation of center string instances from gene cluster predictions works
as follows: Each gene cluster consists of five approximate occurrences, one on
each genome, that are transformed into binary strings based on their gene com-
position. Since the instances generated from a single cluster are too short to
evaluate the performance of our algorithms, larger instances are created by con-
catenation until the length L is reached. Additional strings are constructed in
the same fashion, incorporating further cluster occurrences.

We created 50 instances for each combination of k and L with k = 20, 30, 40, 50
and L = 250, 300, . . . , 500. The origin of our data, based on finding approximate
gene clusters, results in many clean columns that are trivially solved. We keep
only the dirty columns, representing the “hard part” of the instances. In our
dataset, there were between 36.2% and 57.7% dirty columns. We stress that re-
sults in the following sections are reported for this näıve kernel. In the further
evaluation we examine only the 567 instances with dopt ≤ 40 and we concentrate
on the computation of center strings for d = dopt and d = dopt − 1, since these
are the computationally hard instances, see Fig. 3 below. For the search tree
algorithms evaluated below, the search tree size grows (super-) exponentially
with increasing d, hence the algorithms’ running times are usually dominated by
these cases.

Excluding Unsolvable Instances by Preprocessing. Our preprocessing allows us
to exclude unsolvable instances more efficiently than the näıve kernel, when d
is too small for a center string to exist. This is of particular interest as here
search tree algorithms have to scan the complete search tree to ensure that no
4 http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome
5 http://www.ncbi.nlm.nih.gov/COG/

Swiftly Computing Center Strings 9

solution exists. Recall that the näıve kernel tests if there exist more than kd
dirty columns, in which case the instance cannot have a solution for this choice
of d. Table 2 shows the number of excluded instances via preprocessing, for
d = dopt− 1. Our improved preprocessing always filters out more instances than
the näıve kernel does. For different k, we can exclude between 15.9 % and 44.4 %
of instances that have not been filtered by the näıve kernel. We note that for
d = dopt− 2, more than 99 % of the instances are rejected by the näıve kernel or
since d < 1

2 maxi,j dH(si, sj). Clearly, no instances are rejected for d = dopt.

Table 2. Percentage of instances excluded by preprocessing, for d = dopt − 1.

number of sequences k 20 30 40 50

näıve kernel (%) 56.5 59.1 67.4 68.4
our preprocessing, from remaining (%) 24.3 15.9 36.4 44.4
total excluded instances (%) 67.1 65.6 79.3 82.4

Solving Trivial Positions by Preprocessing. The second advantage of our method
is the computation of positions that can be trivially solved during preprocessing,
see Fig. 2. The percentage of fixed positions is especially high for the important
case d = dopt. In fact, an average of 41.0 % of the positions was fixed for these
instances during preprocessing. We also observe that there is no “twilight zone”
of fixed positions: In 57.8 % of the instances, more than 40 % of positions were
fixed; in 38.5 % the data reduction did not fix any positions; and in less than
3.7 % of the instances we observed a fixation of 0–40 % of positions.

0

20

40

60

80

100

60 80 100 120 140 160 180 200
length

N
um

be
r o

f t
riv

ia
lly

so
lv

ed
 p

os
iti

on
s

in
 %

Fig. 2. Percentage of trivially solved positions in P for d = dopt, plotted against the
length L of the instance. Crosses represent individual instances, solid line is average
percentage for intervals of width 20.

Running Times. We have implemented the algorithms of Gramm et al. [4],
Ma and Sun [7], and the MismatchCount algorithm from Sect. 5, referred to
as “Gramm”, “MaSun” and “MismatchCount”, respectively. These algorithms

10 F. Hufsky, L. Kuchenbecker, K. Jahn, J. Stoye, S. Böcker

do not include any preprocessing beyond the näıve kernel. Name suffix “RT”
indicates that preprocessing, algorithm engineering, and the use of R and T
are enabled. For the MismatchCount algorithm, only the information from P is
used, denoted as name suffix “P”.

All algorithms have been implemented in Java and compiled with the Sun
Java Standard Edition compiler version 1.6. All computations were done on a
quad-core 2.2 GHz AMD Opteron processor with 5 GB of main memory under
the Solaris 10 operating system. The presented running times are the core run-
ning times of the algorithms and do not include I/O or removal of clean columns.
We set a time limit of ten minutes per instance.

 dopt-4 dopt-2 dopt dopt+2 dopt+4
d

0
100
200
300
400
500
600

ru
nn

in
g

tim
e

in
 s

ec

MismatchCountP
MismatchCount
MaSunRT
MaSun
GrammRT
Gramm

Fig. 3. Average running times for the 395 instances with dopt ≤ 35. Running times are
depicted in dependency on varying d around dopt.

We first show that running times of all algorithms are truly dominated by
the cases d = dopt − 1 and d = dopt. To this end, we consider the 395 instances
with dopt ≤ 35 of length 57 ≤ L ≤ 243 after removing clean columns. Results
are shown in Fig. 3. It is clearly visible that it is sufficient to concentrate on
the two cases d = dopt − 1 and d = dopt. Algorithms MaSun and Gramm show
large running times for both of these cases, whereas MismatchCount reaches its
maximum running times for d = dopt−1 while it is faster for d = dopt. Note that
we cannot circumvent calling the algorithm with d = dopt−1 to ensure that dopt

is truly optimal.

Table 3. Percentage of instances rejected within different time limits, for d = dopt−1.
‘MC ’ denotes MismatchCount algorithm.

MCP MC MaSunRT MaSun GrammRT Gramm

time limit 600 s (%) 49.4 14.9 51.9 5.4 48.1 0
time limit 1 s (%) 45.6 12.4 44.0 4.1 43.6 0

We now show the dependency of running times on the parameter dopt. There-
fore, we pooled the instances with respect to the optimum center distance dopt.

Swiftly Computing Center Strings 11

24 26 28 30 32 34 36 38
d=dopt-1

0.01

0.1

1

10

100

1000

ru
nn

in
g

tim
e

in
 s

ec

MismatchCountP
MismatchCount
MaSunRT
MaSun
GrammRT
Gramm

time out

26 28 30 32 34 36 38 40
d=dopt

0.01

0.1

1

10

100

1000

ru
nn

in
g

tim
e

in
 s

ec

MismatchCountP
MismatchCount
MaSunRT
MaSun
GrammRT
Gramm

time out

Fig. 4. Average running times for varying dopt. Running times for d = dopt − 1 (left)
and d = dopt (right). Logarithmic scale for running times.

For d = dopt − 1 we excluded all instances where d < L/k after removing clean
columns, or d < 1

2 maxi,j dH(si, sj), as these obviously have no solution, leaving
us with 241 instances. In Tab. 3, we show the percentage of instances that were
rejected in less than 600 s, all other instances remain undecided by the algo-
rithm. Running times for both d = dopt − 1 and d = dopt are depicted in Fig. 4.
Note that the unmodified algorithms of Gramm et al. and Ma and Sun usually
run into the time limit at 600 s, true running times are expected to be much
higher. We also see that the MismatchCount algorithm is much faster for the
case d = dopt than for d = dopt − 1.

7 Conclusion

We have presented an improved preprocessing for the Center String problem.
This is based on the observation that for strings with an optimal center at
distance d, there usually exist many pairs of strings with distance close or equal
to 2d. Our data reduction allows us to reject more instances that do not have a
valid center string, and to draw conclusions about certain positions of a center
string. We show how this information can be used in the search tree algorithms
of Gramm et al. and Ma and Sun. We have also presented the MismatchCount
algorithm for binary alphabets. In our experimental evaluation, we could show
that our data reduction is very efficient and that the MismatchCount algorithm
outperforms the other two in practice. Our data reduction is particularly helpful
for tackling the case d = dopt − 1, where the MismatchCount algorithm has
maximum running times, as we can exclude more instances.

Currently, the MismatchCount algorithm does not use information encoded
in R and T . We are working on a modified version of the algorithm that will
allow us to approach even larger instances in reasonable running time, as it will
speed up computations for the “neuralgic” case d = dopt − 1.

12 F. Hufsky, L. Kuchenbecker, K. Jahn, J. Stoye, S. Böcker

Acknowledgments

This research was partially funded by DFG grant STO 431/5.

References

1. Böcker, S., Jahn, K., Mixtacki, J., Stoye, J.: Computation of median gene clusters.
J. Comput. Biol. 16(8), 1085–1099 (2009)

2. Davila, J., Balla, S., Rajasekaran, S.: Fast and practical algorithms for planted
(l, d) motif search. IEEE/ACM Trans. Comput. Biol. Bioinformatics 4(4), 544–552
(2007)

3. Frances, M., Litman, A.: On covering problems of codes. Theory Comput. Systems
30(2), 113–119 (1997)

4. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for clos-
est string and related problems. Algorithmica 37(1), 25–42 (2003)

5. Lanctot, J. K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection
problems. Information and Computation 185(1), 41–55 (2003)

6. Liu, X., He, H., Sykora, O.: Parallel genetic algorithm and parallel simulated an-
nealing algorithm for the closest string problem. In: Li, X., Wang, S., Dong, Z. Y.
(eds.) Proc. of Advanced Data Mining and Applications Conference (ADMA 2005).
LNCS, vol. 3584, pp. 591–597, Springer (2005)

7. Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems.
SIAM J. Comput. 39(4), 1432–1443 (2009)

8. Rahmann, S., Klau, G. W.: Integer linear programming techniques for discovering
approximate gene clusters. In: Mandoiu, I., Zelikovsky, A. (eds.) Bioinformatics
Algorithms: Techniques and Applications, Wiley Series on Bioinformatics: Com-
putational Techniques and Engineering, chapter 9, pp. 203–222, Wiley (2008)

9. Wang, L., Zhu, B.: Efficient algorithms for the closest string and distinguishing
string selection problems. In: Deng, X., Hopcroft, J. E., Xue, J. (eds.) Proc. of
Frontiers in Algorithmics Workshop (FAW 2009). LNCS, vol. 5598, pp. 261–270,
Springer (2009)

10. Wang, Y., Chen, W., Li, X., Cheng, B.: Degenerated primer design to amplify
the heavy chain variable region from immunoglobulin cdna. BMC Bioinformatics
7(Suppl. 4), S9 (2006)

11. Yanai, I., DeLisi, C.: The society of genes: networks of functional links between
genes from comparative genomics. Genome Biol. 3(11):research0064 (2002)

